feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    b3kat_BV003668604
    Umfang: 170 S. , Ill.
    ISBN: 3609658401
    Sprache: Deutsch
    Fachgebiete: Biologie
    RVK:
    RVK:
    Schlagwort(e): Fichtenkrankheit ; Physiologie ; Fichtenkrankheit ; Biochemie ; Fichtenkrankheit ; Fichte ; Pathophysiologie ; Fichte ; Pflanzenkrankheit
    Mehr zum Autor: Hoque, Enamul 1956-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9949306257902882
    Umfang: 1 online resource (607 pages)
    ISBN: 0-323-85287-4
    Serie: Woodhead Publishing in Materials
    Inhalt: "Advanced Polymer Nanocomposites: Science Technology and Applications presents a detailed review of new and emerging research outcomes from fundamental concepts that are relevant to science, technology and advanced applications. Sections cover key drivers such as the rising demand for lightweight and high strength automotive parts, the need for sustainable packaging materials and conservation of flavor in the food, drinks and beverages industries, and defense initiatives such as ballistic protection, fire retardation and electromagnetic shielding."--
    Weitere Ausg.: Print version: Hoque, Enamul Advanced Polymer Nanocomposites San Diego : Elsevier Science & Technology,c2022 ISBN 9780128244920
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    almahu_9949698062002882
    Umfang: 1 online resource (476 pages)
    ISBN: 0-12-821554-2 , 0-12-821553-4
    Serie: Woodhead Publishing Series in Biomaterials
    Anmerkung: Intro -- Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- Preface -- Section A: Introduction and design of biocomposites -- 1 Introduction to green biocomposites -- 1.1 Introduction -- 1.2 Benefits of polymer composites -- 1.3 History of composites -- 1.4 Natural fiber-reinforced polymer composites -- 1.5 Green biocomposites -- 1.5.1 Natural fiber -- 1.5.2 Biopolymer matrix -- 1.6 Biomedical applications of green biocomposites -- 1.7 Ecological concerns about plastic pollution -- References -- 2 Computational modeling of biocomposites -- 2.1 Introduction -- 2.1.1 Computational modeling and validation -- 2.2 Modeling of bionanocomposites -- 2.3 Mechanical modeling and failure analysis of biocomposites -- 2.3.1 Micromechanical analysis -- 2.3.2 Macromechanical analysis -- 2.3.3 Mesoscale analysis -- 2.4 Thermal modeling of biocomposites -- 2.5 Modeling of biocomposites for biomedical applications -- 2.6 Conclusion -- References -- Section B: Diversities of biocomposites -- 3 Antimicrobial biocomposites -- 3.1 Introduction -- 3.2 Polysaccharides-based biocomposite and its antimicrobial effect -- 3.2.1 Starch and its derivatives -- 3.2.2 Cellulose and its derivatives -- 3.2.3 Pectin and its derivatives -- 3.2.4 Chitosan and its derivatives -- 3.2.5 Seaweed biopolymers -- 3.3 Proteins/polypeptides-based biocomposite and its antimicrobial effect -- 3.3.1 Keratin -- 3.3.2 Caseinates -- 3.3.3 Collagen -- 3.4 Ammonium and Phosphonium group-based biocomposite and its antimicrobial effect -- 3.5 Antimicrobial response of hydroxyapatite (HA)-based biocomposites -- 3.6 Effect of metal-based Nanopowders on antibacterial response -- 3.6.1 Antibacterial response of zinc oxide (ZnO) nanoparticles. , 3.6.2 Antibacterial response of silver (Ag) nanoparticles -- 3.6.3 Antibacterial response of copper and copper oxide nanoparticles -- 3.6.4 Antibacterial response of Iron oxide nanoparticles -- 3.6.5 Antibacterial response of magnesium oxide (MgO) nanoparticles -- 3.6.6 Antibacterial response of gold (Au) nanoparticles -- 3.7 Antimicrobial nanofibers -- 3.7.1 Antimicrobial nanofibers by physical mixture -- 3.7.2 Antimicrobial nanofibers by chemical modification of polymers -- 3.8 Antimicrobial biocomposite in food coating -- 3.8.1 Properties of polysaccharides for antimicrobial food coating -- 3.9 Antimicrobial bio-packaging -- 3.9.1 System models -- 3.9.2 Antimicrobial mechanisms in food packaging -- 3.10 Antimicrobial biocomposite for biomedical application -- 3.10.1 Antimicrobial wound dressing -- 3.10.2 Bone and tissue engineering -- 3.11 Conclusion and future perspectives -- References -- 4 Bioactive glass composites: From synthesis to application -- 4.1 Introduction -- 4.2 Synthesis of glass composites -- 4.3 Synthesis approaches of bioactive glass composites -- 4.3.1 Physical approach -- 4.3.1.1 Melt quench method -- 4.3.1.2 Spray pyrolysis method -- 4.3.1.3 Spray drying method -- 4.3.1.4 Electrospinning method -- 4.3.1.5 Laser spinning technique -- 4.3.2 Chemical approach -- 4.3.2.1 Sol-gel method -- 4.3.2.2 Microemulsion approach -- 4.3.2.3 Hydrothermal method -- 4.3.3 Biological methods -- 4.3.4 Hybrid methods -- 4.3.5 Other novel methods -- 4.4 Properties of bioactive glass composites -- 4.4.1 Mechanical property -- 4.4.2 Optical property -- 4.4.3 Magnetic property -- 4.4.4 Electrical property -- 4.4.5 Other properties -- 4.5 Applications of bioactive glass composites -- 4.5.1 Orthopedic applications -- 4.5.2 Antimicrobial applications -- 4.5.3 Drug delivery applications. , 4.5.4 Cardiovascular applications -- 4.5.5 Dental applications -- 4.6 Future perspective and conclusion -- References -- 5 An overview of metal oxide-filled biocomposites -- 5.1 Introduction -- 5.2 Copper oxide (CuO) -filled biocomposites -- 5.3 Zinc oxides-filled biocomposites -- 5.3.1 Mechanical, thermal, antibacterial, and other properties of ZnO-based biocomposites -- 5.4 Magnesium oxide-filled biocomposites -- 5.4.1 Properties of MgO-based composites -- 5.5 Conclusions and future prospects -- Acknowledgment -- References -- 6 Bioresorbable biocomposites -- 6.1 Introduction -- 6.2 Preparation of bioresorbable biocomposites -- 6.2.1 3D bioprinting -- 6.2.2 Sol-gel process -- 6.2.3 Solvent casting -- 6.2.4 Hot pressing -- 6.3 Different types of bioresorbable biocomposites -- 6.3.1 PLA-based biocomposites -- 6.3.2 Calcium phosphate-based biocomposites -- 6.3.3 Silk-based biocomposites -- 6.3.4 Nanoparticle-reinforced biocomposites -- 6.3.4.1 Nanometal-based biocomposites -- 6.3.4.2 Carbon nanotube-based biocomposites -- 6.3.4.3 Gelatin-based biocomposites -- 6.3.4.4 Collagen-based biocomposites -- 6.3.4.5 Nanoclay-based biocomposites -- 6.4 Biocomposites for biomedical applications -- 6.5 Conclusions -- References -- 7 Cellulose-based biocomposites -- 7.1 Introduction -- 7.2 Chemistry of cellulose -- 7.3 Designing cellulosic biocomposite in different forms -- 7.3.1 Cellulose-based fibers -- 7.3.2 Cellulose-based crystals -- 7.3.3 Cellulose-based hydrogels -- 7.3.4 Cellulose-based films -- 7.3.5 Cellulose-based powders -- 7.3.6 Cellulose-based biofoams -- 7.4 Formation of cellulose in biomass -- 7.5 Natural formation in plants -- 7.5.1 Natural formation in microorganisms -- 7.6 Extraction of cellulose -- 7.7 Physico-chemical properties of cellulose and its derivatives -- 7.7.1 Physical properties. , 7.7.2 Thermal properties -- 7.7.3 Electrical properties -- 7.7.4 Chemical properties -- 7.8 Cellulose-based biocomposites -- 7.8.1 Fiber-matrix interfacial interaction -- 7.8.2 Surface modification methods -- 7.8.2.1 Physical treatments -- 7.8.2.2 Physico-chemical treatments -- 7.8.2.3 Chemical treatments -- 7.8.3 Conventional processing methods -- 7.9 Applications of cellulose-based biocomposites in biomedical engineering -- 7.9.1 In tissue engineering and regenerative medicine -- 7.9.1.1 Bone tissue grafts -- 7.9.1.2 Cartilage, ligament, and tendon -- 7.9.1.3 Intervertebral disc and meniscus implant -- 7.9.1.4 Cardiac prosthesis -- 7.9.1.5 Artificial blood vessels -- 7.9.2 In wound dressing, artificial skin, and skin tissue repairing -- 7.9.3 In dental applications -- 7.9.4 In ophthalmologic applications -- 7.9.5 In biosensors and diagnostic devices -- 7.9.6 In drug delivery -- 7.9.7 In neural applications -- 7.10 Future trends -- 7.11 Conclusions -- References -- 8 Graphene-based nanocomposites for biomedical engineering application -- 8.1 Introduction -- 8.2 Synthesis of graphene-based nanocomposite -- 8.3 Properties of graphene-based nanocomposite -- 8.4 Biomedical applications of graphene-based nanocomposites -- 8.4.1 Drug delivery applications -- 8.4.2 Gene therapy applications -- 8.4.3 Tissue engineering applications -- 8.4.4 Antibacterial applications -- 8.4.5 Biosensing applications -- 8.4.6 Orthopedic and dental applications -- 8.5 Conclusion -- References -- 9 Fabrication and characterization of chicken feather fiber-reinforced polymer composites -- 9.1 Introduction -- 9.2 Materials and methods -- 9.2.1 Chicken keratin fiber (CFF) extraction -- 9.3 Chicken keratin fiber characteristics -- 9.3.1 Cleanliness and color -- 9.3.2 Textural property -- 9.3.3 Mechanical property. , 9.3.4 Absorbed moisture content -- 9.4 Composites fabrication -- 9.5 Composite characterization -- 9.5.1 Physical properties -- 9.5.2 Mechanical properties -- 9.5.3 Thermal characteristics -- 9.5.4 Morphological properties -- 9.5.5 Fourier transform infra-red (FTIR) spectroscopy -- 9.5.6 X-ray diffraction (XRD) -- 9.6 Fiber characteristics -- 9.6.1 Cleanliness and color -- 9.6.2 FTIR spectra -- 9.6.3 XRD analysis -- 9.6.4 Thermal analysis -- 9.6.5 Moisture regain -- 9.6.6 Linear fiber density -- 9.6.7 Mechanical properties -- 9.6.8 Microstructural analysis -- 9.7 FTIR spectra of chicken keratin fiber-reinforced vinyl ester composites -- 9.8 XRD curves of chicken keratin fiber vinyl ester composites -- 9.9 Effect on physical properties of CFF polymer composites -- 9.10 Effect on mechanical characteristics of chicken keratin fiber-reinforced polymer laminates -- 9.10.1 Tensile properties -- 9.10.2 Compression properties -- 9.10.3 Flexural properties -- 9.10.4 Impact strength and Vickers hardness -- 9.11 Effect on thermal stability of CFF polymer composites -- 9.12 Morphological properties -- 9.13 Conclusion -- References -- 10 Sugarcane nanocellulose fiber-reinforced vinyl ester nanocomposites -- 10.1 Introduction -- 10.2 Materials and methods -- 10.2.1 Chemical treatment on sugarcane nanocellulose -- 10.2.2 Fabrication of vinyl ester composite -- 10.2.3 Vinyl ester nanocomposites characterization -- 10.2.3.1 Physical properties -- 10.2.3.2 Mechanical properties -- 10.2.3.3 Tensile fracture -- 10.2.3.4 Thermal characteristics -- 10.3 Results and discussion -- 10.3.1 Physical properties -- 10.3.2 Mechanical properties -- 10.3.2.1 Tensile properties -- 10.3.2.2 Tensile fracture -- 10.3.2.3 Compression properties -- 10.3.2.4 Flexural properties -- 10.3.2.5 Impact strength and hardness. , 10.3.3 Thermal characteristics.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    almafu_BV013031404
    Umfang: XI, 212, III S. : Ill., graph. Darst.
    Ausgabe: Als Ms. gedr.
    ISBN: 3-8265-6793-5
    Serie: Berichte aus der Biologie
    Anmerkung: Zugl.: Dresden, Techn. Univ., Habil.-Schr., 1998
    Sprache: Deutsch
    Schlagwort(e): Pilze ; Stress ; Pflanzen ; Stress ; Pflanzen ; Umweltbelastung ; Stressreaktion ; Pilze ; Umweltbelastung ; Stressreaktion ; Hochschulschrift ; Hochschulschrift
    Mehr zum Autor: Hoque, Enamul 1956-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    UID:
    kobvindex_IGB0013493
    In: Ecotoxicology and environmental safety. - 52(2002), S. 256-266
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    UID:
    kobvindex_IGB000016612
    In: Applied and environmental microbiology. - 73(2007)8, S. 2697-2707
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    UID:
    b3kat_BV047393838
    Umfang: xxii, 451 Seiten
    ISBN: 9780128215531
    Serie: Woodhead Publishing Series in Biomaterials
    Inhalt: Intro -- Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- Preface -- Section A: Introduction and design of biocomposites -- 1 Introduction to green biocomposites -- 1.1 Introduction -- 1.2 Benefits of polymer composites -- 1.3 History of composites -- 1.4 Natural fiber-reinforced polymer composites -- 1.5 Green biocomposites -- 1.5.1 Natural fiber -- 1.5.2 Biopolymer matrix -- 1.6 Biomedical applications of green biocomposites -- 1.7 Ecological concerns about plastic pollution -- References -- 2 Computational modeling of biocomposites -- 2.1 Introduction -- 2.1.1 Computational modeling and validation -- 2.2 Modeling of bionanocomposites -- 2.3 Mechanical modeling and failure analysis of biocomposites -- 2.3.1 Micromechanical analysis -- 2.3.2 Macromechanical analysis -- 2.3.3 Mesoscale analysis -- 2.4 Thermal modeling of biocomposites -- 2.5 Modeling of biocomposites for biomedical applications -- 2.6 Conclusion -- References -- Section B: Diversities of biocomposites -- 3 Antimicrobial biocomposites -- 3.1 Introduction -- 3.2 Polysaccharides-based biocomposite and its antimicrobial effect -- 3.2.1 Starch and its derivatives -- 3.2.2 Cellulose and its derivatives -- 3.2.3 Pectin and its derivatives -- 3.2.4 Chitosan and its derivatives -- 3.2.5 Seaweed biopolymers -- 3.3 Proteins/polypeptides-based biocomposite and its antimicrobial effect -- 3.3.1 Keratin -- 3.3.2 Caseinates -- 3.3.3 Collagen -- 3.4 Ammonium and Phosphonium group-based biocomposite and its antimicrobial effect -- 3.5 Antimicrobial response of hydroxyapatite (HA)-based biocomposites -- 3.6 Effect of metal-based Nanopowders on antibacterial response -- 3.6.1 Antibacterial response of zinc oxide (ZnO) nanoparticles
    Anmerkung: Description based on publisher supplied metadata and other sources
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-0-12-821554-8
    Sprache: Englisch
    Fachgebiete: Technik
    RVK:
    RVK:
    Schlagwort(e): Bioverbundwerkstoff ; Biomedizinische Technik
    Mehr zum Autor: Jawaid, Mohammad
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    UID:
    b3kat_BV024903507
    Umfang: 112 Blätter , Diagramme
    Anmerkung: Dissertation Technische Universität Dresden 1981
    Sprache: Deutsch
    Schlagwort(e): Hochschulschrift
    Mehr zum Autor: Hoque, Enamul 1956-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    UID:
    almahu_BV024903507
    Umfang: 112 Blätter : , Diagramme.
    Anmerkung: Dissertation Technische Universität Dresden 1981
    Sprache: Deutsch
    Schlagwort(e): Hochschulschrift
    Mehr zum Autor: Hoque, Enamul 1956-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    UID:
    edoccha_9960074223202883
    Umfang: 1 online resource (476 pages)
    ISBN: 0-12-821554-2 , 0-12-821553-4
    Serie: Woodhead Publishing Series in Biomaterials
    Anmerkung: Intro -- Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- Preface -- Section A: Introduction and design of biocomposites -- 1 Introduction to green biocomposites -- 1.1 Introduction -- 1.2 Benefits of polymer composites -- 1.3 History of composites -- 1.4 Natural fiber-reinforced polymer composites -- 1.5 Green biocomposites -- 1.5.1 Natural fiber -- 1.5.2 Biopolymer matrix -- 1.6 Biomedical applications of green biocomposites -- 1.7 Ecological concerns about plastic pollution -- References -- 2 Computational modeling of biocomposites -- 2.1 Introduction -- 2.1.1 Computational modeling and validation -- 2.2 Modeling of bionanocomposites -- 2.3 Mechanical modeling and failure analysis of biocomposites -- 2.3.1 Micromechanical analysis -- 2.3.2 Macromechanical analysis -- 2.3.3 Mesoscale analysis -- 2.4 Thermal modeling of biocomposites -- 2.5 Modeling of biocomposites for biomedical applications -- 2.6 Conclusion -- References -- Section B: Diversities of biocomposites -- 3 Antimicrobial biocomposites -- 3.1 Introduction -- 3.2 Polysaccharides-based biocomposite and its antimicrobial effect -- 3.2.1 Starch and its derivatives -- 3.2.2 Cellulose and its derivatives -- 3.2.3 Pectin and its derivatives -- 3.2.4 Chitosan and its derivatives -- 3.2.5 Seaweed biopolymers -- 3.3 Proteins/polypeptides-based biocomposite and its antimicrobial effect -- 3.3.1 Keratin -- 3.3.2 Caseinates -- 3.3.3 Collagen -- 3.4 Ammonium and Phosphonium group-based biocomposite and its antimicrobial effect -- 3.5 Antimicrobial response of hydroxyapatite (HA)-based biocomposites -- 3.6 Effect of metal-based Nanopowders on antibacterial response -- 3.6.1 Antibacterial response of zinc oxide (ZnO) nanoparticles. , 3.6.2 Antibacterial response of silver (Ag) nanoparticles -- 3.6.3 Antibacterial response of copper and copper oxide nanoparticles -- 3.6.4 Antibacterial response of Iron oxide nanoparticles -- 3.6.5 Antibacterial response of magnesium oxide (MgO) nanoparticles -- 3.6.6 Antibacterial response of gold (Au) nanoparticles -- 3.7 Antimicrobial nanofibers -- 3.7.1 Antimicrobial nanofibers by physical mixture -- 3.7.2 Antimicrobial nanofibers by chemical modification of polymers -- 3.8 Antimicrobial biocomposite in food coating -- 3.8.1 Properties of polysaccharides for antimicrobial food coating -- 3.9 Antimicrobial bio-packaging -- 3.9.1 System models -- 3.9.2 Antimicrobial mechanisms in food packaging -- 3.10 Antimicrobial biocomposite for biomedical application -- 3.10.1 Antimicrobial wound dressing -- 3.10.2 Bone and tissue engineering -- 3.11 Conclusion and future perspectives -- References -- 4 Bioactive glass composites: From synthesis to application -- 4.1 Introduction -- 4.2 Synthesis of glass composites -- 4.3 Synthesis approaches of bioactive glass composites -- 4.3.1 Physical approach -- 4.3.1.1 Melt quench method -- 4.3.1.2 Spray pyrolysis method -- 4.3.1.3 Spray drying method -- 4.3.1.4 Electrospinning method -- 4.3.1.5 Laser spinning technique -- 4.3.2 Chemical approach -- 4.3.2.1 Sol-gel method -- 4.3.2.2 Microemulsion approach -- 4.3.2.3 Hydrothermal method -- 4.3.3 Biological methods -- 4.3.4 Hybrid methods -- 4.3.5 Other novel methods -- 4.4 Properties of bioactive glass composites -- 4.4.1 Mechanical property -- 4.4.2 Optical property -- 4.4.3 Magnetic property -- 4.4.4 Electrical property -- 4.4.5 Other properties -- 4.5 Applications of bioactive glass composites -- 4.5.1 Orthopedic applications -- 4.5.2 Antimicrobial applications -- 4.5.3 Drug delivery applications. , 4.5.4 Cardiovascular applications -- 4.5.5 Dental applications -- 4.6 Future perspective and conclusion -- References -- 5 An overview of metal oxide-filled biocomposites -- 5.1 Introduction -- 5.2 Copper oxide (CuO) -filled biocomposites -- 5.3 Zinc oxides-filled biocomposites -- 5.3.1 Mechanical, thermal, antibacterial, and other properties of ZnO-based biocomposites -- 5.4 Magnesium oxide-filled biocomposites -- 5.4.1 Properties of MgO-based composites -- 5.5 Conclusions and future prospects -- Acknowledgment -- References -- 6 Bioresorbable biocomposites -- 6.1 Introduction -- 6.2 Preparation of bioresorbable biocomposites -- 6.2.1 3D bioprinting -- 6.2.2 Sol-gel process -- 6.2.3 Solvent casting -- 6.2.4 Hot pressing -- 6.3 Different types of bioresorbable biocomposites -- 6.3.1 PLA-based biocomposites -- 6.3.2 Calcium phosphate-based biocomposites -- 6.3.3 Silk-based biocomposites -- 6.3.4 Nanoparticle-reinforced biocomposites -- 6.3.4.1 Nanometal-based biocomposites -- 6.3.4.2 Carbon nanotube-based biocomposites -- 6.3.4.3 Gelatin-based biocomposites -- 6.3.4.4 Collagen-based biocomposites -- 6.3.4.5 Nanoclay-based biocomposites -- 6.4 Biocomposites for biomedical applications -- 6.5 Conclusions -- References -- 7 Cellulose-based biocomposites -- 7.1 Introduction -- 7.2 Chemistry of cellulose -- 7.3 Designing cellulosic biocomposite in different forms -- 7.3.1 Cellulose-based fibers -- 7.3.2 Cellulose-based crystals -- 7.3.3 Cellulose-based hydrogels -- 7.3.4 Cellulose-based films -- 7.3.5 Cellulose-based powders -- 7.3.6 Cellulose-based biofoams -- 7.4 Formation of cellulose in biomass -- 7.5 Natural formation in plants -- 7.5.1 Natural formation in microorganisms -- 7.6 Extraction of cellulose -- 7.7 Physico-chemical properties of cellulose and its derivatives -- 7.7.1 Physical properties. , 7.7.2 Thermal properties -- 7.7.3 Electrical properties -- 7.7.4 Chemical properties -- 7.8 Cellulose-based biocomposites -- 7.8.1 Fiber-matrix interfacial interaction -- 7.8.2 Surface modification methods -- 7.8.2.1 Physical treatments -- 7.8.2.2 Physico-chemical treatments -- 7.8.2.3 Chemical treatments -- 7.8.3 Conventional processing methods -- 7.9 Applications of cellulose-based biocomposites in biomedical engineering -- 7.9.1 In tissue engineering and regenerative medicine -- 7.9.1.1 Bone tissue grafts -- 7.9.1.2 Cartilage, ligament, and tendon -- 7.9.1.3 Intervertebral disc and meniscus implant -- 7.9.1.4 Cardiac prosthesis -- 7.9.1.5 Artificial blood vessels -- 7.9.2 In wound dressing, artificial skin, and skin tissue repairing -- 7.9.3 In dental applications -- 7.9.4 In ophthalmologic applications -- 7.9.5 In biosensors and diagnostic devices -- 7.9.6 In drug delivery -- 7.9.7 In neural applications -- 7.10 Future trends -- 7.11 Conclusions -- References -- 8 Graphene-based nanocomposites for biomedical engineering application -- 8.1 Introduction -- 8.2 Synthesis of graphene-based nanocomposite -- 8.3 Properties of graphene-based nanocomposite -- 8.4 Biomedical applications of graphene-based nanocomposites -- 8.4.1 Drug delivery applications -- 8.4.2 Gene therapy applications -- 8.4.3 Tissue engineering applications -- 8.4.4 Antibacterial applications -- 8.4.5 Biosensing applications -- 8.4.6 Orthopedic and dental applications -- 8.5 Conclusion -- References -- 9 Fabrication and characterization of chicken feather fiber-reinforced polymer composites -- 9.1 Introduction -- 9.2 Materials and methods -- 9.2.1 Chicken keratin fiber (CFF) extraction -- 9.3 Chicken keratin fiber characteristics -- 9.3.1 Cleanliness and color -- 9.3.2 Textural property -- 9.3.3 Mechanical property. , 9.3.4 Absorbed moisture content -- 9.4 Composites fabrication -- 9.5 Composite characterization -- 9.5.1 Physical properties -- 9.5.2 Mechanical properties -- 9.5.3 Thermal characteristics -- 9.5.4 Morphological properties -- 9.5.5 Fourier transform infra-red (FTIR) spectroscopy -- 9.5.6 X-ray diffraction (XRD) -- 9.6 Fiber characteristics -- 9.6.1 Cleanliness and color -- 9.6.2 FTIR spectra -- 9.6.3 XRD analysis -- 9.6.4 Thermal analysis -- 9.6.5 Moisture regain -- 9.6.6 Linear fiber density -- 9.6.7 Mechanical properties -- 9.6.8 Microstructural analysis -- 9.7 FTIR spectra of chicken keratin fiber-reinforced vinyl ester composites -- 9.8 XRD curves of chicken keratin fiber vinyl ester composites -- 9.9 Effect on physical properties of CFF polymer composites -- 9.10 Effect on mechanical characteristics of chicken keratin fiber-reinforced polymer laminates -- 9.10.1 Tensile properties -- 9.10.2 Compression properties -- 9.10.3 Flexural properties -- 9.10.4 Impact strength and Vickers hardness -- 9.11 Effect on thermal stability of CFF polymer composites -- 9.12 Morphological properties -- 9.13 Conclusion -- References -- 10 Sugarcane nanocellulose fiber-reinforced vinyl ester nanocomposites -- 10.1 Introduction -- 10.2 Materials and methods -- 10.2.1 Chemical treatment on sugarcane nanocellulose -- 10.2.2 Fabrication of vinyl ester composite -- 10.2.3 Vinyl ester nanocomposites characterization -- 10.2.3.1 Physical properties -- 10.2.3.2 Mechanical properties -- 10.2.3.3 Tensile fracture -- 10.2.3.4 Thermal characteristics -- 10.3 Results and discussion -- 10.3.1 Physical properties -- 10.3.2 Mechanical properties -- 10.3.2.1 Tensile properties -- 10.3.2.2 Tensile fracture -- 10.3.2.3 Compression properties -- 10.3.2.4 Flexural properties -- 10.3.2.5 Impact strength and hardness. , 10.3.3 Thermal characteristics.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz