Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Ecology, Wiley
    Abstract: SNAPSHOT USA is a multicontributor, long‐term camera trap survey designed to survey mammals across the United States. Participants are recruited through community networks and directly through a website application ( https://www.snapshot-usa.org/ ). The growing Snapshot dataset is useful, for example, for tracking wildlife population responses to land use, land cover, and climate changes across spatial and temporal scales. Here we present the SNAPSHOT USA 2021 dataset, the third national camera trap survey across the US. Data were collected across 109 camera trap arrays and included 1711 camera sites. The total effort equaled 71,519 camera trap nights and resulted in 172,507 sequences of animal observations. Sampling effort varied among camera trap arrays, with a minimum of 126 camera trap nights, a maximum of 3355 nights, a median 546 nights, and a mean 656 ± 431 nights. This third dataset comprises 51 camera trap arrays that were surveyed during 2019, 2020, and 2021, along with 71 camera trap arrays that were surveyed in 2020 and 2021. All raw data and accompanying metadata are stored on Wildlife Insights ( https://www.wildlifeinsights.org/ ), and are publicly available upon acceptance of the data papers. SNAPSHOT USA aims to sample multiple ecoregions in the United States with adequate representation of each ecoregion according to its relative size. Currently, the relative density of camera trap arrays varies by an order of magnitude for the various ecoregions (0.22–5.9 arrays per 100,000 km 2 ), emphasizing the need to increase sampling effort by further recruiting and retaining contributors. There are no copyright restrictions on these data. We request that authors cite this paper when using these data, or a subset of these data, for publication. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecology, Wiley, Vol. 102, No. 6 ( 2021-06)
    Abstract: With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14‐week period (17 August–24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian’s eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban–wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot‐usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species‐specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Ecology, Wiley, Vol. 103, No. 10 ( 2022-10)
    Abstract: Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap‐nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID‐19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site‐level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Global Ecology and Biogeography, Wiley, Vol. 29, No. 3 ( 2020-03), p. 503-515
    Abstract: Phenological mismatches, when life‐events become mistimed with optimal environmental conditions, have become increasingly common under climate change. Population‐level susceptibility to mismatches depends on how phenology and phenotypic plasticity vary across a species’ distributional range. Here, we quantify the environmental drivers of colour moult phenology, phenotypic plasticity, and the extent of phenological mismatch in seasonal camouflage to assess vulnerability to mismatch in a common North American mammal. Location North America. Time period 2010–2017. Major taxa studied Snowshoe hare ( Lepus americanus ). Methods We used 〉  5,500 by‐catch photographs of snowshoe hares from 448 remote camera trap sites at three independent study areas. To quantify moult phenology and phenotypic plasticity, we used multinomial logistic regression models that incorporated geospatial and high‐resolution climate data. We estimated occurrence of camouflage mismatch between hares’ coat colour and the presence and absence of snow over 7 years of monitoring. Results Spatial and temporal variation in moult phenology depended on local climate conditions more so than on latitude. First, hares in colder, snowier areas moulted earlier in the fall and later in the spring. Next, hares exhibited phenotypic plasticity in moult phenology in response to annual variation in temperature and snow duration, especially in the spring. Finally, the occurrence of camouflage mismatch varied in space and time; white hares on dark, snowless background occurred primarily during low‐snow years in regions characterized by shallow, short‐lasting snowpack. Main conclusions Long‐term climate and annual variation in snow and temperature determine coat colour moult phenology in snowshoe hares. In most areas, climate change leads to shorter snow seasons, but the occurrence of camouflage mismatch varies across the species’ range. Our results underscore the population‐specific susceptibility to climate change‐induced stressors and the necessity to understand this variation to prioritize the populations most vulnerable under global environmental change.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Research Institute of Brewing and Malting, Plc. (Vyzkumny Ustav Pivovarsky a Sladarsky) ; 1998
    In:  Kvasny Prumysl Vol. 44, No. 3 ( 1998-3-1), p. 69-71
    In: Kvasny Prumysl, Research Institute of Brewing and Malting, Plc. (Vyzkumny Ustav Pivovarsky a Sladarsky), Vol. 44, No. 3 ( 1998-3-1), p. 69-71
    Type of Medium: Online Resource
    ISSN: 0023-5830
    Uniform Title: Kladné účinky piva na zdraví populace.
    Language: cs
    Publisher: Research Institute of Brewing and Malting, Plc. (Vyzkumny Ustav Pivovarsky a Sladarsky)
    Publication Date: 1998
    detail.hit.zdb_id: 2967323-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    The Royal Society ; 2022
    In:  Biology Letters Vol. 18, No. 11 ( 2022-11)
    In: Biology Letters, The Royal Society, Vol. 18, No. 11 ( 2022-11)
    Abstract: Species that seasonally moult from brown to white to match snowy backgrounds become conspicuous and experience increased predation risk as snow cover duration declines. Long-term adaptation to camouflage mismatch in a changing climate might occur through phenotypic plasticity in colour moult phenology and or evolutionary shifts in moult rate or timing. Also, adaptation may include evolutionary shifts towards winter brown phenotypes that forgo the winter white moult. Most studies of these processes have occurred in winter white populations, with little attention to polymorphic populations with sympatric winter brown and winter white morphs. Here, we used remote camera traps to record moult phenology and mismatch in two polymorphic populations of Arctic foxes in Sweden over 2 years. We found that the colder, more northern population moulted earlier in the autumn and later in the spring. Next, foxes moulted earlier in the autumn and later in the spring during colder and snowier years. Finally, white foxes experienced relatively low camouflage mismatch while blue foxes were mismatched against snowy backgrounds most of the autumn through the spring. Because the brown-on-white mismatch imposes no evident costs, we predict that as snow duration decreases, increasing blue morph frequencies might help facilitate species persistence.
    Type of Medium: Online Resource
    ISSN: 1744-957X
    Language: English
    Publisher: The Royal Society
    Publication Date: 2022
    detail.hit.zdb_id: 2103283-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Global Change Biology Vol. 28, No. 21 ( 2022-11), p. 6228-6238
    In: Global Change Biology, Wiley, Vol. 28, No. 21 ( 2022-11), p. 6228-6238
    Abstract: Many ecological processes are profoundly influenced by abiotic factors, such as temperature and snow. However, despite strong evidence linking shifts in these ecological processes to corresponding shifts in abiotic factors driven by climate change, the mechanisms connecting population size to season‐specific climate drivers are little understood. Using a 21‐year dataset and a Bayesian state space model, we identified biologically informed seasonal climate covariates that influenced densities of snowshoe hares ( Lepus americanus ), a cold‐adapted boreal herbivore. We found that snow and temperature had strong but conflicting season‐dependent effects. Reduced snow duration in spring and fall and warmer summers were associated with lowered hare density, whereas warmer winters were associated with increased density. When modeled simultaneously and under two climate change scenarios, the negative effects of reduced fall and spring snow duration and warmer summers overwhelm the positive effect of warmer winters, producing projected population declines. Ultimately, the contrasting population‐level impacts of climate change across seasons emphasize the critical need to examine the entire annual climate cycle to understand potential long‐term population consequences of climate change.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    The Royal Society ; 2014
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 281, No. 1782 ( 2014-05-07), p. 20140029-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 281, No. 1782 ( 2014-05-07), p. 20140029-
    Abstract: As duration of snow cover decreases owing to climate change, species undergoing seasonal colour moults can become colour mismatched with their background. The immediate adaptive solution to this mismatch is phenotypic plasticity, either in phenology of seasonal colour moults or in behaviours that reduce mismatch or its consequences. We observed nearly 200 snowshoe hares across a wide range of snow conditions and two study sites in Montana, USA, and found minimal plasticity in response to mismatch between coat colour and background. We found that moult phenology varied between study sites, likely due to differences in photoperiod and climate, but was largely fixed within study sites with only minimal plasticity to snow conditions during the spring white-to-brown moult. We also found no evidence that hares modify their behaviour in response to colour mismatch. Hiding and fleeing behaviours and resting spot preference of hares were more affected by variables related to season, site and concealment by vegetation, than by colour mismatch. We conclude that plasticity in moult phenology and behaviours in snowshoe hares is insufficient for adaptation to camouflage mismatch, suggesting that any future adaptation to climate change will require natural selection on moult phenology or behaviour.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2014
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Ecology Letters, Wiley, Vol. 23, No. 2 ( 2020-02), p. 316-325
    Abstract: Increasing temperatures associated with climate change are predicted to cause reductions in body size, a key determinant of animal physiology and ecology. Using a four‐decade specimen series of 70 716 individuals of 52 North American migratory bird species, we demonstrate that increasing annual summer temperature over the 40‐year period predicts consistent reductions in body size across these diverse taxa. Concurrently, wing length – an index of body shape that impacts numerous aspects of avian ecology and behaviour – has consistently increased across species. Our findings suggest that warming‐induced body size reduction is a general response to climate change, and reveal a similarly consistent and unexpected shift in body shape. We hypothesise that increasing wing length represents a compensatory adaptation to maintain migration as reductions in body size have increased the metabolic cost of flight. An improved understanding of warming‐induced morphological changes is important for predicting biotic responses to global change.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Ecosphere, Wiley, Vol. 11, No. 4 ( 2020-04)
    Abstract: Obtaining accurate data on seasonal timing of lifecycle events in the wild is critical for many aspects of ecological research. However, characterizing such phenological processes is difficult, expensive, and time consuming. Remote camera traps are increasingly used in ecology, yet their potential to study key phenological traits in animal populations has been largely unexplored. Here, we examine the potential of remote camera traps to measure the progression of seasonal molts in mammals. We evaluated the accuracy of trained observers to classify the stage of molt from camera‐trap images and identified factors that increase the accuracy of this method in a common, color molting mammal, the snowshoe hare ( Lepus americanus ). Our results showed that images taken by remote camera traps can be used to classify the stage of color molt with relatively high accuracy (i.e., 84%). Observers achieved the highest accuracy when using a classification protocol with fewer molt categories, and from images acquired during the day. We also found that hare body position in the image, and whether the hare was moving or still had small influences on observer classification accuracy. Camera model had negligible effect on accuracy. Overall, our results suggest that camera traps can be used to classify molt progression to measure molt phenology in the wild. Because many camera‐trap studies are ongoing around the world, images of species that undergo distinguishable seasonal molts could be pooled across studies to characterize molt phenology on local and global scales. In much the same way that remote cameras have revolutionized the study of distribution, abundance, and behavior of some animal populations, so too can remote camera images transform our understanding of key phenological processes across space, time, and taxa.
    Type of Medium: Online Resource
    ISSN: 2150-8925 , 2150-8925
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2572257-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages