feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9949306257902882
    Umfang: 1 online resource (607 pages)
    ISBN: 0-323-85287-4
    Serie: Woodhead Publishing in Materials
    Inhalt: "Advanced Polymer Nanocomposites: Science Technology and Applications presents a detailed review of new and emerging research outcomes from fundamental concepts that are relevant to science, technology and advanced applications. Sections cover key drivers such as the rising demand for lightweight and high strength automotive parts, the need for sustainable packaging materials and conservation of flavor in the food, drinks and beverages industries, and defense initiatives such as ballistic protection, fire retardation and electromagnetic shielding."--
    Weitere Ausg.: Print version: Hoque, Enamul Advanced Polymer Nanocomposites San Diego : Elsevier Science & Technology,c2022 ISBN 9780128244920
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9949698062002882
    Umfang: 1 online resource (476 pages)
    ISBN: 0-12-821554-2 , 0-12-821553-4
    Serie: Woodhead Publishing Series in Biomaterials
    Anmerkung: Intro -- Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- Preface -- Section A: Introduction and design of biocomposites -- 1 Introduction to green biocomposites -- 1.1 Introduction -- 1.2 Benefits of polymer composites -- 1.3 History of composites -- 1.4 Natural fiber-reinforced polymer composites -- 1.5 Green biocomposites -- 1.5.1 Natural fiber -- 1.5.2 Biopolymer matrix -- 1.6 Biomedical applications of green biocomposites -- 1.7 Ecological concerns about plastic pollution -- References -- 2 Computational modeling of biocomposites -- 2.1 Introduction -- 2.1.1 Computational modeling and validation -- 2.2 Modeling of bionanocomposites -- 2.3 Mechanical modeling and failure analysis of biocomposites -- 2.3.1 Micromechanical analysis -- 2.3.2 Macromechanical analysis -- 2.3.3 Mesoscale analysis -- 2.4 Thermal modeling of biocomposites -- 2.5 Modeling of biocomposites for biomedical applications -- 2.6 Conclusion -- References -- Section B: Diversities of biocomposites -- 3 Antimicrobial biocomposites -- 3.1 Introduction -- 3.2 Polysaccharides-based biocomposite and its antimicrobial effect -- 3.2.1 Starch and its derivatives -- 3.2.2 Cellulose and its derivatives -- 3.2.3 Pectin and its derivatives -- 3.2.4 Chitosan and its derivatives -- 3.2.5 Seaweed biopolymers -- 3.3 Proteins/polypeptides-based biocomposite and its antimicrobial effect -- 3.3.1 Keratin -- 3.3.2 Caseinates -- 3.3.3 Collagen -- 3.4 Ammonium and Phosphonium group-based biocomposite and its antimicrobial effect -- 3.5 Antimicrobial response of hydroxyapatite (HA)-based biocomposites -- 3.6 Effect of metal-based Nanopowders on antibacterial response -- 3.6.1 Antibacterial response of zinc oxide (ZnO) nanoparticles. , 3.6.2 Antibacterial response of silver (Ag) nanoparticles -- 3.6.3 Antibacterial response of copper and copper oxide nanoparticles -- 3.6.4 Antibacterial response of Iron oxide nanoparticles -- 3.6.5 Antibacterial response of magnesium oxide (MgO) nanoparticles -- 3.6.6 Antibacterial response of gold (Au) nanoparticles -- 3.7 Antimicrobial nanofibers -- 3.7.1 Antimicrobial nanofibers by physical mixture -- 3.7.2 Antimicrobial nanofibers by chemical modification of polymers -- 3.8 Antimicrobial biocomposite in food coating -- 3.8.1 Properties of polysaccharides for antimicrobial food coating -- 3.9 Antimicrobial bio-packaging -- 3.9.1 System models -- 3.9.2 Antimicrobial mechanisms in food packaging -- 3.10 Antimicrobial biocomposite for biomedical application -- 3.10.1 Antimicrobial wound dressing -- 3.10.2 Bone and tissue engineering -- 3.11 Conclusion and future perspectives -- References -- 4 Bioactive glass composites: From synthesis to application -- 4.1 Introduction -- 4.2 Synthesis of glass composites -- 4.3 Synthesis approaches of bioactive glass composites -- 4.3.1 Physical approach -- 4.3.1.1 Melt quench method -- 4.3.1.2 Spray pyrolysis method -- 4.3.1.3 Spray drying method -- 4.3.1.4 Electrospinning method -- 4.3.1.5 Laser spinning technique -- 4.3.2 Chemical approach -- 4.3.2.1 Sol-gel method -- 4.3.2.2 Microemulsion approach -- 4.3.2.3 Hydrothermal method -- 4.3.3 Biological methods -- 4.3.4 Hybrid methods -- 4.3.5 Other novel methods -- 4.4 Properties of bioactive glass composites -- 4.4.1 Mechanical property -- 4.4.2 Optical property -- 4.4.3 Magnetic property -- 4.4.4 Electrical property -- 4.4.5 Other properties -- 4.5 Applications of bioactive glass composites -- 4.5.1 Orthopedic applications -- 4.5.2 Antimicrobial applications -- 4.5.3 Drug delivery applications. , 4.5.4 Cardiovascular applications -- 4.5.5 Dental applications -- 4.6 Future perspective and conclusion -- References -- 5 An overview of metal oxide-filled biocomposites -- 5.1 Introduction -- 5.2 Copper oxide (CuO) -filled biocomposites -- 5.3 Zinc oxides-filled biocomposites -- 5.3.1 Mechanical, thermal, antibacterial, and other properties of ZnO-based biocomposites -- 5.4 Magnesium oxide-filled biocomposites -- 5.4.1 Properties of MgO-based composites -- 5.5 Conclusions and future prospects -- Acknowledgment -- References -- 6 Bioresorbable biocomposites -- 6.1 Introduction -- 6.2 Preparation of bioresorbable biocomposites -- 6.2.1 3D bioprinting -- 6.2.2 Sol-gel process -- 6.2.3 Solvent casting -- 6.2.4 Hot pressing -- 6.3 Different types of bioresorbable biocomposites -- 6.3.1 PLA-based biocomposites -- 6.3.2 Calcium phosphate-based biocomposites -- 6.3.3 Silk-based biocomposites -- 6.3.4 Nanoparticle-reinforced biocomposites -- 6.3.4.1 Nanometal-based biocomposites -- 6.3.4.2 Carbon nanotube-based biocomposites -- 6.3.4.3 Gelatin-based biocomposites -- 6.3.4.4 Collagen-based biocomposites -- 6.3.4.5 Nanoclay-based biocomposites -- 6.4 Biocomposites for biomedical applications -- 6.5 Conclusions -- References -- 7 Cellulose-based biocomposites -- 7.1 Introduction -- 7.2 Chemistry of cellulose -- 7.3 Designing cellulosic biocomposite in different forms -- 7.3.1 Cellulose-based fibers -- 7.3.2 Cellulose-based crystals -- 7.3.3 Cellulose-based hydrogels -- 7.3.4 Cellulose-based films -- 7.3.5 Cellulose-based powders -- 7.3.6 Cellulose-based biofoams -- 7.4 Formation of cellulose in biomass -- 7.5 Natural formation in plants -- 7.5.1 Natural formation in microorganisms -- 7.6 Extraction of cellulose -- 7.7 Physico-chemical properties of cellulose and its derivatives -- 7.7.1 Physical properties. , 7.7.2 Thermal properties -- 7.7.3 Electrical properties -- 7.7.4 Chemical properties -- 7.8 Cellulose-based biocomposites -- 7.8.1 Fiber-matrix interfacial interaction -- 7.8.2 Surface modification methods -- 7.8.2.1 Physical treatments -- 7.8.2.2 Physico-chemical treatments -- 7.8.2.3 Chemical treatments -- 7.8.3 Conventional processing methods -- 7.9 Applications of cellulose-based biocomposites in biomedical engineering -- 7.9.1 In tissue engineering and regenerative medicine -- 7.9.1.1 Bone tissue grafts -- 7.9.1.2 Cartilage, ligament, and tendon -- 7.9.1.3 Intervertebral disc and meniscus implant -- 7.9.1.4 Cardiac prosthesis -- 7.9.1.5 Artificial blood vessels -- 7.9.2 In wound dressing, artificial skin, and skin tissue repairing -- 7.9.3 In dental applications -- 7.9.4 In ophthalmologic applications -- 7.9.5 In biosensors and diagnostic devices -- 7.9.6 In drug delivery -- 7.9.7 In neural applications -- 7.10 Future trends -- 7.11 Conclusions -- References -- 8 Graphene-based nanocomposites for biomedical engineering application -- 8.1 Introduction -- 8.2 Synthesis of graphene-based nanocomposite -- 8.3 Properties of graphene-based nanocomposite -- 8.4 Biomedical applications of graphene-based nanocomposites -- 8.4.1 Drug delivery applications -- 8.4.2 Gene therapy applications -- 8.4.3 Tissue engineering applications -- 8.4.4 Antibacterial applications -- 8.4.5 Biosensing applications -- 8.4.6 Orthopedic and dental applications -- 8.5 Conclusion -- References -- 9 Fabrication and characterization of chicken feather fiber-reinforced polymer composites -- 9.1 Introduction -- 9.2 Materials and methods -- 9.2.1 Chicken keratin fiber (CFF) extraction -- 9.3 Chicken keratin fiber characteristics -- 9.3.1 Cleanliness and color -- 9.3.2 Textural property -- 9.3.3 Mechanical property. , 9.3.4 Absorbed moisture content -- 9.4 Composites fabrication -- 9.5 Composite characterization -- 9.5.1 Physical properties -- 9.5.2 Mechanical properties -- 9.5.3 Thermal characteristics -- 9.5.4 Morphological properties -- 9.5.5 Fourier transform infra-red (FTIR) spectroscopy -- 9.5.6 X-ray diffraction (XRD) -- 9.6 Fiber characteristics -- 9.6.1 Cleanliness and color -- 9.6.2 FTIR spectra -- 9.6.3 XRD analysis -- 9.6.4 Thermal analysis -- 9.6.5 Moisture regain -- 9.6.6 Linear fiber density -- 9.6.7 Mechanical properties -- 9.6.8 Microstructural analysis -- 9.7 FTIR spectra of chicken keratin fiber-reinforced vinyl ester composites -- 9.8 XRD curves of chicken keratin fiber vinyl ester composites -- 9.9 Effect on physical properties of CFF polymer composites -- 9.10 Effect on mechanical characteristics of chicken keratin fiber-reinforced polymer laminates -- 9.10.1 Tensile properties -- 9.10.2 Compression properties -- 9.10.3 Flexural properties -- 9.10.4 Impact strength and Vickers hardness -- 9.11 Effect on thermal stability of CFF polymer composites -- 9.12 Morphological properties -- 9.13 Conclusion -- References -- 10 Sugarcane nanocellulose fiber-reinforced vinyl ester nanocomposites -- 10.1 Introduction -- 10.2 Materials and methods -- 10.2.1 Chemical treatment on sugarcane nanocellulose -- 10.2.2 Fabrication of vinyl ester composite -- 10.2.3 Vinyl ester nanocomposites characterization -- 10.2.3.1 Physical properties -- 10.2.3.2 Mechanical properties -- 10.2.3.3 Tensile fracture -- 10.2.3.4 Thermal characteristics -- 10.3 Results and discussion -- 10.3.1 Physical properties -- 10.3.2 Mechanical properties -- 10.3.2.1 Tensile properties -- 10.3.2.2 Tensile fracture -- 10.3.2.3 Compression properties -- 10.3.2.4 Flexural properties -- 10.3.2.5 Impact strength and hardness. , 10.3.3 Thermal characteristics.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Weinheim, Germany :Wiley-VCH Verlag GmbH & Co.,
    UID:
    almafu_9959327367802883
    Umfang: 1 online resource
    ISBN: 9783527813995 , 3527813993 , 9783527813964 , 3527813969
    Inhalt: Provides in-depth knowledge on novel materials that make electronics work under high-temperature and high-pressure conditions This book reviews the state of the art in research and development of lead-free interconnect materials for electronic packaging technology. It identifies the technical barriers to the development and manufacture of high-temperature interconnect materials to investigate into the complexities introduced by harsh conditions. It teaches the techniques adopted and the possible alternatives of interconnect materials to cope with the impacts of extreme temperatures for implementing at industrial scale. The book also examines the application of nanomaterials, current trends within the topic area, and the potential environmental impacts of material usage. Written by world-renowned experts from academia and industry, Harsh Environment Electronics: Interconnect Materials and Performance Assessment covers interconnect materials based on silver, gold, and zinc alloys as well as advanced approaches utilizing polymers and nanomaterials in the first section. The second part is devoted to the performance assessment of the different interconnect materials and their respective environmental impact.-Takes a scientific approach to analyzing and addressing the issues related to interconnect materials involved in high temperature electronics -Reviews all relevant materials used in interconnect technology as well as alternative approaches otherwise neglected in other literature -Highlights emergent research and theoretical concepts in the implementation of different materials in soldering and die-attach applications -Covers wide-bandgap semiconductor device technologies for high temperature and harsh environment applications, transient liquid phase bonding, glass frit based die attach solution for harsh environment, and more -A pivotal reference for professionals, engineers, students, and researchers Harsh Environment Electronics: Interconnect Materials and Performance Assessment is aimed at materials scientists, electrical engineers, and semiconductor physicists, and treats this specialized topic with breadth and depth.
    Anmerkung: Wide-Bandgap Semiconductor Device Technologies for High-Temperature and Harsh Environment Applications / Md Rafiqul Islam, Roisul H Galib, Montajar Sarkar, Shaestagir Chowdhury -- High-Temperature Lead-free Solder Materials and Applications / Mohd F M Sabri, Bakhtiar Ali, Suhana M Said -- Role of Alloying Addition in Zn-Based Pb-Free Solders / Khairul Islam, Ahmed Sharif -- Effect of Cooling Rate on the Microstructure, Mechanical Properties, and Creep Resistance of a Cast Zn-Al-Mg High-temperature Lead-Free Solder Alloy / Reza Mahmudi, Davood Farasheh, Seyyed S Biriaie -- Development of Zn-Al-x Ni Lead-Free Solders for High-Temperature Applications / Sanjoy Mallick, Md Sharear Kabir, Ahmed Sharif -- Study of Zn-Mg-Ag High-Temperature Solder Alloys / Roisul H Galib, Md Ashif Anwar, Ahmed Sharif -- Characterization of Zn-Mo and Zn-Cr Pb-Free Composite Solders as a Potential Replacement for Pb-Containing Solders / Khairul Islam, Ahmed Sharif -- Gold-Based Interconnect Systems for High-Temperature and Harsh Environments / Ayesha Akter, Ahmed Sharif, Rubayyat Mahbub -- Bi-Based Interconnect Systems and Applications / Manifa Noor, Ahmed Sharif -- Recent Advancement of Research in Silver-Based Solder Alloys / Ahmed Sharif -- Silver Nanoparticles as Interconnect Materials / Md Ashif Anwar, Roisul Hasan Galib, Ahmed Sharif -- Transient Liquid Phase Bonding / Tariq Islam, Ahmed Sharif -- All-Copper Interconnects for High-Temperature Applications / Ahmed Sharif -- Glass-Frit-Based Die-Attach Solution for Harsh Environments / Ahmed Sharif -- Carbon-Nanotube-Reinforced Solders as Thermal Interface Materials / Md Muktadir Billah -- Reliability Study of Solder Joints in Electronic Packaging Technology / Ahmed Sharif, Sushmita Majumder.
    Weitere Ausg.: Print version: Harsh environment electronics. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co., [2019] ISBN 3527344195
    Weitere Ausg.: ISBN 9783527344192
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books. ; Electronic books. ; Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    b3kat_BV047393838
    Umfang: xxii, 451 Seiten
    ISBN: 9780128215531
    Serie: Woodhead Publishing Series in Biomaterials
    Inhalt: Intro -- Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- Preface -- Section A: Introduction and design of biocomposites -- 1 Introduction to green biocomposites -- 1.1 Introduction -- 1.2 Benefits of polymer composites -- 1.3 History of composites -- 1.4 Natural fiber-reinforced polymer composites -- 1.5 Green biocomposites -- 1.5.1 Natural fiber -- 1.5.2 Biopolymer matrix -- 1.6 Biomedical applications of green biocomposites -- 1.7 Ecological concerns about plastic pollution -- References -- 2 Computational modeling of biocomposites -- 2.1 Introduction -- 2.1.1 Computational modeling and validation -- 2.2 Modeling of bionanocomposites -- 2.3 Mechanical modeling and failure analysis of biocomposites -- 2.3.1 Micromechanical analysis -- 2.3.2 Macromechanical analysis -- 2.3.3 Mesoscale analysis -- 2.4 Thermal modeling of biocomposites -- 2.5 Modeling of biocomposites for biomedical applications -- 2.6 Conclusion -- References -- Section B: Diversities of biocomposites -- 3 Antimicrobial biocomposites -- 3.1 Introduction -- 3.2 Polysaccharides-based biocomposite and its antimicrobial effect -- 3.2.1 Starch and its derivatives -- 3.2.2 Cellulose and its derivatives -- 3.2.3 Pectin and its derivatives -- 3.2.4 Chitosan and its derivatives -- 3.2.5 Seaweed biopolymers -- 3.3 Proteins/polypeptides-based biocomposite and its antimicrobial effect -- 3.3.1 Keratin -- 3.3.2 Caseinates -- 3.3.3 Collagen -- 3.4 Ammonium and Phosphonium group-based biocomposite and its antimicrobial effect -- 3.5 Antimicrobial response of hydroxyapatite (HA)-based biocomposites -- 3.6 Effect of metal-based Nanopowders on antibacterial response -- 3.6.1 Antibacterial response of zinc oxide (ZnO) nanoparticles
    Anmerkung: Description based on publisher supplied metadata and other sources
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-0-12-821554-8
    Sprache: Englisch
    Fachgebiete: Technik
    RVK:
    RVK:
    Schlagwort(e): Bioverbundwerkstoff ; Biomedizinische Technik
    Mehr zum Autor: Jawaid, Mohammad
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    UID:
    gbv_881095788
    Umfang: vi, 239 Seiten , Illustrationen, Diagramme, Karten , 23 cm
    ISBN: 9781536106640 , 153610664X
    Serie: Environmental research advances
    Anmerkung: Includes index
    Weitere Ausg.: ISBN 9781536106800
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Protected areas Hauppauge, New York : Nova Science Publishers, 2017
    Sprache: Englisch
    Schlagwort(e): Biodiversität ; Naturschutzgebiet ; Reservat ; Aufsatzsammlung
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Weinheim, Germany :Wiley-VCH Verlag GmbH & Co.,
    UID:
    edocfu_9959327367802883
    Umfang: 1 online resource
    ISBN: 9783527813995 , 3527813993 , 9783527813964 , 3527813969
    Inhalt: Provides in-depth knowledge on novel materials that make electronics work under high-temperature and high-pressure conditions This book reviews the state of the art in research and development of lead-free interconnect materials for electronic packaging technology. It identifies the technical barriers to the development and manufacture of high-temperature interconnect materials to investigate into the complexities introduced by harsh conditions. It teaches the techniques adopted and the possible alternatives of interconnect materials to cope with the impacts of extreme temperatures for implementing at industrial scale. The book also examines the application of nanomaterials, current trends within the topic area, and the potential environmental impacts of material usage. Written by world-renowned experts from academia and industry, Harsh Environment Electronics: Interconnect Materials and Performance Assessment covers interconnect materials based on silver, gold, and zinc alloys as well as advanced approaches utilizing polymers and nanomaterials in the first section. The second part is devoted to the performance assessment of the different interconnect materials and their respective environmental impact.-Takes a scientific approach to analyzing and addressing the issues related to interconnect materials involved in high temperature electronics -Reviews all relevant materials used in interconnect technology as well as alternative approaches otherwise neglected in other literature -Highlights emergent research and theoretical concepts in the implementation of different materials in soldering and die-attach applications -Covers wide-bandgap semiconductor device technologies for high temperature and harsh environment applications, transient liquid phase bonding, glass frit based die attach solution for harsh environment, and more -A pivotal reference for professionals, engineers, students, and researchers Harsh Environment Electronics: Interconnect Materials and Performance Assessment is aimed at materials scientists, electrical engineers, and semiconductor physicists, and treats this specialized topic with breadth and depth.
    Anmerkung: Wide-Bandgap Semiconductor Device Technologies for High-Temperature and Harsh Environment Applications / Md Rafiqul Islam, Roisul H Galib, Montajar Sarkar, Shaestagir Chowdhury -- High-Temperature Lead-free Solder Materials and Applications / Mohd F M Sabri, Bakhtiar Ali, Suhana M Said -- Role of Alloying Addition in Zn-Based Pb-Free Solders / Khairul Islam, Ahmed Sharif -- Effect of Cooling Rate on the Microstructure, Mechanical Properties, and Creep Resistance of a Cast Zn-Al-Mg High-temperature Lead-Free Solder Alloy / Reza Mahmudi, Davood Farasheh, Seyyed S Biriaie -- Development of Zn-Al-x Ni Lead-Free Solders for High-Temperature Applications / Sanjoy Mallick, Md Sharear Kabir, Ahmed Sharif -- Study of Zn-Mg-Ag High-Temperature Solder Alloys / Roisul H Galib, Md Ashif Anwar, Ahmed Sharif -- Characterization of Zn-Mo and Zn-Cr Pb-Free Composite Solders as a Potential Replacement for Pb-Containing Solders / Khairul Islam, Ahmed Sharif -- Gold-Based Interconnect Systems for High-Temperature and Harsh Environments / Ayesha Akter, Ahmed Sharif, Rubayyat Mahbub -- Bi-Based Interconnect Systems and Applications / Manifa Noor, Ahmed Sharif -- Recent Advancement of Research in Silver-Based Solder Alloys / Ahmed Sharif -- Silver Nanoparticles as Interconnect Materials / Md Ashif Anwar, Roisul Hasan Galib, Ahmed Sharif -- Transient Liquid Phase Bonding / Tariq Islam, Ahmed Sharif -- All-Copper Interconnects for High-Temperature Applications / Ahmed Sharif -- Glass-Frit-Based Die-Attach Solution for Harsh Environments / Ahmed Sharif -- Carbon-Nanotube-Reinforced Solders as Thermal Interface Materials / Md Muktadir Billah -- Reliability Study of Solder Joints in Electronic Packaging Technology / Ahmed Sharif, Sushmita Majumder.
    Weitere Ausg.: Print version: Harsh environment electronics. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co., [2019] ISBN 3527344195
    Weitere Ausg.: ISBN 9783527344192
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    UID:
    b3kat_BV045679418
    Umfang: xvii, 379 Seiten , Illustrationen, Diagramme
    ISBN: 9783527344192
    Weitere Ausg.: Erscheint auch als Online-Ausgabe, PDF ISBN 978-3-527-81399-5
    Weitere Ausg.: Erscheint auch als Online-Ausgabe, EPUB ISBN 978-3-527-81397-1
    Weitere Ausg.: Erscheint auch als Online-Ausgabe, oBook ISBN 978-3-527-81396-4
    Sprache: Englisch
    Fachgebiete: Technik
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Schaltung ; Mikrolöten ; Lötverbindung ; Lötverbindung ; Materialermüdung ; Lötverbindung
    Mehr zum Autor: Sharif, Ahmed
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Cambridge ; Kidlington : Woodhead Publishing, an imprint of Elsevier
    UID:
    b3kat_BV049091627
    Umfang: 1 Online-Ressource (xxi, 581 Seiten) , Diagramme, Illustrationen
    ISBN: 9780323852876 , 0323852874
    Serie: Woodhead Publishing series in materials
    Weitere Ausg.: ISBN 9780128244920
    Weitere Ausg.: ISBN 0128244925
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Advanced polymer nanocomposites Oxford : Woodhead Publishing, 2022 ISBN 9780128244920
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    UID:
    edoccha_9960074223202883
    Umfang: 1 online resource (476 pages)
    ISBN: 0-12-821554-2 , 0-12-821553-4
    Serie: Woodhead Publishing Series in Biomaterials
    Anmerkung: Intro -- Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- Preface -- Section A: Introduction and design of biocomposites -- 1 Introduction to green biocomposites -- 1.1 Introduction -- 1.2 Benefits of polymer composites -- 1.3 History of composites -- 1.4 Natural fiber-reinforced polymer composites -- 1.5 Green biocomposites -- 1.5.1 Natural fiber -- 1.5.2 Biopolymer matrix -- 1.6 Biomedical applications of green biocomposites -- 1.7 Ecological concerns about plastic pollution -- References -- 2 Computational modeling of biocomposites -- 2.1 Introduction -- 2.1.1 Computational modeling and validation -- 2.2 Modeling of bionanocomposites -- 2.3 Mechanical modeling and failure analysis of biocomposites -- 2.3.1 Micromechanical analysis -- 2.3.2 Macromechanical analysis -- 2.3.3 Mesoscale analysis -- 2.4 Thermal modeling of biocomposites -- 2.5 Modeling of biocomposites for biomedical applications -- 2.6 Conclusion -- References -- Section B: Diversities of biocomposites -- 3 Antimicrobial biocomposites -- 3.1 Introduction -- 3.2 Polysaccharides-based biocomposite and its antimicrobial effect -- 3.2.1 Starch and its derivatives -- 3.2.2 Cellulose and its derivatives -- 3.2.3 Pectin and its derivatives -- 3.2.4 Chitosan and its derivatives -- 3.2.5 Seaweed biopolymers -- 3.3 Proteins/polypeptides-based biocomposite and its antimicrobial effect -- 3.3.1 Keratin -- 3.3.2 Caseinates -- 3.3.3 Collagen -- 3.4 Ammonium and Phosphonium group-based biocomposite and its antimicrobial effect -- 3.5 Antimicrobial response of hydroxyapatite (HA)-based biocomposites -- 3.6 Effect of metal-based Nanopowders on antibacterial response -- 3.6.1 Antibacterial response of zinc oxide (ZnO) nanoparticles. , 3.6.2 Antibacterial response of silver (Ag) nanoparticles -- 3.6.3 Antibacterial response of copper and copper oxide nanoparticles -- 3.6.4 Antibacterial response of Iron oxide nanoparticles -- 3.6.5 Antibacterial response of magnesium oxide (MgO) nanoparticles -- 3.6.6 Antibacterial response of gold (Au) nanoparticles -- 3.7 Antimicrobial nanofibers -- 3.7.1 Antimicrobial nanofibers by physical mixture -- 3.7.2 Antimicrobial nanofibers by chemical modification of polymers -- 3.8 Antimicrobial biocomposite in food coating -- 3.8.1 Properties of polysaccharides for antimicrobial food coating -- 3.9 Antimicrobial bio-packaging -- 3.9.1 System models -- 3.9.2 Antimicrobial mechanisms in food packaging -- 3.10 Antimicrobial biocomposite for biomedical application -- 3.10.1 Antimicrobial wound dressing -- 3.10.2 Bone and tissue engineering -- 3.11 Conclusion and future perspectives -- References -- 4 Bioactive glass composites: From synthesis to application -- 4.1 Introduction -- 4.2 Synthesis of glass composites -- 4.3 Synthesis approaches of bioactive glass composites -- 4.3.1 Physical approach -- 4.3.1.1 Melt quench method -- 4.3.1.2 Spray pyrolysis method -- 4.3.1.3 Spray drying method -- 4.3.1.4 Electrospinning method -- 4.3.1.5 Laser spinning technique -- 4.3.2 Chemical approach -- 4.3.2.1 Sol-gel method -- 4.3.2.2 Microemulsion approach -- 4.3.2.3 Hydrothermal method -- 4.3.3 Biological methods -- 4.3.4 Hybrid methods -- 4.3.5 Other novel methods -- 4.4 Properties of bioactive glass composites -- 4.4.1 Mechanical property -- 4.4.2 Optical property -- 4.4.3 Magnetic property -- 4.4.4 Electrical property -- 4.4.5 Other properties -- 4.5 Applications of bioactive glass composites -- 4.5.1 Orthopedic applications -- 4.5.2 Antimicrobial applications -- 4.5.3 Drug delivery applications. , 4.5.4 Cardiovascular applications -- 4.5.5 Dental applications -- 4.6 Future perspective and conclusion -- References -- 5 An overview of metal oxide-filled biocomposites -- 5.1 Introduction -- 5.2 Copper oxide (CuO) -filled biocomposites -- 5.3 Zinc oxides-filled biocomposites -- 5.3.1 Mechanical, thermal, antibacterial, and other properties of ZnO-based biocomposites -- 5.4 Magnesium oxide-filled biocomposites -- 5.4.1 Properties of MgO-based composites -- 5.5 Conclusions and future prospects -- Acknowledgment -- References -- 6 Bioresorbable biocomposites -- 6.1 Introduction -- 6.2 Preparation of bioresorbable biocomposites -- 6.2.1 3D bioprinting -- 6.2.2 Sol-gel process -- 6.2.3 Solvent casting -- 6.2.4 Hot pressing -- 6.3 Different types of bioresorbable biocomposites -- 6.3.1 PLA-based biocomposites -- 6.3.2 Calcium phosphate-based biocomposites -- 6.3.3 Silk-based biocomposites -- 6.3.4 Nanoparticle-reinforced biocomposites -- 6.3.4.1 Nanometal-based biocomposites -- 6.3.4.2 Carbon nanotube-based biocomposites -- 6.3.4.3 Gelatin-based biocomposites -- 6.3.4.4 Collagen-based biocomposites -- 6.3.4.5 Nanoclay-based biocomposites -- 6.4 Biocomposites for biomedical applications -- 6.5 Conclusions -- References -- 7 Cellulose-based biocomposites -- 7.1 Introduction -- 7.2 Chemistry of cellulose -- 7.3 Designing cellulosic biocomposite in different forms -- 7.3.1 Cellulose-based fibers -- 7.3.2 Cellulose-based crystals -- 7.3.3 Cellulose-based hydrogels -- 7.3.4 Cellulose-based films -- 7.3.5 Cellulose-based powders -- 7.3.6 Cellulose-based biofoams -- 7.4 Formation of cellulose in biomass -- 7.5 Natural formation in plants -- 7.5.1 Natural formation in microorganisms -- 7.6 Extraction of cellulose -- 7.7 Physico-chemical properties of cellulose and its derivatives -- 7.7.1 Physical properties. , 7.7.2 Thermal properties -- 7.7.3 Electrical properties -- 7.7.4 Chemical properties -- 7.8 Cellulose-based biocomposites -- 7.8.1 Fiber-matrix interfacial interaction -- 7.8.2 Surface modification methods -- 7.8.2.1 Physical treatments -- 7.8.2.2 Physico-chemical treatments -- 7.8.2.3 Chemical treatments -- 7.8.3 Conventional processing methods -- 7.9 Applications of cellulose-based biocomposites in biomedical engineering -- 7.9.1 In tissue engineering and regenerative medicine -- 7.9.1.1 Bone tissue grafts -- 7.9.1.2 Cartilage, ligament, and tendon -- 7.9.1.3 Intervertebral disc and meniscus implant -- 7.9.1.4 Cardiac prosthesis -- 7.9.1.5 Artificial blood vessels -- 7.9.2 In wound dressing, artificial skin, and skin tissue repairing -- 7.9.3 In dental applications -- 7.9.4 In ophthalmologic applications -- 7.9.5 In biosensors and diagnostic devices -- 7.9.6 In drug delivery -- 7.9.7 In neural applications -- 7.10 Future trends -- 7.11 Conclusions -- References -- 8 Graphene-based nanocomposites for biomedical engineering application -- 8.1 Introduction -- 8.2 Synthesis of graphene-based nanocomposite -- 8.3 Properties of graphene-based nanocomposite -- 8.4 Biomedical applications of graphene-based nanocomposites -- 8.4.1 Drug delivery applications -- 8.4.2 Gene therapy applications -- 8.4.3 Tissue engineering applications -- 8.4.4 Antibacterial applications -- 8.4.5 Biosensing applications -- 8.4.6 Orthopedic and dental applications -- 8.5 Conclusion -- References -- 9 Fabrication and characterization of chicken feather fiber-reinforced polymer composites -- 9.1 Introduction -- 9.2 Materials and methods -- 9.2.1 Chicken keratin fiber (CFF) extraction -- 9.3 Chicken keratin fiber characteristics -- 9.3.1 Cleanliness and color -- 9.3.2 Textural property -- 9.3.3 Mechanical property. , 9.3.4 Absorbed moisture content -- 9.4 Composites fabrication -- 9.5 Composite characterization -- 9.5.1 Physical properties -- 9.5.2 Mechanical properties -- 9.5.3 Thermal characteristics -- 9.5.4 Morphological properties -- 9.5.5 Fourier transform infra-red (FTIR) spectroscopy -- 9.5.6 X-ray diffraction (XRD) -- 9.6 Fiber characteristics -- 9.6.1 Cleanliness and color -- 9.6.2 FTIR spectra -- 9.6.3 XRD analysis -- 9.6.4 Thermal analysis -- 9.6.5 Moisture regain -- 9.6.6 Linear fiber density -- 9.6.7 Mechanical properties -- 9.6.8 Microstructural analysis -- 9.7 FTIR spectra of chicken keratin fiber-reinforced vinyl ester composites -- 9.8 XRD curves of chicken keratin fiber vinyl ester composites -- 9.9 Effect on physical properties of CFF polymer composites -- 9.10 Effect on mechanical characteristics of chicken keratin fiber-reinforced polymer laminates -- 9.10.1 Tensile properties -- 9.10.2 Compression properties -- 9.10.3 Flexural properties -- 9.10.4 Impact strength and Vickers hardness -- 9.11 Effect on thermal stability of CFF polymer composites -- 9.12 Morphological properties -- 9.13 Conclusion -- References -- 10 Sugarcane nanocellulose fiber-reinforced vinyl ester nanocomposites -- 10.1 Introduction -- 10.2 Materials and methods -- 10.2.1 Chemical treatment on sugarcane nanocellulose -- 10.2.2 Fabrication of vinyl ester composite -- 10.2.3 Vinyl ester nanocomposites characterization -- 10.2.3.1 Physical properties -- 10.2.3.2 Mechanical properties -- 10.2.3.3 Tensile fracture -- 10.2.3.4 Thermal characteristics -- 10.3 Results and discussion -- 10.3.1 Physical properties -- 10.3.2 Mechanical properties -- 10.3.2.1 Tensile properties -- 10.3.2.2 Tensile fracture -- 10.3.2.3 Compression properties -- 10.3.2.4 Flexural properties -- 10.3.2.5 Impact strength and hardness. , 10.3.3 Thermal characteristics.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    UID:
    edocfu_9960074223202883
    Umfang: 1 online resource (476 pages)
    ISBN: 0-12-821554-2 , 0-12-821553-4
    Serie: Woodhead Publishing Series in Biomaterials
    Anmerkung: Intro -- Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- Preface -- Section A: Introduction and design of biocomposites -- 1 Introduction to green biocomposites -- 1.1 Introduction -- 1.2 Benefits of polymer composites -- 1.3 History of composites -- 1.4 Natural fiber-reinforced polymer composites -- 1.5 Green biocomposites -- 1.5.1 Natural fiber -- 1.5.2 Biopolymer matrix -- 1.6 Biomedical applications of green biocomposites -- 1.7 Ecological concerns about plastic pollution -- References -- 2 Computational modeling of biocomposites -- 2.1 Introduction -- 2.1.1 Computational modeling and validation -- 2.2 Modeling of bionanocomposites -- 2.3 Mechanical modeling and failure analysis of biocomposites -- 2.3.1 Micromechanical analysis -- 2.3.2 Macromechanical analysis -- 2.3.3 Mesoscale analysis -- 2.4 Thermal modeling of biocomposites -- 2.5 Modeling of biocomposites for biomedical applications -- 2.6 Conclusion -- References -- Section B: Diversities of biocomposites -- 3 Antimicrobial biocomposites -- 3.1 Introduction -- 3.2 Polysaccharides-based biocomposite and its antimicrobial effect -- 3.2.1 Starch and its derivatives -- 3.2.2 Cellulose and its derivatives -- 3.2.3 Pectin and its derivatives -- 3.2.4 Chitosan and its derivatives -- 3.2.5 Seaweed biopolymers -- 3.3 Proteins/polypeptides-based biocomposite and its antimicrobial effect -- 3.3.1 Keratin -- 3.3.2 Caseinates -- 3.3.3 Collagen -- 3.4 Ammonium and Phosphonium group-based biocomposite and its antimicrobial effect -- 3.5 Antimicrobial response of hydroxyapatite (HA)-based biocomposites -- 3.6 Effect of metal-based Nanopowders on antibacterial response -- 3.6.1 Antibacterial response of zinc oxide (ZnO) nanoparticles. , 3.6.2 Antibacterial response of silver (Ag) nanoparticles -- 3.6.3 Antibacterial response of copper and copper oxide nanoparticles -- 3.6.4 Antibacterial response of Iron oxide nanoparticles -- 3.6.5 Antibacterial response of magnesium oxide (MgO) nanoparticles -- 3.6.6 Antibacterial response of gold (Au) nanoparticles -- 3.7 Antimicrobial nanofibers -- 3.7.1 Antimicrobial nanofibers by physical mixture -- 3.7.2 Antimicrobial nanofibers by chemical modification of polymers -- 3.8 Antimicrobial biocomposite in food coating -- 3.8.1 Properties of polysaccharides for antimicrobial food coating -- 3.9 Antimicrobial bio-packaging -- 3.9.1 System models -- 3.9.2 Antimicrobial mechanisms in food packaging -- 3.10 Antimicrobial biocomposite for biomedical application -- 3.10.1 Antimicrobial wound dressing -- 3.10.2 Bone and tissue engineering -- 3.11 Conclusion and future perspectives -- References -- 4 Bioactive glass composites: From synthesis to application -- 4.1 Introduction -- 4.2 Synthesis of glass composites -- 4.3 Synthesis approaches of bioactive glass composites -- 4.3.1 Physical approach -- 4.3.1.1 Melt quench method -- 4.3.1.2 Spray pyrolysis method -- 4.3.1.3 Spray drying method -- 4.3.1.4 Electrospinning method -- 4.3.1.5 Laser spinning technique -- 4.3.2 Chemical approach -- 4.3.2.1 Sol-gel method -- 4.3.2.2 Microemulsion approach -- 4.3.2.3 Hydrothermal method -- 4.3.3 Biological methods -- 4.3.4 Hybrid methods -- 4.3.5 Other novel methods -- 4.4 Properties of bioactive glass composites -- 4.4.1 Mechanical property -- 4.4.2 Optical property -- 4.4.3 Magnetic property -- 4.4.4 Electrical property -- 4.4.5 Other properties -- 4.5 Applications of bioactive glass composites -- 4.5.1 Orthopedic applications -- 4.5.2 Antimicrobial applications -- 4.5.3 Drug delivery applications. , 4.5.4 Cardiovascular applications -- 4.5.5 Dental applications -- 4.6 Future perspective and conclusion -- References -- 5 An overview of metal oxide-filled biocomposites -- 5.1 Introduction -- 5.2 Copper oxide (CuO) -filled biocomposites -- 5.3 Zinc oxides-filled biocomposites -- 5.3.1 Mechanical, thermal, antibacterial, and other properties of ZnO-based biocomposites -- 5.4 Magnesium oxide-filled biocomposites -- 5.4.1 Properties of MgO-based composites -- 5.5 Conclusions and future prospects -- Acknowledgment -- References -- 6 Bioresorbable biocomposites -- 6.1 Introduction -- 6.2 Preparation of bioresorbable biocomposites -- 6.2.1 3D bioprinting -- 6.2.2 Sol-gel process -- 6.2.3 Solvent casting -- 6.2.4 Hot pressing -- 6.3 Different types of bioresorbable biocomposites -- 6.3.1 PLA-based biocomposites -- 6.3.2 Calcium phosphate-based biocomposites -- 6.3.3 Silk-based biocomposites -- 6.3.4 Nanoparticle-reinforced biocomposites -- 6.3.4.1 Nanometal-based biocomposites -- 6.3.4.2 Carbon nanotube-based biocomposites -- 6.3.4.3 Gelatin-based biocomposites -- 6.3.4.4 Collagen-based biocomposites -- 6.3.4.5 Nanoclay-based biocomposites -- 6.4 Biocomposites for biomedical applications -- 6.5 Conclusions -- References -- 7 Cellulose-based biocomposites -- 7.1 Introduction -- 7.2 Chemistry of cellulose -- 7.3 Designing cellulosic biocomposite in different forms -- 7.3.1 Cellulose-based fibers -- 7.3.2 Cellulose-based crystals -- 7.3.3 Cellulose-based hydrogels -- 7.3.4 Cellulose-based films -- 7.3.5 Cellulose-based powders -- 7.3.6 Cellulose-based biofoams -- 7.4 Formation of cellulose in biomass -- 7.5 Natural formation in plants -- 7.5.1 Natural formation in microorganisms -- 7.6 Extraction of cellulose -- 7.7 Physico-chemical properties of cellulose and its derivatives -- 7.7.1 Physical properties. , 7.7.2 Thermal properties -- 7.7.3 Electrical properties -- 7.7.4 Chemical properties -- 7.8 Cellulose-based biocomposites -- 7.8.1 Fiber-matrix interfacial interaction -- 7.8.2 Surface modification methods -- 7.8.2.1 Physical treatments -- 7.8.2.2 Physico-chemical treatments -- 7.8.2.3 Chemical treatments -- 7.8.3 Conventional processing methods -- 7.9 Applications of cellulose-based biocomposites in biomedical engineering -- 7.9.1 In tissue engineering and regenerative medicine -- 7.9.1.1 Bone tissue grafts -- 7.9.1.2 Cartilage, ligament, and tendon -- 7.9.1.3 Intervertebral disc and meniscus implant -- 7.9.1.4 Cardiac prosthesis -- 7.9.1.5 Artificial blood vessels -- 7.9.2 In wound dressing, artificial skin, and skin tissue repairing -- 7.9.3 In dental applications -- 7.9.4 In ophthalmologic applications -- 7.9.5 In biosensors and diagnostic devices -- 7.9.6 In drug delivery -- 7.9.7 In neural applications -- 7.10 Future trends -- 7.11 Conclusions -- References -- 8 Graphene-based nanocomposites for biomedical engineering application -- 8.1 Introduction -- 8.2 Synthesis of graphene-based nanocomposite -- 8.3 Properties of graphene-based nanocomposite -- 8.4 Biomedical applications of graphene-based nanocomposites -- 8.4.1 Drug delivery applications -- 8.4.2 Gene therapy applications -- 8.4.3 Tissue engineering applications -- 8.4.4 Antibacterial applications -- 8.4.5 Biosensing applications -- 8.4.6 Orthopedic and dental applications -- 8.5 Conclusion -- References -- 9 Fabrication and characterization of chicken feather fiber-reinforced polymer composites -- 9.1 Introduction -- 9.2 Materials and methods -- 9.2.1 Chicken keratin fiber (CFF) extraction -- 9.3 Chicken keratin fiber characteristics -- 9.3.1 Cleanliness and color -- 9.3.2 Textural property -- 9.3.3 Mechanical property. , 9.3.4 Absorbed moisture content -- 9.4 Composites fabrication -- 9.5 Composite characterization -- 9.5.1 Physical properties -- 9.5.2 Mechanical properties -- 9.5.3 Thermal characteristics -- 9.5.4 Morphological properties -- 9.5.5 Fourier transform infra-red (FTIR) spectroscopy -- 9.5.6 X-ray diffraction (XRD) -- 9.6 Fiber characteristics -- 9.6.1 Cleanliness and color -- 9.6.2 FTIR spectra -- 9.6.3 XRD analysis -- 9.6.4 Thermal analysis -- 9.6.5 Moisture regain -- 9.6.6 Linear fiber density -- 9.6.7 Mechanical properties -- 9.6.8 Microstructural analysis -- 9.7 FTIR spectra of chicken keratin fiber-reinforced vinyl ester composites -- 9.8 XRD curves of chicken keratin fiber vinyl ester composites -- 9.9 Effect on physical properties of CFF polymer composites -- 9.10 Effect on mechanical characteristics of chicken keratin fiber-reinforced polymer laminates -- 9.10.1 Tensile properties -- 9.10.2 Compression properties -- 9.10.3 Flexural properties -- 9.10.4 Impact strength and Vickers hardness -- 9.11 Effect on thermal stability of CFF polymer composites -- 9.12 Morphological properties -- 9.13 Conclusion -- References -- 10 Sugarcane nanocellulose fiber-reinforced vinyl ester nanocomposites -- 10.1 Introduction -- 10.2 Materials and methods -- 10.2.1 Chemical treatment on sugarcane nanocellulose -- 10.2.2 Fabrication of vinyl ester composite -- 10.2.3 Vinyl ester nanocomposites characterization -- 10.2.3.1 Physical properties -- 10.2.3.2 Mechanical properties -- 10.2.3.3 Tensile fracture -- 10.2.3.4 Thermal characteristics -- 10.3 Results and discussion -- 10.3.1 Physical properties -- 10.3.2 Mechanical properties -- 10.3.2.1 Tensile properties -- 10.3.2.2 Tensile fracture -- 10.3.2.3 Compression properties -- 10.3.2.4 Flexural properties -- 10.3.2.5 Impact strength and hardness. , 10.3.3 Thermal characteristics.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz