Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
  • 1
    In: Journal for ImmunoTherapy of Cancer, BMJ, Vol. 4, No. S1 ( 2016-11)
    Type of Medium: Online Resource
    ISSN: 2051-1426
    Language: English
    Publisher: BMJ
    Publication Date: 2016
    detail.hit.zdb_id: 2719863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 963-963
    Abstract: Target antigen density has emerged as a major factor influencing the potency of CAR T cells. Our laboratory has demonstrated that the activity of numerous CARs is highly dependent on target antigen density (Walker et al., Mol Ther, 2017), and high complete response rates in a recent trial of CD22 CAR T cells for B-ALL were tempered by frequent relapses due to decreased CD22 antigen density on lymphoblasts (Fry et al., Nat Med, 2018). To assess if antigen density is also a determinant of CD19 CAR T cell therapeutic success, we analyzed CD19 antigen density from fifty pediatric B-ALL patients treated on a clinical trial of CD19-CD28ζ CAR T cells. We found that patients whose CD19 expression was below a threshold density (2000 molecules/lymphoblast) were significantly less likely to achieve a clinical response than those whose leukemia expressed higher levels of CD19. In order to further understand this limitation and how it may be overcome, we developed a model of variable CD19 antigen density B-ALL. After establishing a CD19 knockout of the B-ALL cell line NALM6, we used a lentivirus to reintroduce CD19 and then FACS sorted and single cell cloned to achieve a library of NALM6 clones with varying CD19 surface densities. CD19-CD28ζ CAR T cell activity was highly dependent on CD19 antigen density. We observed decreases in cytotoxicity, proliferation, and cytokine production by CD19 CAR T cells when encountering CD19-low cells, with an approximate threshold of 2,000 molecules of CD19 per lymphoblast, below which, cytokine production in response to tumor cells was nearly ablated. Given that a CD19-4-1BBζ CAR is FDA approved for children with B-ALL and adults with DLBCL, we wondered whether CARs incorporating this alternative costimulatory domain would have similar antigen density thresholds for activation. Surprisingly, CD19-4-1BBζ CAR T cells made even less cytokine, proliferated less, and had further diminished cytolytic capacity against CD19-low cells compared to CD19-CD28ζ CAR T cells. Analysis by western blot of protein lysates from CAR T cells stimulated with varying amounts of antigen demonstrated that CD19-CD28ζ CAR T cells had higher levels of downstream signals such as pERK than CD19-4-1BBζ CAR T cells at lower antigen densities. Accordingly, calcium flux after stimulation was also significantly higher in CD19-CD28ζ than CD19-4-1BBζ CAR T cells. In a xenograft model of CD19-low B-ALL, CD19-4-1BBζ CAR T cells demonstrated no anti-tumor activity, while CD19-CD28ζ CAR T cells eradicated CD19-low leukemia cells. Therefore, the choice of costimulatory domain in CAR T cells plays a major role in modulating activity against low antigen density tumors. CD28 costimulation endows high reactivity towards low antigen density tumors. We confirmed the generalizability of this finding using Her2 CAR T cells; Her2-CD28ζ CAR T cells cleared tumors in an orthotopic xenograft model of Her2-low osteosarcoma, while Her2-4-1BBζ CAR T cells had no effect. This finding has implications for CAR design for lymphoma and solid tumors, where antigen expression is more heterogeneous than B-ALL. To enhance the activity of CD19-4-1BBζ CAR T cells against CD19-low leukemia, we designed a CAR with two copies of intracellular zeta in the signaling domain (CD19-4-1BBζζ). T cells expressing this double-zeta CAR demonstrated enhanced cytotoxicity, proliferation, cytokine production, and pERK signaling in response to CD19-low cells compared to single-zeta CARs. Additionally, in a xenograft model, CD19-4-1BBζζ CAR T cells demonstrated enhanced activity against CD19-low leukemia compared to CD19-4-1BBζ CAR T cells, significantly extending survival. The addition of a third zeta domain (CD19-4-1BBζζζ) further enhanced the activity of CAR T cells. However, inclusion of multiple copies of the costimulatory domains did not improve function. In conclusion, CD19 antigen density is an important determinant of CAR T cell function and therapeutic response. CD19-CD28ζ CARs are more efficient at targeting CD19-low tumor cells than CD19-4-1BBζ CARs. The addition of multiple zeta domains to the CAR enhances its ability to target low antigen density tumors. This serves as proof of concept that rational redesign of CAR signaling endodomains can result in enhanced function against low antigen density tumors, an important step for extending the reach of these powerful therapeutics and overcoming a significant mechanism of tumor escape. Disclosures Lee: Juno: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 576, No. 7786 ( 2019-12-12), p. 293-300
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 10, No. 5 ( 2020-05-01), p. 702-723
    Abstract: Insufficient reactivity against cells with low antigen density has emerged as an important cause of chimeric antigen receptor (CAR) T-cell resistance. Little is known about factors that modulate the threshold for antigen recognition. We demonstrate that CD19 CAR activity is dependent upon antigen density and that the CAR construct in axicabtagene ciloleucel (CD19-CD28ζ) outperforms that in tisagenlecleucel (CD19-4-1BBζ) against antigen-low tumors. Enhancing signal strength by including additional immunoreceptor tyrosine-based activation motifs (ITAM) in the CAR enables recognition of low-antigen-density cells, whereas ITAM deletions blunt signal and increase the antigen density threshold. Furthermore, replacement of the CD8 hinge-transmembrane (H/T) region of a 4-1BBζ CAR with a CD28-H/T lowers the threshold for CAR reactivity despite identical signaling molecules. CARs incorporating a CD28-H/T demonstrate a more stable and efficient immunologic synapse. Precise design of CARs can tune the threshold for antigen recognition and endow 4-1BBζ-CARs with enhanced capacity to recognize antigen-low targets while retaining a superior capacity for persistence. Significance: Optimal CAR T-cell activity is dependent on antigen density, which is variable in many cancers, including lymphoma and solid tumors. CD28ζ-CARs outperform 4-1BBζ-CARs when antigen density is low. However, 4-1BBζ-CARs can be reengineered to enhance activity against low-antigen-density tumors while maintaining their unique capacity for persistence. This article is highlighted in the In This Issue feature, p. 627
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2607892-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society of Hematology ; 2019
    In:  Blood Advances Vol. 3, No. 5 ( 2019-03-12), p. 711-717
    In: Blood Advances, American Society of Hematology, Vol. 3, No. 5 ( 2019-03-12), p. 711-717
    Abstract: Dasatinib potently and reversibly suppresses CAR-T cell cytotoxicity, cytokine secretion, and proliferation. Dasatinib could be repurposed as a safety switch to mitigate CAR-mediated toxicity in patients.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 2876449-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 30 ( 2021-07-27)
    Abstract: Dysfunction in T cells limits the efficacy of cancer immunotherapy. We profiled the epigenome, transcriptome, and enhancer connectome of exhaustion-prone GD2-targeting HA-28z chimeric antigen receptor (CAR) T cells and control CD19-targeting CAR T cells, which present less exhaustion-inducing tonic signaling, at multiple points during their ex vivo expansion. We found widespread, dynamic changes in chromatin accessibility and three-dimensional (3D) chromosome conformation preceding changes in gene expression, notably at loci proximal to exhaustion-associated genes such as PDCD1 , CTLA4 , and HAVCR2 , and increased DNA motif access for AP-1 family transcription factors, which are known to promote exhaustion. Although T cell exhaustion has been studied in detail in mice, we find that the regulatory networks of T cell exhaustion differ between species and involve distinct loci of accessible chromatin and cis-regulated target genes in human CAR T cell exhaustion. Deletion of exhaustion-specific candidate enhancers of PDCD1 suppress the expression of PD-1 in an in vitro model of T cell dysfunction and in HA-28z CAR T cells, suggesting enhancer editing as a path forward in improving cancer immunotherapy.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Rockefeller University Press ; 2015
    In:  Journal of Experimental Medicine Vol. 212, No. 11 ( 2015-10-19), p. 1883-1899
    In: Journal of Experimental Medicine, Rockefeller University Press, Vol. 212, No. 11 ( 2015-10-19), p. 1883-1899
    Abstract: Leukocyte transendothelial migration (TEM) is a tightly regulated, multistep process that is critical to the inflammatory response. A transient increase in endothelial cytosolic free calcium ion concentration (↑[Ca2+]i) is required for TEM. However, the mechanism by which endothelial ↑[Ca2+] i regulates TEM and the channels mediating this ↑[Ca2+]i are unknown. Buffering ↑[Ca2+] i in endothelial cells does not affect leukocyte adhesion or locomotion but selectively blocks TEM, suggesting a role for ↑[Ca2+]i specifically for this step. Transient receptor potential canonical 6 (TRPC6), a Ca2+ channel expressed in endothelial cells, colocalizes with platelet/endothelial cell adhesion molecule-1 (PECAM) to surround leukocytes during TEM and clusters when endothelial PECAM is engaged. Expression of dominant-negative TRPC6 or shRNA knockdown in endothelial cells arrests neutrophils apically over the junction, similar to when PECAM is blocked. Selectively activating endothelial TRPC6 rescues TEM during an ongoing PECAM blockade, indicating that TRPC6 functions downstream of PECAM. Furthermore, endothelial TRPC6 is required for trafficking of lateral border recycling compartment membrane, which facilitates TEM. Finally, mice lacking TRPC6 in the nonmyeloid compartment (i.e., endothelium) exhibit a profound defect in neutrophil TEM with no effect on leukocyte trafficking. Our findings identify endothelial TRPC6 as the calcium channel mediating the ↑[Ca2+] i required for TEM at a step downstream of PECAM homophilic interactions.
    Type of Medium: Online Resource
    ISSN: 1540-9538 , 0022-1007
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2015
    detail.hit.zdb_id: 1477240-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 2822-2822
    Abstract: Adoptive T cell immune therapies mediate impressive clinical benefit in a fraction of patients, but anti-tumor effects are often limited by inadequate T cell potency. To identify genes that limit T cell effector function, we conducted genome-wide CRISPR knock-out screens in human primary CAR-T cells. The top hits were components of the CDK8 kinase module of the Mediator complex, an evolutionarily conserved regulator of gene transcription. CDK8 kinase module deficient CAR-T cells manifest increased expansion, cytokine production, metabolic fitness, effector function, anti-tumor activity and reduced terminal effector differentiation. CDK8 kinase module deficient CAR-T cells showed widespread but selective increases in chromatin accessibility, MED1 chromatin occupancy, and H3K27 acetylation most notably involving transcription factors that play a critical role in T cell fate, including several STAT and AP1 family members. The most pronounced enhancement was observed for STAT5 which manifested as increased sensitivity to IL-2 in CDK8 kinase module deficient CAR-T cells. These results link Mediator induced transcriptional coactivation with T cell effector programming and identify the CDK8 kinase module as a target for enhancing the potency of anti-tumor T cell responses. Citation Format: Katherine A. Freitas, Julia A. Belk, Elena Sotillo, Bence Daniel, Katalin Sandor, Dorota Klysz, Vandon T. Duong, Peng Xu, Meena Malipatlolla, Evan W. Weber, Robbie G. Majzner, Howard Y. Chang, Ansuman T. Satpathy, Crystal Mackall. Enhanced effector activity of mediator CDK8 kinase module deficient CAR-T Cells [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2822.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2018
    In:  Cancer Research Vol. 78, No. 13_Supplement ( 2018-07-01), p. LB-111-LB-111
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. LB-111-LB-111
    Abstract: In patients with chronic viral infection or cancer, continuous antigen exposure results in T cell exhaustion, which is characterized by sustained co-expression of multiple inhibitory receptors (ex. PD-1, TIM-3, LAG-3) and a hierarchical loss of effector function. Human T cells expressing a high-affinity anti-GD2 chimeric antigen receptor (CAR, HA.28z) develop phenotypic and functional hallmarks of exhaustion due to clustering of surface CAR and tonic signaling in the absence of antigen. In the present study, we exploited the HA.28z CAR as a model to characterize human T cell exhaustion and assess its potential for reversibility. CyTOF analyses of dysfunctional HA.28z CAR T cells demonstrated a distinct phenotype in which canonical exhaustion markers, T cell differentiation markers, and effector transcription factors were differentially expressed compared to CD19.28z CAR T cells that do not tonically signal. To interrogate the reversibility of T cell exhaustion, we engineered a regulatable HA.28z CAR by fusing a destabilization domain to the C-terminus of the CAR that rapidly induces CAR protein degradation. Addition of a small molecule stabilizes the protein and results in CAR surface expression. Using this model, we modulated the duration and intensity of tonic signaling by precisely modulating CAR surface expression. We hypothesized that transient cessation of tonic signaling would allow exhausted CAR T cells to recover and regain effector function. Following onset of exhaustion, elimination of CAR surface expression for 4 days resulted in a profound reversal of the exhausted phenotype. CyTOF analyses of reinvigorated cells indicated enhanced T cell memory formation, diminished surface marker expression of multiple exhaustion markers (ex. PD-1, TIM-3, LAG-3, CTLA-4, CD39) and reduced expression of transcription factors T-bet and Blimp-1. Furthermore, RNA sequencing of exhausted and reinvigorated HA.28z CAR T cells revealed a global molecular reprogramming upon removal of tonic CAR signaling, suggesting that CAR T cell exhaustion is functionally reversible. Upon CAR re-expression and co-culture with tumor antigen, reinvigorated HA.28z CAR T cells exhibited augmented killing and cytokine secretion compared to exhausted cells that continuously expressed surface CAR during expansion. In vivo studies assessing CAR T cell exhaustion reversibility using this model are currently being evaluated. In summary, tuning CAR surface expression offers a novel strategy to augment both the safety and efficacy of CAR T cell therapy. Moreover, these studies suggest that transient “rest” in T cells experiencing chronic antigen stimulation may be one mechanism by which exhaustion is prevented or reversed. Citation Format: Evan W. Weber, Rachel C. Lynn, Meena Malipatlolla, Elena Sotillo, Peng Xu, Crystal L. Mackall. Precise regulation of CAR signaling prevents and reverses CAR T cell exhaustion [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr LB-111.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Elsevier BV ; 2015
    In:  Experimental and Molecular Pathology Vol. 99, No. 3 ( 2015-12), p. 455-459
    In: Experimental and Molecular Pathology, Elsevier BV, Vol. 99, No. 3 ( 2015-12), p. 455-459
    Type of Medium: Online Resource
    ISSN: 0014-4800
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 1466769-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages