Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Angewandte Chemie, Wiley, Vol. 134, No. 34 ( 2022-08-22)
    Abstract: Thermal stiffening materials that are naturally soft but adaptively self‐strengthen upon heat are intriguing for load‐bearing and self‐protection applications at elevated temperatures. However, to simultaneously achieve high modulus change amplitude and high mechanical strength at the stiffened state remains challenging. Herein, entropy‐mediated polymer–mineral cluster interactions are exploited to afford thermal stiffening hydrogels with a record‐high storage modulus enhancement of 13 000 times covering a super wide regime from 1.3 kPa to 17 MPa. Such a dramatic thermal stiffening effect is ascribed to the transition from liquid‐liquid to solid–liquid phase separations, and at the molecular level, driven by enhanced polymer–cluster interactions. The hydrogel is further processed into sheath–core fibers and smart fabrics, which demonstrate self‐strengthening and self‐powered sensing properties by co‐weaving another liquid metal fiber as both the joule heater and triboelectric layer.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Angewandte Chemie International Edition Vol. 61, No. 34 ( 2022-08-22)
    In: Angewandte Chemie International Edition, Wiley, Vol. 61, No. 34 ( 2022-08-22)
    Abstract: Thermal stiffening materials that are naturally soft but adaptively self‐strengthen upon heat are intriguing for load‐bearing and self‐protection applications at elevated temperatures. However, to simultaneously achieve high modulus change amplitude and high mechanical strength at the stiffened state remains challenging. Herein, entropy‐mediated polymer–mineral cluster interactions are exploited to afford thermal stiffening hydrogels with a record‐high storage modulus enhancement of 13 000 times covering a super wide regime from 1.3 kPa to 17 MPa. Such a dramatic thermal stiffening effect is ascribed to the transition from liquid‐liquid to solid–liquid phase separations, and at the molecular level, driven by enhanced polymer–cluster interactions. The hydrogel is further processed into sheath–core fibers and smart fabrics, which demonstrate self‐strengthening and self‐powered sensing properties by co‐weaving another liquid metal fiber as both the joule heater and triboelectric layer.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Small Vol. 15, No. 5 ( 2019-02)
    In: Small, Wiley, Vol. 15, No. 5 ( 2019-02)
    Abstract: Despite the discovery of chromogenic‐layered materials for decades of years, fabrication of colloidally stable monolayer organic 2D nanosheets in aqueous media with colorimetric responses is still challenging. Herein reported is the first solution synthesis of chromic monolayer nanosheets via the topochemical polymerization of self‐assembled amphiphilic diacetylenes in aqueous media. The polydiacetylene (PDA) nanosheets are ≈3–4 nm thick in solution and only ≈1.9 nm thick in the dried state, while the lateral size can reach several micrometers. Moreover, the aqueous stability endows PDA nanosheets with excellent processability, which can further assemble into films via vacuum filtration or act as an ink for high‐resolution inkjet printing. The filtrated films and printed patterns exhibit fully reversible blue‐to‐red thermochromism, and the film also displays an interesting reversible colorimetric transition in response to near‐infrared light, which is not reported for other PDA‐only systems. The present colloidal PDA nanosheets should represent a new kind of chromic organic 2D nanomaterials that may be applied as novel building blocks for developing intelligent hybrid materials and may also find diverse sensing, display and/or anticounterfeiting applications.
    Type of Medium: Online Resource
    ISSN: 1613-6810 , 1613-6829
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2168935-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Advanced Functional Materials Vol. 30, No. 19 ( 2020-05)
    In: Advanced Functional Materials, Wiley, Vol. 30, No. 19 ( 2020-05)
    Abstract: Natural mineralized structural materials such as nacre and bone possess a unique hierarchical structure comprising both hard and soft phases, which can achieve the perfect balance between mechanical strength and shape controllability. Nevertheless, it remains a great challenge to control the complex and predesigned shapes of artificial organic–inorganic hybrid materials at ambient conditions. Inspired by the plasticity of polymer‐induced liquid precursor phases that can penetrate and solidify in porous organic frameworks for biomineral formation, here a mineral plastic hydrogel is shown with ultrahigh silica content (≈95 wt%) that can be similarly hybridized into a porous delignified wood scaffold, and the resultant composite hydrogels can be manually made into arbitrary shapes. Subsequent air drying well preserves the designed shapes and produces fire‐retardant, ultrastrong, and tough structural organic–inorganic hybrids. The proposed mineral plastic hydrogel strategy opens an easy and eco‐friendly way for fabricating bioinspired structural materials that compromise both precise shape control and high mechanical strength.
    Type of Medium: Online Resource
    ISSN: 1616-301X , 1616-3028
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2029061-5
    detail.hit.zdb_id: 2039420-2
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Advanced Materials, Wiley, Vol. 35, No. 10 ( 2023-03)
    Abstract: Shock‐induced low‐frequency vibration damage is extremely harmful to bionic soft robots and machines that may incur the malfunction of fragile electronic elements. However, current skin‐like self‐healable ionic elastomers as the artificial sensing and protecting layer still lack the ability to dampen vibrations, due to their almost opposite design for molecular frictions to material's elasticity. Inspired by the two‐phase structure of adipose tissue (the natural damping skin layer), here, a highly damping ionic elastomer with energy‐dissipating nanophases embedded in an elastic matrix is introduced, which is formed by polymerization‐induced dynamic phase separation of sticky fluorinated copolymers in the presence of lithium salts. Such a supramolecular design decouples the elastic and damping functions into two distinct phases, and thus reconciles a few intriguing properties including ionic conductivity, high stretchability, softness, strain‐stiffening, elastic recovery, room‐temperature self‐healability, recyclability, and most importantly, record‐high damping capacity at the human motion frequency range (loss factor tan δ  〉  1 at 0.1–50 Hz). This study opens the door for the artificial syntheses of high‐performance damping ionic skins with robust sensing and protective applications in soft electronics and robotics.
    Type of Medium: Online Resource
    ISSN: 0935-9648 , 1521-4095
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 1474949-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Nature Communications Vol. 13, No. 1 ( 2022-07-29)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-07-29)
    Abstract: Robust ionic sensing materials that are both fatigue-resistant and self-healable like human skin are essential for soft electronics and robotics with extended service life. However, most existing self-healable artificial ionic skins produced on the basis of network reconfiguration suffer from a low fatigue threshold due to the easy fracture of low-energy amorphous polymer chains with susceptible crack propagation. Here we engineer a fatigue-free yet fully healable hybrid ionic skin toughened by a high-energy, self-healable elastic nanomesh, resembling the repairable nanofibrous interwoven structure of human skin. Such a design affords a superhigh fatigue threshold of 2950 J m −2 while maintaining skin-like compliance, stretchability, and strain-adaptive stiffening response. Moreover, nanofiber tension-induced moisture breathing of ionic matrix leads to a record-high strain-sensing gauge factor of 66.8, far exceeding previous intrinsically stretchable ionic conductors. This concept creates opportunities for designing durable ion-conducting materials that replicate the unparalleled combinatory properties of natural skins more precisely.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2021
    In:  Research Vol. 2021 ( 2021-01)
    In: Research, American Association for the Advancement of Science (AAAS), Vol. 2021 ( 2021-01)
    Abstract: Light management is essential for military stealth, optical information communication, and energy-efficient buildings. However, current light management materials face challenges of limited optical modulation range and poor mechanical properties. Herein, we report a locally confined polymerization (LCP) approach to develop hierarchical network-augmented hydroglasses (HNAH) based on poly(methacrylic acid) for broadband light management as well as mechanical enhancement. The dynamic geometry of the networks ranging from nano- to micro-scale enables to manage the light wavelength over three orders of magnitude, from the ultraviolet (UV) to infrared (IR) band, and reversibly switches transmittance in the visible region. A smart hydroglass window is developed with elasticity, outstanding robustness, self-healing, notch resistance, biosafety by blocking UV radiation, and high solar energy shielding efficacy with a temperature drop of 13°C. Compared to current inorganic glasses and Plexiglas, the hydroglass not only is a promising and versatile candidate but also provides novel insights into the molecular and structural design of broadband light management and optimized mechanical properties.
    Type of Medium: Online Resource
    ISSN: 2639-5274
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 2949955-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Optica Publishing Group ; 2012
    In:  Optics Letters Vol. 37, No. 19 ( 2012-10-01), p. 4095-
    In: Optics Letters, Optica Publishing Group, Vol. 37, No. 19 ( 2012-10-01), p. 4095-
    Type of Medium: Online Resource
    ISSN: 0146-9592 , 1539-4794
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2012
    detail.hit.zdb_id: 243290-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2021
    In:  Science Advances Vol. 7, No. 22 ( 2021-05-28)
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 7, No. 22 ( 2021-05-28)
    Abstract: Highly conductive and stretchy fibers are crucial components for smart fabrics and wearable electronics. However, most of the existing fiber conductors are strain sensitive with deteriorated conductance upon stretching, and thus, a compromised strategy via introducing merely geometric distortion of conductive path is often used for stable conductance. Here, we report a coaxial wet-spinning process for continuously fabricating intrinsically stretchable, highly conductive yet conductance-stable, liquid metal sheath-core microfibers. The microfiber can be stretched up to 1170%, and upon fully activating the conductive path, a very high conductivity of 4.35 × 10 4 S/m and resistance change of only 4% at 200% strain are realized, arising from both stretch-induced channel opening and stretching out of tortuous serpentine conductive path of the percolating liquid metal network. Moreover, the microfibers can be easily woven into an everyday glove or fabric, acting as excellent joule heaters, electrothermochromic displays, and self-powered wearable sensors to monitor human activities.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 2810933-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Advanced Materials Vol. 33, No. 42 ( 2021-10)
    In: Advanced Materials, Wiley, Vol. 33, No. 42 ( 2021-10)
    Abstract: Stretchable ionic conductors are appealing for tissue‐like soft electronics, yet suffer from a tardy mechanoelectric response due to their poor modulation of ionic conduction arising from intrinsic homogeneous soft chain network. Here, a highly robust ionotronic fiber is designed by synergizing ionic liquid and liquid crystal elastomer with alternate rigid mesogen units and soft chain spacers, which shows an unprecedented strain‐induced ionic conductivity boost ( ≈ 10 3 times enhanced as stretched to 2000% strain). Such a surprisingly high enhancement is attributed to the formation of microphase‐separated low‐tortuosity ion‐conducting nanochannels guided by strain‐induced emergence of aligned smectic mesophases, thus allowing for ultrafast ion transport that resembles the role of “swimming lanes.” Intriguingly, the boosting conductivity even reverses Pouillet's Law‐dictated resistance increase at certain strains, leading to unique waveform‐discernible strain sensing. Moreover, the fiber retains thermal actuation properties with a maximum of 70% strain changes upon heating, and enables integrated self‐perception and actuation. The findings offer a promising molecular engineering route to mechanically modulate the ion transport behavior of ionic conductors toward advanced ionotronic applications.
    Type of Medium: Online Resource
    ISSN: 0935-9648 , 1521-4095
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1474949-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages