In:
ZooKeys, Pensoft Publishers, Vol. 833 ( 2019-03-25), p. 21-40
Abstract:
Stag beetles (Coleoptera, Scarabaeoidea, Lucanidae) have received extensive attention from researchers in behavioral ecology and evolutionary biology. There have been no previous quantitative analyses, particularly using a geometric morphometric approach based on a large sample of data, to shed light on the morphological diversity and evolution of Lucanidae. Thoracic adaptation and ecological differentiation are intimately related, and the pronotum bears important muscles and supports the locomotion of prothoracic legs. The elytron is an autapomorphy of the Coleoptera. To reconstruct and visualize the patterns of evolutionary diversification and phylogenetic history of shape change, an ancestral groundplan can be reconstructed by mapping geometric morphometric data onto a phylogenetic tree. In this study, the morphologies of the pronotum and elytron in 1303 stag beetles (Lucanidae), including approximately 99.2% of all globally described species, were examined, thus revealing several aspects of morphological diversity and evolution. First, on the basis of geometric morphometric analysis, we found significant morphological differences in the pronotum or elytron between any two Lucanidae subfamilies. And we subsequently reconstructed the ancestral groundplans of the two structures in stag beetles and compared them with those of extant species (through cladistic and geometric morphometric methods). The ancestral groundplan of Lucanidae was found to be most similar to extant Nicagini in both the pronotum and elytron, according to Mahalanobis distances. Furthermore, we analyzed species richness and morphological diversity of stag beetles and the relationships between them and found that the two parameters were not always correlated. Aesalinae was found to be the most diverse subfamily in both the pronotum and elytron, despite its poor species richness, and the diversity of the pronotum or elytron was not superior in Lucaninae, despite its high species richness. Our study provides insights into the morphological variations and evolutionary history of the pronotum and elytron in four subfamilies of stag beetles, and it illuminates the relationship between morphological diversity and species richness. Intriguingly, our analysis indicates that morphological diversity and species richness are not always correlated. These findings may stimulate further studies in this field.
Type of Medium:
Online Resource
ISSN:
1313-2970
,
1313-2989
DOI:
10.3897/zookeys.833.26164
DOI:
10.3897/zookeys.833.26164.figure1
DOI:
10.3897/zookeys.833.26164.figure2
DOI:
10.3897/zookeys.833.26164.figure3
DOI:
10.3897/zookeys.833.26164.figure4
DOI:
10.3897/zookeys.833.26164.figure5
DOI:
10.3897/zookeys.833.26164.figure6
DOI:
10.3897/zookeys.833.26164.figure7
DOI:
10.3897/zookeys.833.26164.figure8
DOI:
10.3897/zookeys.833.26164.figure9
DOI:
10.3897/zookeys.833.26164.suppl1
Language:
Unknown
Publisher:
Pensoft Publishers
Publication Date:
2019
detail.hit.zdb_id:
2445640-8
SSG:
12
Bookmarklink