In:
Cell Transplantation, SAGE Publications, Vol. 13, No. 7-8 ( 2004-10), p. 741-748
Abstract:
A recent study showed that granulocyte-colony stimulating factor (G-CSF) treatment improved the infarcted cardiac function. Although mobilized stem cells may affect it, the mechanism is unclear. In this study, we investigated the origins of stem cells and phenotypic changes of the migrated cells, and evaluated the efficacy of G-CSF. Eighteen C57BL/6 mice were irradiated (900 cGy) and GFP mouse-derived bone marrow cells (GFP-BMC: 106 cells) were injected via a tail vein followed by splenectomy 4 weeks later. Ligation of the left descending coronary artery was performed 2 weeks later. Recombinant human G-CSF (200 μg/kg/day) was injected for 3 days before and 5 days after ligation (group 1, n = 10). Saline was injected in group 2 (n = 8). Four weeks after infarction, hearts and other organs were fixed for histology. The survival rate after postoperative day 3 in group 1 was 100%, while that in group 2 was 50% (p = 0.03). Bone marrow-derived GFP cells (BMD-GFP) in group 1 (103.3 ± 71.9/mm2) were located at the infarcted border area significantly more than those in group 2 (43.6 ± 23.7/mm2) (p 〈 0.0001). BMD-GFP cells were positive for troponin I (16.6%), myosin heavy chain-slow (16.7%), and nestin (8.8%) in group 1. Ki-67-positive BMD-GFP in group 1 (10.0 ± 7.0/mm2) were significantly more than those in group 2 (4.8 ± 6.1/mm2) (p = 0.01). G-CSF increased the survival rate after infarction. G-CSF promoted BMC to migrate into the infarcted border area. Bone marrow was one of the origins of regenerated cardiomyocytes.
Type of Medium:
Online Resource
ISSN:
0963-6897
,
1555-3892
DOI:
10.3727/000000004783983486
Language:
English
Publisher:
SAGE Publications
Publication Date:
2004
detail.hit.zdb_id:
2020466-8
Bookmarklink