In:
Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 12 ( 2021-06-29), p. 9779-9807
Abstract:
Abstract. We present retrievals of tropospheric and stratospheric height profiles of particle mass, volume, surface area, and number concentrations in the case of wildfire smoke layers as well as estimates of smoke-related cloud condensation nuclei (CCN) and ice-nucleating particle (INP) concentrations from backscatter lidar measurements on the ground and in space. Conversion factors used to convert the optical measurements into microphysical properties play a central role in the data analysis, in addition to estimates of the smoke extinction-to-backscatter ratios required to obtain smoke extinction coefficients. The set of needed conversion parameters for wildfire smoke is derived from AERONET observations of major smoke events, e.g., in western Canada in August 2017, California in September 2020, and southeastern Australia in January–February 2020 as well as from AERONET long-term observations of smoke in the Amazon region, southern Africa, and Southeast Asia. The new smoke analysis scheme is applied to CALIPSO observations of tropospheric smoke plumes over the United States in September 2020 and to ground-based lidar observation in Punta Arenas, in southern Chile, in aged Australian smoke layers in the stratosphere in January 2020. These case studies show the potential of spaceborne and ground-based lidars to document large-scale and long-lasting wildfire smoke events in detail and thus to provide valuable information for climate, cloud, and air chemistry modeling efforts performed to investigate the role of wildfire smoke in the atmospheric system.
Type of Medium:
Online Resource
ISSN:
1680-7324
DOI:
10.5194/acp-21-9779-2021
Language:
English
Publisher:
Copernicus GmbH
Publication Date:
2021
detail.hit.zdb_id:
2092549-9
detail.hit.zdb_id:
2069847-1
Bookmarklink