In:
Journal of Applied Physics, AIP Publishing, Vol. 119, No. 11 ( 2016-03-21)
Abstract:
Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.
Type of Medium:
Online Resource
ISSN:
0021-8979
,
1089-7550
Language:
English
Publisher:
AIP Publishing
Publication Date:
2016
detail.hit.zdb_id:
220641-9
detail.hit.zdb_id:
3112-4
detail.hit.zdb_id:
1476463-5
Bookmarklink