Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Neurology, Ovid Technologies (Wolters Kluwer Health), Vol. 101, No. 10 ( 2023-09-05)
    Type of Medium: Online Resource
    ISSN: 0028-3878 , 1526-632X
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Neurology, Springer Science and Business Media LLC, Vol. 267, No. S1 ( 2020-12), p. 143-152
    Abstract: Diagnostic classification of central vs. peripheral etiologies in acute vestibular disorders remains a challenge in the emergency setting. Novel machine-learning methods may help to support diagnostic decisions. In the current study, we tested the performance of standard and machine-learning approaches in the classification of consecutive patients with acute central or peripheral vestibular disorders. Methods 40 Patients with vestibular stroke (19 with and 21 without acute vestibular syndrome (AVS), defined by the presence of spontaneous nystagmus) and 68 patients with peripheral AVS due to vestibular neuritis were recruited in the emergency department, in the context of the prospective EMVERT trial (EMergency VERTigo). All patients received a standardized neuro-otological examination including videooculography and posturography in the acute symptomatic stage and an MRI within 7 days after symptom onset. Diagnostic performance of state-of-the-art scores, such as HINTS (Head Impulse, gaze-evoked Nystagmus, Test of Skew) and ABCD 2 (Age, Blood, Clinical features, Duration, Diabetes), for the differentiation of vestibular stroke vs. peripheral AVS was compared to various machine-learning approaches: (i) linear logistic regression (LR), (ii) non-linear random forest (RF), (iii) artificial neural network, and (iv) geometric deep learning (Single/MultiGMC). A prospective classification was simulated by ten-fold cross-validation. We analyzed whether machine-estimated feature importances correlate with clinical experience. Results Machine-learning methods (e.g., MultiGMC) outperform univariate scores, such as HINTS or ABCD 2 , for differentiation of all vestibular strokes vs. peripheral AVS (MultiGMC area-under-the-curve (AUC): 0.96 vs. HINTS/ABCD 2 AUC: 0.71/0.58). HINTS performed similarly to MultiGMC for vestibular stroke with AVS (AUC: 0.86), but more poorly for vestibular stroke without AVS (AUC: 0.54). Machine-learning models learn to put different weights on particular features, each of which is relevant from a clinical viewpoint. Established non-linear machine-learning methods like RF and linear methods like LR are less powerful classification models (AUC: 0.89 vs. 0.62). Conclusions Established clinical scores (such as HINTS) provide a valuable baseline assessment for stroke detection in acute vestibular syndromes. In addition, machine-learning methods may have the potential to increase sensitivity and selectivity in the establishment of a correct diagnosis.
    Type of Medium: Online Resource
    ISSN: 0340-5354 , 1432-1459
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1421299-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: European Journal of Nuclear Medicine and Molecular Imaging, Springer Science and Business Media LLC, Vol. 50, No. 2 ( 2023-01), p. 423-434
    Abstract: Early after [ 18 F]PI-2620 PET tracer administration, perfusion imaging has potential for regional assessment of neuronal injury in neurodegenerative diseases. This is while standard late-phase [ 18 F]PI-2620 tau-PET is able to discriminate the 4-repeat tauopathies progressive supranuclear palsy and corticobasal syndrome (4RTs) from disease controls and healthy controls. Here, we investigated whether early-phase [ 18 F]PI-2620 PET has an additive value for biomarker based evaluation of 4RTs. Methods Seventy-eight patients with 4RTs (71 ± 7 years, 39 female), 79 patients with other neurodegenerative diseases (67 ± 12 years, 35 female) and twelve age-matched controls (69 ± 8 years, 8 female) underwent dynamic (0–60 min) [ 18 F]PI-2620 PET imaging. Regional perfusion (0.5–2.5 min p.i.) and tau load (20–40 min p.i.) were measured in 246 predefined brain regions [standardized-uptake-value ratios (SUVr), cerebellar reference] . Regional SUVr were compared between 4RTs and controls by an ANOVA including false-discovery-rate (FDR, p   〈  0.01) correction. Hypoperfusion in resulting 4RT target regions was evaluated at the patient level in all patients (mean value − 2SD threshold). Additionally, perfusion and tau pattern expression levels were explored regarding their potential discriminatory value of 4RTs against other neurodegenerative disorders, including validation in an independent external dataset ( n  = 37), and correlated with clinical severity in 4RTs (PSP rating scale, MoCA, activities of daily living). Results Patients with 4RTs had significant hypoperfusion in 21/246 brain regions, most dominant in thalamus, caudate nucleus, and anterior cingulate cortex, fitting to the topology of the 4RT disease spectrum. However, single region hypoperfusion was not specific regarding the discrimination of patients with 4RTs against patients with other neurodegenerative diseases. In contrast, perfusion pattern expression showed promise for discrimination of patients with 4RTs from other neurodegenerative diseases (AUC: 0.850). Discrimination by the combined perfusion-tau pattern expression (AUC: 0.903) exceeded that of the sole tau pattern expression (AUC: 0.864) and the discriminatory power of the combined perfusion-tau pattern expression was replicated in the external dataset (AUC: 0.917). Perfusion but not tau pattern expression was associated with PSP rating scale ( R  = 0.402; p  = 0.0012) and activities of daily living ( R  =  − 0.431; p  = 0.0005). Conclusion [ 18 F]PI-2620 perfusion imaging mirrors known topology of regional hypoperfusion in 4RTs. Single region hypoperfusion is not specific for 4RTs, but perfusion pattern expression may provide an additive value for the discrimination of 4RTs from other neurodegenerative diseases and correlates closer with clinical severity than tau pattern expression.
    Type of Medium: Online Resource
    ISSN: 1619-7070 , 1619-7089
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2098375-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Alzheimer's & Dementia, Wiley, Vol. 18, No. S6 ( 2022-12)
    Abstract: 4‐repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R‐tauopathies are progressive‐supranuclear‐palsy (PSP) and corticobasal‐syndrome (CBS) characterized by tau accumulation in subcortical nuclei as well as cortical neuronal dysfunction, as shown by PET‐assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces diaschisis‐like neuronal dysfunction in functionally connected cortical regions. Method We included 47 patients with clinically diagnosed PSP or CBS who underwent structural MRI and 18 F‐PI‐2620 tau‐PET. PI‐2620 PET was recorded using a dynamic one‐shot, two‐stop acquisition protocol, to determine an early 0.5‐2.5min post‐tracer‐injection perfusion window for assessing cortical neuroinjury in 200 cortical ROIs of the Schaefer atlas, as well as a 20‐40min post‐tracer‐injection window to determine 4R‐tau load in 32 subcortical ROIs of the TIAN atlas. We determined tau epicenters as 10% of subcortical ROIs with highest tau‐PET, and assessed the connectivity of tau epicenters to cortical ROIs using an age‐matched 3T resting‐state fMRI template derived from 69 healthy elderly. Using linear regression, we assessed whether i) higher subcortical tau‐PET was associated with overall reduced cortical perfusion and ii) whether cortical hypoperfusion was observed preferentially in regions closely connected to subcortical tau epicenters. Result As hypothesized, higher subcortical tau‐PET was associated with lower cortical perfusion (R=‐0,37, p‐value: 〈 0,011, Fig.1). Using group‐average tau‐PET and perfusion‐PET, we found that the seed‐based connectivity pattern of subcortical tau epicenters predicted cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicenter showed stronger hypoperfusion (R=‐0,16, p‐value: 〈 0,023, Fig.2A). This association was also observed on the subject level, as indicated by overall negative b‐values of the association between tau epicenter connectivity and cortical perfusion (one‐sample t‐test: t‐value: ‐3,45, p‐value: 〈 0,001, Fig.3). Conclusion In 4R‐tauopathies subcortical tau‐accumulation is associated with remote neuronal dysfunction in functionally connected cortical regions. This suggests that subcortical tau pathology may induce diaschisis‐like cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity.
    Type of Medium: Online Resource
    ISSN: 1552-5260 , 1552-5279
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2201940-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Alzheimer's & Dementia, Wiley, Vol. 18, No. S1 ( 2022-12)
    Abstract: 4‐repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R‐tauopathies are progressive‐supranuclear‐palsy (PSP) and corticobasal‐syndrome (CBS) characterized by tau accumulation in subcortical nuclei as well as cortical neuronal dysfunction, as shown by PET‐assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces diaschisis‐like neuronal dysfunction in functionally connected cortical regions. Method We included 47 patients with clinically diagnosed PSP or CBS who underwent structural MRI and 18 F‐PI‐2620 tau‐PET. PI‐2620 PET was recorded using a dynamic one‐shot, two‐stop acquisition protocol, to determine an early 0.5‐2.5min post‐tracer‐injection perfusion window for assessing cortical neuroinjury in 200 cortical ROIs of the Schaefer atlas, as well as a 20‐40min post‐tracer‐injection window to determine 4R‐tau load in 32 subcortical ROIs of the TIAN atlas. We determined tau epicenters as 10% of subcortical ROIs with highest tau‐PET, and assessed the connectivity of tau epicenters to cortical ROIs using an age‐matched 3T resting‐state fMRI template derived from 69 healthy elderly. Using linear regression, we assessed whether i) higher subcortical tau‐PET was associated with overall reduced cortical perfusion and ii) whether cortical hypoperfusion was observed preferentially in regions closely connected to subcortical tau epicenters. Result As hypothesized, higher subcortical tau‐PET was associated with lower cortical perfusion (R=‐0,37, p‐value: 〈 0,011, Fig.1). Using group‐average tau‐PET and perfusion‐PET, we found that the seed‐based connectivity pattern of subcortical tau epicenters predicted cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicenter showed stronger hypoperfusion (R=‐0,16, p‐value: 〈 0,023, Fig.2A). This association was also observed on the subject level, as indicated by overall negative b‐values of the association between tau epicenter connectivity and cortical perfusion (one‐sample t‐test: t‐value: ‐3,45, p‐value: 〈 0,001, Fig.3). Conclusion In 4R‐tauopathies subcortical tau‐accumulation is associated with remote neuronal dysfunction in functionally connected cortical regions. This suggests that subcortical tau pathology may induce diaschisis‐like cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity.
    Type of Medium: Online Resource
    ISSN: 1552-5260 , 1552-5279
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2201940-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Journal of Neurology Vol. 266, No. 11 ( 2019-11), p. 2872-2874
    In: Journal of Neurology, Springer Science and Business Media LLC, Vol. 266, No. 11 ( 2019-11), p. 2872-2874
    Type of Medium: Online Resource
    ISSN: 0340-5354 , 1432-1459
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 1421299-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Neurology, Springer Science and Business Media LLC, Vol. 267, No. S1 ( 2020-12), p. 118-125
    Abstract: Distinguishing between serious (e.g., stroke) and benign (e.g., benign paroxysmal positional vertigo, BPPV) disorders remains challenging in emergency consultations for vertigo and dizziness (VD). A number of clues from patient history and clinical examination, including several diagnostic index tests have been reported recently. The objective of the present study was to analyze frequency and distribution patterns of specific vestibular and non-vestibular diagnoses in an interdisciplinary university emergency room (ER), including data on daytime and season of presentation. A retrospective chart analysis of all patients seen in a one-year period was performed. In the ER 4.23% of all patients presented with VD (818 out of 19,345). The most frequent-specific diagnoses were BPPV (19.9%), stroke/transient ischemic attack (12.5%), acute unilateral vestibulopathy/vestibular neuritis (UVH; 8.3%), and functional VD (8.3%). Irrespective of the diagnosis, the majority of patients presented to the ER between 8 a.m. and 4 p.m. There are, however, seasonal differences. BPPV was most prevalent in December/January and rare in September. UVH was most often seen in October/November; absolute and relative numbers were lowest in August. Finally, functional/psychogenic VD was common in summer and autumn with highest numbers in September/October and lowest numbers in March. In summary, daytime of presentation did not distinguish between diagnoses as most patients presented during normal working hours. Seasonal presentation revealed interesting fluctuations. The UVH peak in autumn supports the viral origin of the condition (vestibular neuritis). The BPPV peak in winter might be related to reduced physical activity and low vitamin D. However, it is likely that multiple factors contribute to the fluctuations that have to be disentangled in further studies.
    Type of Medium: Online Resource
    ISSN: 0340-5354 , 1432-1459
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1421299-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Elsevier BV ; 2015
    In:  Journal of Psychosomatic Research Vol. 79, No. 2 ( 2015-08), p. 123-129
    In: Journal of Psychosomatic Research, Elsevier BV, Vol. 79, No. 2 ( 2015-08), p. 123-129
    Type of Medium: Online Resource
    ISSN: 0022-3999
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 1500642-6
    SSG: 5,2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cellular Signalling, Elsevier BV, Vol. 21, No. 12 ( 2009-12), p. 1918-1924
    Type of Medium: Online Resource
    ISSN: 0898-6568
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2009
    detail.hit.zdb_id: 1496718-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2017
    In:  Neurology: Clinical Practice Vol. 7, No. 1 ( 2017-02), p. 65-76
    In: Neurology: Clinical Practice, Ovid Technologies (Wolters Kluwer Health), Vol. 7, No. 1 ( 2017-02), p. 65-76
    Abstract: To identify the different indications for the treatment of neurologic disorders with the potassium channel blockers 4-aminopyridine (4-AP) and 3,4-diaminopyridine (3,4-DAP). Recent findings: 4-AP is an effective symptomatic treatment for downbeat nystagmus (DBN), episodic ataxia type 2 (EA2) (5–10 mg TID), and impaired gait in multiple sclerosis (MS) (10 mg BID). 3,4-DAP (5 mg/d–20 mg TID) improves symptoms in Lambert-Eaton myasthenic syndrome (LEMS) (randomized placebo-controlled trials for all 4 entities). 4-AP may also be effective in cerebellar gait ataxia of different etiologies (2 case series), upbeat nystagmus, and limb ataxia in MS (single cases). In the recommended dosages, they are well tolerated. The assumed mode of action is a blockade of mainly Kv 1.5 : in DBN, this increases the excitability of Purkinje cells (PC), and in EA2, restores the precision of resting discharge of PC. In MS, 4-AP improves the conduction of action potentials in demyelinated axons, and in LEMS, 3,4-DAP facilitates the transmission at the neuromuscular endplate by prolonging the action potential duration. Summary: There is sufficient evidence that APs are indicated for the symptomatic treatment of DBN, EA2, gait ataxia due to MS and cerebellar disorders, and LEMS with a reasonable risk-benefit profile.
    Type of Medium: Online Resource
    ISSN: 2163-0402 , 2163-0933
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2017
    detail.hit.zdb_id: 2645818-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages