Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 376, No. 6596 ( 2022-05-27)
    Abstract: Untreated prostate cancers rely on androgen receptor (AR) signaling for growth and survival, forming the basis for the initial efficacy of androgen deprivation therapy (ADT). Yet the disease can relapse and progress to a lethal stage termed castration-resistant prostate cancer (CRPC). Reactivation of AR signaling represents the most common driver of CRPC growth, and next-generation AR signaling inhibitors (ARSIs) are now used in combination with ADT as a first-line therapy. However, ARSIs can result in selective pressure, thereby generating AR-independent tumors. The transition from AR dependence frequently accompanies a change in phenotype resembling developmental transdifferentiation or “lineage plasticity.” Neuroendocrine prostate cancer, which lacks a defined pathologic classification, is the most studied type of lineage plasticity. However, most AR-null tumors do not exhibit neuroendocrine features and are classified as “double-negative prostate cancer,” the drivers of which are poorly defined. RATIONALE Lineage plasticity studies in CRPC are limited by the lack of genetically defined patient-derived models that recapitulate the disease spectrum. To address this, we developed a biobank of organoids generated from patient biopsies to study the landscape of metastatic CRPC and allow for functional validation assays. Proteins called transcription factors (TFs) are drivers of tumor lineage plasticity. To identify the key TFs that drive the growth of AR-independent tumors, we integrated epigenetic and transcriptomic data generated from CRPC models. RESULTS We generated ATAC-seq (assay for transposase-accessible chromatin sequencing) and RNA-seq data from 22 metastatic human prostate cancer organoids, six patient-derived xenografts (PDXs), and 12 derived or traditional cell lines. We classified the 40 models into four subtypes and predicted key TFs of each subtype. We identified the well-characterized AR-dependent (CRPC-AR) and neuroendocrine subtypes (CRPC-NE) as well as two AR-negative/low groups, including a Wnt-dependent subtype (CRPC-WNT), driven by TCF/LEF TFs, and a stem cell–like (SCL) subtype (CRPC-SCL), driven by the AP-1 family of TFs. We applied RNA-seq signatures derived from the organoids to 366 patient samples from two independent CRPC datasets, which recapitulated the four-subtype classification. We found that CRPC-SCL is the second most prevalent group and is associated with shorter time under ARSI treatment compared to CRPC-AR. Additional chromatin immunoprecipitation sequencing (ChIP-seq) analysis indicated that AP-1 works together with the proteins YAP, TAZ, and TEAD, revealing YAP/TAZ and AP-1 as potential actionable targets in CRPC-SCL. Using overexpression assays in AR-high cells, we revealed how AP-1 functions as a pioneering factor and master regulator for CRPC-SCL. CONCLUSION By using a diverse biobank of organoids, PDXs, and cell lines that recapitulate the heterogeneity of metastatic prostate cancer, we created a map of the chromatin accessibility and transcriptomic landscape of CRPC. We validated the CRPC-AR and CRPC-NE subtypes and report two subtypes of AR-negative/low samples as well as their respective key TFs. Additional analysis revealed a model in which YAP, TAZ, TEAD, and AP-1 function together and drive oncogenic growth in CRPC-SCL samples. Overall, our results show how stratification of CRPC patients into four subtypes using their transcriptomes can potentially inform appropriate clinical decisions. Identification of four subtypes of castration-resistant prostate cancer (CRPC) by integration of chromatin accessibility and transcriptomic data from organoids, patient-derived xenografts (PDXs), and cell lines. TF, transcription factor; AR, androgen receptor; NE, neuroendocrine; SCL, stem cell–like. YAP/TAZ/TEAD/AP-1 cooperation in CRPC-SCL suggests actionable targets. Application of RNA-seq signatures derived from the models to 366 patient samples recapitulates the four-subtype classification.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 5310-5310
    Abstract: Castration-resistant prostate cancer (CRPC) is a heterogeneous disease with diverse drivers and mechanisms of resistance to androgen receptor (AR) therapy. We generated ATAC-seq and RNA-seq data for twenty-four metastatic human prostate cancer organoids and cell lines. Integration of chromatin accessibility profiles and transcriptomes revealed four subtypes: androgen-receptor(AR)-dependent, neuroendocrine, Wnt-dependent and epithelial mesenchymal transition (EMT). The transcriptomic signatures obtained from these four subtypes enable the classification of 100 metastatic prostate cancer patient samples from Institute Precision Medicine (IPM) and 270 published samples from SU2C study, revealing potential therapeutic vulnerabilities. Furthermore, using novel computational algorithms we constructed regulatory networks and identified the master regulators of each subtype. Currently we're carrying out western blot and quantitative PCR to confirm the subtypes of all prostate cancer models we use, and using drug sensitivity test, CRISPR knockout and cell competition assay to validate the functions of candidates in each subtype. Our study has characterized global chromatin accessibility landscape and transcriptome in the largest number of metastatic prostate cancer models, which revealed novel subtypes and corresponding tumor drivers. Collectively, these organoids, cell lines and matching sequence data provide a resource to the community to study various CRPC models. The molecular classification and corresponding master regulators reveal new drug targets and could potentially guide future therapeutic studies. Citation Format: Fanying Tang, Chen Khuan Wong, Sandra Cohen, Cindy Lee, Minwei Liu, Rohan Bareja, Kenneth Eng, Shaham Beg, Loredana Puca, Cora Sternberg, Juan Miguel Mosquera, Himisha Beltran, Andrea Sboner, Yu Chen, Ekta Khurana. Chromatin accessibility landscape and transcriptome of castration resistant prostate cancers reveals novel subtypes and diverse master regulators [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 5310.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. NG10-NG10
    Abstract: Untreated prostate cancers rely on androgen receptor (AR) signaling for growth and survival, forming the basis for the initial efficacy of androgen deprivation therapy (ADT). Yet the disease can relapse and progress to a lethal stage termed castration-resistant prostate cancer (CRPC). Reactivation of AR signaling represents the most common driver of CRPC growth, and next-generation AR signaling inhibitors (ARSIs) are now used in combination with ADT as first-line therapy. However, ARSIs can result in selective pressure, thereby generating AR-independent tumors. The transition from AR dependence frequently accompanies a change in a phenotype resembling developmental transdifferentiation or “lineage plasticity”. Neuroendocrine prostate cancer, which lacks a defined pathologic classification, is the most studied type of lineage plasticity. However, most AR-null tumors do not exhibit neuroendocrine features and are classified as “double-negative prostate cancer”, the drivers of which are poorly defined. Lineage plasticity studies in CRPC are limited by the lack of genetically defined patient-derived models that recapitulate the disease spectrum. To address this, we developed a biobank of organoids generated from patient biopsies to study the landscape of metastatic CRPC and allow for functional validation assays. Proteins called transcription factors (TFs) are drivers of tumor lineage plasticity. To identify the key TFs that drive the growth of AR-independent tumors, we integrated epigenetic and transcriptomic data generated from CRPC models. We generated ATAC-seq (assay for transposase-accessible chromatin sequencing) and RNA-seq data from 22 metastatic human prostate cancer organoids, six patient-derived xenografts (PDXs), and 12 derived or traditional cell lines. We classified the 40 models into four subtypes and predicted key TFs of each subtype. Besides the well-characterized AR-dependent (CRPC-AR) and neuroendocrine subtypes (CRPC-NE), we identified two novel AR-negative/low groups, including a Wnt-dependent subtype (CRPC-WNT), driven by TCF/LEF TFs, and a stem cell-like (SCL) subtype (CRPC-SCL), driven by the AP-1 family of TFs. To apply the subtype classification to patient samples, we derived RNA-seq signatures from the organoids and applied them to 366 patient samples from two independent CRPC cohorts. The generated signatures recapitulated the four-subtype classification and revealed that CRPC-SCL is the second most prevalent group. Patients from CRPC-SCL are also associated with shorter time under ARSI treatment compared to CRPC-AR, indicating that the ARSI treatments were less effective for CRPC-SCL patients. Additional chromatin immunoprecipitation sequencing (ChIP-seq) analysis indicated that AP-1 (FOSL1) collaboratively binds with TEAD and transcription coactivators, YAP and TAZ. Knocking down of AP-1 (FOSL1), YAP/TAZ decreased cell growth of CRPC-SCL and showed a decrease of chromatin accessibility at CRPC-SCL-specific open chromatin sites and down-regulation of YAP/TAZ target gene expression. In addition, the expression of AP-1 (FOSL1) decreased upon YAP/TAZ knockdown suggesting a positive feedback loop as well as YAP/TAZ as actional targets in CRPC-SCL. We used two small-molecule inhibitors, verteporfin and T-5224, that act on the YAP/TAZ/AP-1 pathway for their potential use as therapeutics for CRPC-SCL tumors, both inhibited the growth of samples from CRPC-SCL but not CRPC-AR. By overexpressing an AP-1 family gene (FOSL1) in AR-high cells, we observed an increase in chromatin accessibility at CRPC-SCL-specific open chromatin sites as well as significant up-regulation of CRPC-SCL signature genes, suggesting that AP-1 functions as a pioneering factor and master regulator for CRPC-SCL. All this work was recently published in Science (Tang, Xu et al. Science, 2022) where I am the co-first author. In summary, by using a diverse biobank of organoids, PDXs, and cell lines that recapitulate the heterogeneity of metastatic prostate cancer, we created a map of the chromatin accessibility and transcriptomic landscape of CRPC. We validated the CRPC-AR and CRPC-NE subtypes and report two novel subtypes of AR-negative/low samples, CRPC-SCL and CRPC-WNT, as well as their respective key TFs. Additional analysis revealed a model in which YAP, TAZ, TEAD, and AP-1 function together and drive oncogenic growth in CRPC-SCL samples. In addition, we proposed small inhibitors of YAP and TAZ that can potentially be used to treat CRPC-SCL patients. Overall, our results show how the stratification of CRPC patients into four subtypes using their transcriptomes can potentially inform appropriate clinical decisions. Citation Format: Fanying Tang, Duo Xu, Shangqian Wang, Chen Khuan Wong, Alexander Martinez-Fundichely, Cindy J. Lee, Sandra Cohen, Jane Park, Corinne E. Hill, Kenneth Eng, Rohan Bareja, Teng Han, Eric Minwei Liu, Ann Palladino, Wei Di, Dong Gao, Wassim Abida, Shaham Beg, Loredana Puca, Maximiliano Meneses, Elisa de Stanchina, Michael F. Berger, Anuradha Gopalan, Lukas E. Dow, Juan Miguel Mosquera, Himisha Beltran, Cora N. Sternberg, Ping Chi, Howard I. Scher, Andrea Sboner, Yu Chen, Ekta Khurana. Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr NG10.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 23_Supplement_2 ( 2022-12-01), p. B026-B026
    Abstract: In castration-resistant prostate cancer (CRPC), the loss of androgen receptor (AR) dependence leads to clinically aggressive tumors with few therapeutic options. We used ATAC-seq (assay for transposase-accessible chromatin sequencing), RNA-seq, and DNA sequencing to investigate 22 organoids, six patient-derived xenografts, and 12 cell lines. We identified the well-characterized AR-dependent and neuroendocrine subtypes, as well as two AR-negative/low groups: a Wnt-dependent subtype, and a stem cell–like (SCL) subtype driven by activator protein–1 (AP-1) transcription factors. We used transcriptomic signatures to classify 366 patients, which showed that SCL is the second most common subtype of CRPC after AR-dependent. Our data suggest that AP-1 interacts with the YAP/TAZ and TEAD proteins to maintain subtype-specific chromatin accessibility and transcriptomic landscapes in this group. Together, this molecular classification reveals drug targets and can potentially guide therapeutic decisions. Citation Format: Fanying Tang, Duo Xu, Shangqian Wang, Chen Khuan Wong, Alexander Martinez-Fundichely, Cindy Lee, Sandra Cohen, Jane Park, Corinne Hill, Kenneth Eng, Rohan Bareja, Teng Han, Eric Minwei Liu, Ann Palladino, Wei Di, Dong Gao, Wassim Abida, Shaham Beg, Loredana Puca, Maximiliano Meneses, Elisa De Stanchina, Michael Berger, Anuradha Gopalan, Lukas Dow, Juan Miguel Mosquera, Himisha Beltran, Cora Sternberg, Ping Chi, Howard Scher, Andrea Sboner, Yu Chen, Ekta Khurana. Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets [abstract]. In: Proceedings of the AACR Special Conference: Cancer Epigenomics; 2022 Oct 6-8; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2022;82(23 Suppl_2):Abstract nr B026.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2020
    In:  Molecular Cancer Research Vol. 18, No. 3 ( 2020-03-01), p. 414-423
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 18, No. 3 ( 2020-03-01), p. 414-423
    Abstract: Deciphering molecular targets to enhance sensitivity to chemotherapy is becoming a priority for effectively treating cancers. Loss of function mutations of SMAD4 in colon cancer are associated with metastatic progression and resistance to 5-fluorouracil (5-FU), the most extensively used drug of almost all chemotherapy combinations used in the treatment of metastatic colon cancer. Here, we report that SMAD4 deficiency also confers resistance to irinotecan, another common chemotherapeutic frequently used alone or in combination with 5-FU against colon cancer. Mechanistically, we find that SMAD4 interacts with and inhibits RICTOR, a component of the mTORC2 complex, resulting in suppression of downstream effector phosphorylation of AKT at Serine 473. In silico meta-analysis of publicly available gene expression datasets derived from tumors indicates that lower levels of SMAD4 or higher levels of RICTOR/AKT, irrespective of the SMAD4 status, correlate with poor survival, suggesting them as strong prognostic biomarkers and targets for therapeutic intervention. Moreover, we find that overexpression of SMAD4 or depletion of RICTOR suppresses AKT signaling and increases sensitivity to irinotecan in SMAD4-deficient colon cancer cells. Consistent with these observations, pharmacologic inhibition of AKT sensitizes SMAD4-negative colon cancer cells to irinotecan in vitro and in vivo. Overall, our study suggests that hyperactivation of the mTORC2 pathway is a therapeutic vulnerability that could be exploited to sensitize SMAD4-negative colon cancer to irinotecan. Implications: Hyperactivation of the mTORC2 pathway in SMAD4-negative colon cancer provides a mechanistic rationale for targeted inhibition of mTORC2 or AKT as a distinctive combinatorial therapeutic opportunity with chemotherapy for colon cancer.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cells, MDPI AG, Vol. 12, No. 7 ( 2023-03-23), p. 980-
    Abstract: Hyperactive sphingosine 1-phosphate (S1P) signaling is associated with a poor prognosis of triple-negative breast cancer (TNBC). Despite recent evidence that links the S1P receptor 1 (S1P1) to TNBC cell survival, its role in TNBC invasion and the underlying mechanisms remain elusive. Combining analyses of human TNBC cells with zebrafish xenografts, we found that phosphorylation of S1P receptor 1 (S1P1) at threonine 236 (T236) is critical for TNBC dissemination. Compared to luminal breast cancer cells, TNBC cells exhibit a significant increase of phospho-S1P1 T236 but not the total S1P1 levels. Misexpression of phosphorylation-defective S1P1 T236A (alanine) decreases TNBC cell migration in vitro and disease invasion in zebrafish xenografts. Pharmacologic disruption of S1P1 T236 phosphorylation, using either a pan-AKT inhibitor (MK2206) or an S1P1 functional antagonist (FTY720, an FDA-approved drug for treating multiple sclerosis), suppresses TNBC cell migration in vitro and tumor invasion in vivo. Finally, we show that human TNBC cells with AKT activation and elevated phospho-S1P1 T236 are sensitive to FTY720-induced cytotoxic effects. These findings indicate that the AKT-enhanced phosphorylation of S1P1 T236 mediates much of the TNBC invasiveness, providing a potential biomarker to select TNBC patients for the clinical application of FTY720.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661518-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2018
    In:  Cancer Epidemiology, Biomarkers & Prevention Vol. 27, No. 7_Supplement ( 2018-07-01), p. B60-B60
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 27, No. 7_Supplement ( 2018-07-01), p. B60-B60
    Abstract: Basal-like breast cancer (BLBC) is among the most aggressive forms of breast cancer and is highly prevalent in young African-American women. It is nonresponsive to targeted hormonal therapy due to the lack of estrogen receptor, progesterone receptor, and HER2 expression. To identify effective targetable biomarkers for BLBC, we performed gene expression profiling of a breast cancer progression model system representing the different stages of the cancer. We discovered in metastatic BLBC cells high expression of IL13RA2, a cell surface receptor, which corresponded to poor survival in patients with high-grade tumors based on in silico meta-analysis of publicly available microarray datasets. To assess its functional roles in breast cancer progression, we knocked down IL13RA2 in BLBC cells and found that it is essential for lung colonization and tumorigenesis in vivo. Next, to establish the clinical utility of this candidate biomarker to inform prognosis, we performed immunohistochemical analysis of breast cancer tissue microarrays and found that IL13RA2 is overexpressed in a subset of lymph node metastases, hence supporting its role as a metastasis promoter. Based on these observations, we hypothesize that IL13RA2 may serve as a biomarker for disease stage and an active target for nanoparticle-mediated delivery of therapeutic agents to eradicate metastatic BLBC cells. We are in the process of conjugating gold nanoparticles with monoclonal antibodies to assess their binding specificity to IL13RA2-overexpressing cells in vitro and in vivo. Ultimately, these nanoparticles could be used to monitor disease spread as well as to actively target metastatic BLBC cells overexpressing IL13RA2 to block metastasis. Citation Format: Chen Khuan Wong, Sandy Zhang, Bjorn Reinhard, Sam Thiagalingam. Nanoparticles directed to IL13RA2 for targeted therapy of basal-like breast cancer [abstract]. In: Proceedings of the Tenth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2017 Sep 25-28; Atlanta, GA. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2018;27(7 Suppl):Abstract nr B60.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Schizophrenia Research, Elsevier BV, Vol. 152, No. 2-3 ( 2014-02), p. 373-380
    Type of Medium: Online Resource
    ISSN: 0920-9964
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 1500726-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, Wiley, Vol. 180, No. 2 ( 2019-03), p. 138-149
    Abstract: Although the loss of brain laterality is one of the most consistent modalities in schizophrenia (SCZ) and bipolar disorder (BD), its molecular basis remains elusive. Our limited previous studies indicated that epigenetic modifications are key to the asymmetric transcriptomes of brain hemispheres. We used whole‐genome expression microarrays to profile postmortem brain samples from subjects with SCZ, psychotic BD [BD[+]] or non‐psychotic BD [BD(−)] , or matched controls (10/group) and performed whole‐genome DNA methylation (DNAM) profiling of the same samples (3‐4/group) to identify pathways associated with SCZ or BD[+] and genes/sites susceptible to epigenetic regulation. qRT‐PCR and quantitative DNAM analysis were employed to validate findings in larger sample sets (35/group). Gene Set Enrichment Analysis (GSEA) demonstrated that BMP signaling and astrocyte and cerebral cortex development are significantly (FDR q 〈 0.25) coordinately upregulated in both SCZ and BD[+], and glutamate signaling and TGFβ signaling are significantly coordinately upregulated in SCZ. GSEA also indicated that collagens are downregulated in right versus left brain of controls, but not in SCZ or BD[+] patients. Ingenuity Pathway Analysis predicted that TGFB2 is an upstream regulator of these genes ( p = .0012). While lateralized expression of TGFB2 in controls ( p = .017) is associated with a corresponding change in DNAM ( p ≤ .023), lateralized expression and DNAM of TGFB2 are absent in SCZ or BD. Loss of brain laterality in SCZ and BD corresponds to aberrant epigenetic regulation of TGFB2 and changes in TGFβ signaling, indicating potential avenues for disease prevention/treatment.
    Type of Medium: Online Resource
    ISSN: 1552-4841 , 1552-485X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2143866-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 14, No. 1 ( 2016-01-01), p. 103-113
    Abstract: Basal-like breast cancer (BLBC) is an aggressive subtype of breast cancer which is often enriched with cancer stem cells (CSC), but the underlying molecular basis for this connection remains elusive. We hypothesized that BLBC cells are able to establish a niche permissive to the maintenance of CSCs and found that tumor cell-derived periostin (POSTN), a component of the extracellular matrix, as well as a corresponding cognate receptor, integrin αvβ3, are highly expressed in a subset of BLBC cell lines as well as in CSC-enriched populations. Furthermore, we demonstrated that an intact periostin–integrin β3 signaling axis is required for the maintenance of breast CSCs. POSTN activates the ERK signaling pathway and regulates NF-κB–mediated transcription of key cytokines, namely IL6 and IL8, which in turn control downstream activation of STAT3. In summary, these findings suggest that BLBC cells have an innate ability to establish a microenvironmental niche supportive of CSCs. Implications: The findings reported here indicate that POSTN produced by CSCs acts to reinforce the stem cell state through the activation of integrin receptors and the production of key cytokines. Mol Cancer Res; 14(1); 103–13. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages