feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg
    UID:
    b3kat_BV036650563
    Format: 1 Online-Ressource , v.: digital
    Edition: Online_Ausgabe Berlin, Heidelberg Springer-Verlag Berlin Heidelberg 2006 Springer ebook collection / Chemistry and Materials Science 2005-2008 Sonstige Standardnummer des Gesamttitels: 041171-1
    ISBN: 9783540012986 , 9783540261858
    Additional Edition: Reproduktion von Ariga, Katsuhiko, 1962- Supramolecular chemistry - fundamentals and applications 2006
    Language: English
    Subjects: Chemistry/Pharmacy
    RVK:
    Keywords: Supramolekulare Chemie ; Kronenether ; Metacyclophane ; Selbstorganisation ; Lehrbuch ; Lehrbuch
    URL: Cover
    URL: Volltext  (lizenzpflichtig)
    Author information: Kunitake, Toyoki 1936-
    Author information: Ariga, Katsuhiko 1962-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_BV017159388
    Format: IX, 208 S.. : , zahlr. Ill., graph. Darst.
    ISBN: 3-540-01298-2 , 978-3-540-01298-6
    Uniform Title: Chobunshi kagaku he no tenkai
    Note: Aus dem Japan. übers.
    Language: English
    Subjects: Chemistry/Pharmacy
    RVK:
    Keywords: Supramolekulare Chemie ; Kronenether ; Metacyclophane ; Selbstorganisation ; Lehrbuch ; Lehrbuch
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almahu_9949640561502882
    Format: 1 online resource (648 pages)
    Edition: First edition.
    ISBN: 0-323-99473-3
    Series Statement: Micro and Nano Technologies Series
    Note: Front Cover -- Materials Nanoarchitectonics -- Copyright Page -- Dedication -- Contents -- List of contributors -- Preface -- Nanoarchitectonics as the method for everything in materials science -- 1 Nanoarchitectonics: a land of opportunities -- 1.1 Bottom-up creation of functional materials and devices -- References -- 2 Nitrogen functionalities assisted nanoporous carbon materials for supercapacitor studies -- 2.1 Introduction -- 2.2 Effect of morphology, pore structure, and heteroatoms functionalization on capacitive behavior -- 2.2.1 Controlled morphology influences capacitive behavior -- 2.2.2 Pore structure influences capacitive behavior -- 2.2.3 Heteroatoms functionalization on capacitive behavior -- 2.3 Electrolyte influence and its limitation on overall performance -- 2.3.1 Aqueous supercapacitors -- 2.3.2 Inorganic redox-active electrolyte supercapacitors system -- 2.3.3 Organic redox-active electrolyte supercapacitors system -- 2.3.4 Nonaqueous supercapacitors -- 2.4 Concluding remarks -- References -- 3 Membrane nanoarchitectonics: advanced nanoporous membranes for osmotic power generation -- 3.1 Introduction -- 3.2 Fundamental concepts -- 3.2.1 Reverse electrodialysis -- 3.2.2 Ion selectivity in nanoporous membranes -- 3.2.3 Membrane resistance -- 3.3 Fabrication of advanced reverse electrodialysis nanoporous membranes -- 3.3.1 Multichannel membranes -- 3.3.2 2D-based membranes -- 3.3.3 3D-based membranes -- 3.4 Recent advances in upscaled membranes -- 3.5 Current limitations and challenges -- 3.6 Conclusions -- References -- 4 Biointerfacial nanoarchitectonics: layer-by-layer assembly as a versatile technique for the fabrication of highly functio... -- 4.1 Introduction -- 4.2 The layer-by-layer technique -- 4.2.1 Building blocks and assembly procedures. , 4.2.2 Combination of the layer-by-layer assembly technique with other fabrication procedures -- 4.2.3 Structural characteristics of layer-by-layer multilayers -- 4.2.4 Effect of assembly conditions and postassembly treatment on the multilayer properties -- 4.2.4.1 Variables for the assembly process -- 4.2.4.2 Postassembly treatments -- 4.3 Interactions of materials with living systems -- 4.3.1 Cell adhesion and its relation to proliferation, motility and differentiation -- 4.4 Selected examples of the application of the layer-by-layer technique in biosciences -- 4.4.1 Platforms for cell behavior modulation -- 4.4.1.1 Tailoring physicochemical properties of the substrates -- 4.4.2 Simple tunable multifunctional devices -- 4.4.3 Gradients in physicochemical properties -- 4.5 Cell encapsulation and cell modification by layer-by-layer technique -- 4.6 Conclusions -- References -- 5 Charged porphyrins as building blocks of π-electronic ion-pairing assemblies -- 5.1 Introduction -- 5.2 Porphyrins with charged substituents at the meso positions -- 5.2.1 Ion-pairing assemblies comprising zwitterionic porphyrins -- 5.2.2 Ion-pairing assemblies comprising oppositely charged porphyrin derivatives -- 5.3 Porphyrins charged at the porphyrin skeleton -- 5.3.1 Negatively charged porphyrins formed by deprotonation -- 5.3.2 Heteroatom-containing charged porphyrin analogs -- 5.3.3 Positively charged porphyrin metal complexes with valence mismatch -- 5.3.4 Negatively charged porphyrin metal complexes with valence mismatch -- 5.4 π-Electronic ion-pairing assemblies of charged porphyrins -- 5.4.1 Negatively charged porphyrins with π-electronic cations -- 5.4.2 Porphyrin AuIII complexes with π-electronic receptor-Cl− complexes -- 5.4.3 Porphyrin AuIII complexes with π-electronic anions -- 5.5 Summary and future perspective -- References. , 6 Layered structures in soft nanoarchitectonics: towards functional photonic materials -- 6.1 Introduction -- 6.2 Naturally existing layered structures -- 6.3 Fabrication of nanoarchitectonics with layered structures in soft materials -- 6.3.1 Self-assembly of amphiphilic molecules -- 6.3.2 Self-assembly of block copolymers -- 6.3.3 Cyclic deposition of two materials -- 6.3.4 Multilayer coextrusion -- 6.3.5 Holographic photopolymerization -- 6.4 Potential applications -- 6.4.1 Layered structures for chemical/physical sensing -- 6.4.1.1 Strain sensitivity -- 6.4.1.2 Temperature sensitivity -- 6.4.1.3 Ionic-strength sensitivity -- 6.4.1.4 Electric-field sensitivity -- 6.4.2 Layered structures for anisotropic molecular diffusion -- 6.4.3 Layered structures used for light management purposes in devices -- 6.4.3.1 Optical filters -- 6.4.3.2 Photovoltaics -- 6.4.4 Layered structures used as soft templates for controllable synthesis -- 6.5 Excellent mechanical properties of nanoscale layered structures in soft materials -- 6.5.1 High fracture strength -- 6.5.2 Anisotropic mechanical properties -- 6.5.3 High crack resistance -- 6.6 Outlook and perspectives -- Acknowledgments -- References -- 7 Metal Nanoarchitectonics: Fabrication of Sophisticated Gold Nanostructures for Functional Plasmonic Devices -- 7.1 Introduction -- 7.2 Stimuli-responsive metal nanoparticles for configurable structures via assembly/disassembly -- 7.3 Nanoparticle assembly control with the aid of polymers as an additive -- 7.4 Precise active control of plasmonic nanostructures on polymer gels as a substrate -- 7.5 Active alignment control of gold nanorods with the aid of polymers brushes -- 7.6 Conclusion -- References -- 8 Molecular Imprinting as Key Technology for Smart Nanoarchitectonics -- 8.1 Introduction -- 8.2 Some technical details of molecular imprinting. , 8.2.1 Experimental procedures and chemicals employed for imprinting -- 8.2.2 Coverage of the surface of nanoarchitectures by MIP -- 8.3 Tactics to improve the guest-binding activity and selectivity of MIP -- 8.3.1 Post-imprinting modification to provide still more advanced functions -- 8.3.2 Cyclodextrins as functional monomers to memorize large-sized template by molecular imprinting -- 8.4 Examples of practical applications of MIP to nanoarchitectonics -- 8.4.1 Highly selective sensors -- 8.4.1.1 Sophisticated sensors prepared by post-imprinting strategy -- 8.4.1.2 Combination of MIP with DNA aptamer -- 8.4.2 Biological Applications of MIP -- 8.4.3 Developments of highly selective catalysts through molecular imprinting -- 8.4.4 Adsorbents to recover uranium from seawater -- 8.5 Conclusions -- References -- Further Reading -- 9 Self-assembled structures as emerging cellular scaffolds -- 9.1 Introduction -- 9.2 Self-assembled structures -- 9.2.1 Self-assembled vesicular structures -- 9.2.1.1 Principles of vesicle formation -- 9.2.1.2 Liposomes -- 9.2.1.3 Polymersomes -- 9.2.1.4 Hybrid vesicles -- 9.2.1.5 Colloidosomes -- 9.2.1.6 Proteinosomes -- 9.2.1.7 Dendrimersomes -- 9.2.2 Coacervate droplets -- 9.2.3 Multicompartment self-assembled structures -- 9.3 Methods for the construction of self-assembled structures -- 9.3.1 Film rehydration method -- 9.3.2 Electroformation method -- 9.3.3 Solvent displacement techniques -- 9.3.4 Polymerization-induced self-assembly -- 9.4 Applications -- 9.4.1 Cell models and cell mimics -- 9.4.2 Intracellular delivery vehicles -- 9.4.3 Micro-/nanoreactors for catalytic cascades -- 9.5 Conclusion -- References -- 10 2D materials-based nanoarchitectonics for metal-ion batteries -- 10.1 Introduction: novel materials for battery electrodes -- 10.1.1 Graphene -- 10.1.2 Molybdenum disulfide -- 10.1.3 Black phosphorus. , 10.1.4 Metallic nitrides and carbides (MXenes) -- 10.2 Nanoarchitected structures applied to metal-ion batteries -- 10.2.1 2D/2D nanoarchitected structures -- 10.2.2 2D/Oxides nanoarchitectonics -- 10.2.3 2D/Carbon nanotubes nanoarchitectonics -- 10.2.4 2D/conjugated polymer nanoarchitectonics -- 10.3 Conclusions -- Acknowledgments -- References -- 11 Thin film nanoarchitectonics via Langmuir-Blodgett and layer-by-layer methods -- 11.1 Introduction -- 11.2 Langmuir-Blodgett nanoarchitectonics -- 11.3 Layer-by-layer nanoarchitectonics -- 11.3.1 Layer-by-layer basics -- 11.3.2 Hierarchical layer-by-layer nanoarchitectonics with microfabrication -- 11.3.3 Hierarchical layer-by-layer nanoarchitectonics with artificial cell -- 11.3.4 Hierarchical layer-by-layer nanoarchitectonics with graphene and ionic liquid -- 11.3.5 Hierarchical layer-by-layer nanoarchitectonics with mesoporous carbon -- 11.3.6 Hierarchical layer-by-layer nanoarchitectonics, future -- 11.4 Short perspective -- References -- 12 Langmuir films-a universal method for fabricating organized monolayers from nanomaterials -- 12.1 Introduction -- 12.2 History and present of Langmuir films -- 12.3 Experimental details -- 12.3.1 Suitable subphases -- 12.3.2 Suitable solvents -- 12.3.3 Experimental procedure for preparation of Langmuir films† -- 12.3.4 Film deposition techniques -- 12.3.5 Experimental procedure for preparation of self-assembled Langmuir films -- 12.4 Applications -- 12.4.1 Plasmonics -- 12.4.2 Gas sensing -- 12.4.3 Electronics -- 12.4.4 Substrate patterning -- 12.4.5 Batteries -- 12.5 Summary -- References -- 13 MXenes and their applications in sensors -- 13.1 MXenes' properties -- 13.1.1 Chemical properties -- 13.1.2 Electric properties -- 13.1.3 Optical properties -- 13.1.4 Mechanical properties -- 13.1.5 Magnetic properties -- 13.1.6 Stability -- 13.2 MXenes synthesis. , 13.2.1 Hydrofluoric etching.
    Additional Edition: Print version: Ariga, Katsuhiko Materials Nanoarchitectonics San Diego : Elsevier,c2023 ISBN 9780323994729
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almahu_9949592891902882
    Format: IX, 338 p. 169 illus., 157 illus. in color. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9784431569121
    Series Statement: NIMS Monographs,
    Content: This book is the first publication to widely introduce the contributions of nanoarchitectonics to the development of functional materials and systems. The book opens up pathways to novel nanotechnology based on bottom-up techniques. In fields of nanotechnology, theoretical and practical limitations are expected in the bottom-up nanofabrication process. Instead, some supramolecular processes for nano- and microstructure formation including molecular recognition, self-assembly, and template synthesis have gained great attention as novel key technologies to break through expected limitations in current nanotechnology. This volume describes future images of nanotechnology and related materials and device science as well as practical applications for energy and biotechnology. Readers including specialists, non-specialists, graduate students, and undergraduate students can focus on the parts of the book that interest and concern them most. Target fields include materials chemistry, organic chemistry, physical chemistry, nanotechnology, and even biotechnology. .
    Note: What is Nanoarchitectonics? -- Synthesis of Semiconductor Nanowires -- Nanoparticle Biomarkers Adapted for Near-Infrared Fluorescence Imaging -- Frontiers in Mesoscale Materials Design -- Wavelengh-selective Photothermal Infrared Sensors -- Functional Molecular Liquids -- Ionic nanoarchitectonics: Creation of polymer-based atomic switch and decision-making device -- Oxoporphyrinogens: Novel Dyes based on the Fusion of Calix[4]pyrrole, Quinonoids and Porphyrins -- Growth and electronic and optoelectronic applications of surface oxides on atomically thin WSe2 -- Portable toxic gas sensors based on functionalized carbon nanotubes -- Advanced Nanomechanical Sensor for Artificial Olfactory System: Membrane-type Surface Stress Sensor (MSS) -- Quantum Molecular Devices toward Large-Scale Integration -- Nanostructured bulk thermoelectric materials for energy harvesting -- Artificial Photosynthesis: Fundamentals, Challenges, and Strategies -- Smart Polymers for Biomedical Applications -- Geometrical and mechanical nanoarchitectonics at interfaces bridging molecules with cell phenotypes -- Electrical measurement by Multiple-Probe Scanning Probe Microscope -- Large-Scale First-principles Calculation Technique for Nanoarchitectonics: Local orbital and Linear-scaling DFT methods with the CONQUEST code -- Machine Learning Approaches in Nanoarchitectonics.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9784431569114
    Additional Edition: Printed edition: ISBN 9784431569138
    Language: English
    Keywords: Aufsatzsammlung
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almahu_9949592862802882
    Format: IX, 548 p. 242 illus., 194 illus. in color. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9789811641893
    Series Statement: Nanostructure Science and Technology,
    Content: This book is the ultimate assembly of recent research activities on molecular architectonics and nanoarchitectonics by authors who are worldwide experts. The book proposes new ways of creating functional materials at the nano level using the concepts of molecular architectonics and nanoarchitectonics, which are expected to be the next-generation approaches beyond conventional nanotechnology. All the contents are categorized by types of materials, organic materials, biomaterials, and nanomaterials. For that reason, non-specialists including graduate and undergraduate students can start reading the book from any points they would like. Cutting-edge trends in nanotechnology and material sciences are easily visible in the contents of the book, which is highly useful for both students and experimental materials scientists. .
    Note: Part 1: Molecular Architectonics and Nanoarchitectonics -- Chapter 1: Molecular architectonics -- Chapter 2: Nanoarchitectonics -- Part 2: Architectonics of functional molecules -- Chapter 3: Topological Supramolecular Polymer -- Chapter 4: Molecular architectonics guide the fabrication of self-cleaning materials -- Chapter 5: Functional discotic liquid crystals through molecular self-assembly: Towards efficient charge transport systems -- Part 3: Architectonics of peptides -- Chapter 6: Dopamine-based materials: recent advances in synthesis methods and applications -- Chapter 7: Peptide-based nanoarchitectonics: Self-assembly and biological applications -- Chapter 8: Peptide cross-b nanoarchitectures: characterizing self-Assembly mechanisms, structure and physicochemical properties -- Chapter 9: Function-inspired design of molecular hydrogels: Paradigm shifting biomaterials for biomedical applications -- Chapter 10: Smart peptide assembly architectures to mimic biology's adaptive properties and applications -- Part 4: Architectonics of nucleic acids -- Chapter 11: Bio-inspired functional DNA architectures -- Chapter 12: Functional molecule templated DNA molecular architectonics -- Chapter 13: Architectures of nucleolipid assemblies and their applications -- Chapter 14: Nucleobase and DNA functionalized hydrogels and their applications -- Chapter 15: RNA nanoarchitectures and their applications -- Part 5: Architectonics of complex systems and advanced objects -- Chapter 16: Covalent organic frameworks as tunable supports for HER, OER and ORR catalysts- a new addition to heterogeneous electrocatalysts -- Chapter 17: Ligand functionalised nanostructures and their biomedical applications -- Chapter 18: Biomimetic composite materials and their biological applications -- Chapter 19: Combining polymers, nanomaterials, and biomolecules: Nanostructured films with functional properties and applications -- Chapter 20: Responsive polymeric architectures and their biomaterial applications.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9789811641886
    Additional Edition: Printed edition: ISBN 9789811641909
    Additional Edition: Printed edition: ISBN 9789811641916
    Language: English
    Subjects: Chemistry/Pharmacy
    RVK:
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almafu_9960074778002883
    Format: 1 online resource (308 pages)
    ISBN: 0-12-813342-2
    Note: Low-Dimensional Nanomaterials / Mekuriaw Assefa Kebede and Toyoko Imae -- Langmuir-Blodgett Films for Nanoarchitectoncs / Katsuhiko Ariga -- Hydrogen Bond Directed 2D Materials at Modulated Interfaces / Archita Patnaik -- Layer-by-Layer Assembly for Nanoarchitectonics / A.C. Santos, I. Pereira, C. Ferreira, F. Veiga, and R. Fakhrullin -- Complexation of TiO2 With Clays and Clay Minerals for Hierarchically Designed Functional Hybrids / Siwada Deepracha, Kasimanat Vibulyaseak and Makoto Ogawa -- Metal-Organic Frameworks for Nanoarchitectures : Nanoparticle, Composite, Core-Shell, Hierarchical, and Hollow Structures / Nazmul Abedin Khan, Zubair Hasan, Imteaz Ahmed and Sung Hwa Jhung -- Nanoarchitectonics for Photoelectronics / Mao Li -- Nanoarchitectonics for Biology / Juan Wang, Ruirui Xing and Xuehai Yan -- Nanoarchitectonics in Microfluidic Devices for Sensing and Biosensing / Paulo A. Raymundo-Pereira, Flávio Makoto Shimizu, Renato Sousa Lima, Osvaldo N. Oliveira Jr. -- Nanoarchitectonics With Hybrid Materials / Mineo Hashizume -- From Nanoarchitectonics to Tissue Architectonics : Nanomaterials for Tissue Engineering / Shan-hui Hsu and Pei-wen Luo.
    Additional Edition: ISBN 0-12-813341-4
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin Heidelberg :
    UID:
    almafu_9958087697302883
    Format: 1 online resource (214 p.)
    Edition: 1st ed. 2006.
    ISBN: 3-540-26185-0
    Uniform Title: Chōbunshi kagaku e no tenkai.
    Content: In this book we delve into the field of supramolecular chemistry, which deals with supermolecules. A supermolecule in this sense can be defined as a “molecule beyond a molecule” – a large and complex entity formed from other molecules. The book conveys the relevance and fascination of the fast-growing field of supramolecular chemistry to advanced undergraduate students, and provides an overview of it to young scientists and engineers. Readers will find that supramolecular chemistry is associated with many attractive disciplines of chemistry, including molecular recognition, molecular topology, self-organization, ultrathin films, molecular devices and biomolecular systems. Supramolecular chemistry is still a very young field, and so it is difficult to predict its future, but it has already secured a firm position in the chemical sciences. For example, biotechnology and nanotechnology are expected to lead to technological revolutions in the near future that will dramatically affect our lifestyles and economies. Supramolecular chemistry is an indispensable tool in these technologies. This book was originally written as part of a series of Japanese chemistry textbooks. The authors hope that this book be warmly accepted by English language readers as well.
    Note: Originally published: Chōbunshi kagaku e no tenkai, 2000. , Overview — What is Supramolecular Chemistry? -- The Chemistry of Molecular Recognition — Host Molecules and Guest Molecules -- Controlling Supramolecular Topology — The Art of Building Supermolecules -- Molecular Self-Assembly — How to Build the Large Supermolecules -- Applications of Supermolecules — Molecular Devices and Nanotechnology -- Biological Supermolecules — Learning from Nature. , English
    Additional Edition: ISBN 3-540-01298-2
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    almahu_BV036696178
    Format: XI, 184 S. : , Ill., graph. Darst. ; , 24 cm.
    ISBN: 978-3-642-12872-1
    Series Statement: Advances in polymer science 229
    Note: Literaturangaben
    Language: English
    Subjects: Chemistry/Pharmacy
    RVK:
    RVK:
    Keywords: Mikroverkapselung ; Nanokapsel ; Mikroreaktor ; Aufsatzsammlung
    Author information: Ariga, Katsuhiko 1962-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :William Andrew,
    UID:
    almafu_9960074134202883
    Format: 1 online resource (348 pages) : , illustrations (some color).
    ISBN: 0-323-37830-7 , 0-323-37829-3
    Series Statement: Micro & Nano Technologies Series
    Note: Front Cover -- Supra-materials Nanoarchitectonics -- Supra-materials Nanoarchitectonics -- Copyright -- Contents -- Contributors -- Preface -- Overview -- 1 - Nanoarchitectonics of Basics Materials -- 1 - Nanocluster Science -- 1.1 INTRODUCTION -- 1.2 PRECISE SYNTHESIS -- 1.2.1 Fractionation -- 1.2.2 Size Focusing -- 1.2.3 Slow Reduction -- 1.2.4 Transformation From One Stable Size to Another -- 1.3 BASIC PROPERTIES -- 1.3.1 Stability -- 1.3.2 Geometrical Structures -- 1.3.3 Electronic Structures -- 1.3.4 Size-Specific Physical/Chemical Properties -- 1.4 FUNCTIONALIZATION METHODS -- 1.4.1 Selection of Ligand Functional Groups -- 1.4.2 Heteroatom Doping of the Metal Core -- 1.4.3 Control of the Nature of the Au-Ligand Bond -- 1.5 SUMMARY AND PERSPECTIVE -- REFERENCES -- 2 - Highly Luminescent Metal Nanocluster Molecules -- 2.1 INTRODUCTION -- 2.2 AU, AG, AND AU-AG ALLOY NANOCLUSTERS -- 2.3 BI NANOCLUSTERS -- 2.4 PERSPECTIVE -- REFERENCES -- 3 - Biomimetic Morphology Control of Metal Oxides and Their Site-Selective Immobilization -- 3.1 INTRODUCTION -- 3.2 LIQUID PHASE MORPHOLOGY CONTROL OF ZNO -- 3.2.1 Biomimetic Morphology Control of Stand-Alone ZnO Self-Assembled Film [2] -- 3.2.2 Biomimetic Morphology Control of Nanocrystal Assembled TiO2 Particles [4] -- 3.2.3 Biomimetic Morphology Control of Acicular BaTiO3 Particles [12] -- 3.3 BIOMIMETIC SITE-SELECTIVE IMMOBILIZATION OF METAL OXIDES -- 3.3.1 Biomimetic Site-Selective Immobilization of Anatase TiO2 [15] -- 3.3.2 Biomimetic Site-Selective Immobilization of Eu:Y2O3 [17] -- 3.4 SUMMARY -- REFERENCES -- 4 - Molecular Surface Arrangement to Control Dynamic Dewettability -- 4.1 INTRODUCTION -- 4.2 LOW CONTACT ANGLE HYSTERESIS SURFACES -- 4.2.1 Monolayers -- 4.2.2 Polymer Brushes -- 4.2.3 Alkylsilane-Derived Hybrid Films -- 4.3 SUMMARY -- REFERENCES -- 2 - Nanoarchitectonics of Inorganic Materials. , 5 - Organic-Inorganic Hybrid Nanoarchitecture at Mesoscale -- 5.1 INTRODUCTION -- 5.2 ORGANIC-INORGANIC HYBRID HOLLOW CAPSULES PREPARED BY COLLOID TEMPLATING -- 5.3 SELF-ASSEMBLED NANOHYBRID OF MAGNETIC NANOPARTICLE CLUSTERS WITH POLYSACCHARIDE NANOGELS -- 5.4 SUMMARY -- REFERENCES -- 6 - Nanoarchitectonic Metals -- 6.1 INTRODUCTION -- 6.2 SEEDED-MEDIATED GROWTH METHOD -- 6.3 GALVANIC REPLACEMENT METHOD -- 6.4 POLYOL METHOD -- 6.5 SURFACTANT-MEDIATED METHOD -- 6.6 ELECTROCATALYTIC APPLICATIONS -- 6.7 CONCLUSIONS -- ACKNOWLEDGMENT -- REFERENCES -- 7 - Functional Layered Compounds for Nanoarchitectonics -- 7.1 INTRODUCTION -- 7.2 PHOTOFUNCTIONS OF INTERCALATION COMPOUNDS -- 7.3 RECONSTRUCTION OF NANOSHEETS INTO FUNCTIONAL NANOSTRUCTURES -- 7.3.1 Exfoliation of Layered Solids Into Nanosheets -- 7.3.2 Nanostructured Films -- 7.3.3 Porous Solids -- 7.4 NANOSHEETS FOR SOFT MATERIALS -- 7.4.1 Nanosheet Liquid Crystal -- 7.4.2 Composite Gel -- REFERENCES -- 3 - Nanoarchitectonics of Bio-Materials and for Biomedicals -- 8 - Engineering DNA Molecules for Morphological Reconfiguration -- 8.1 ENGINEERING STATIC DNA NANOSTRUCTURES -- 8.2 ENGINEERING DNA NANOSTRUCTURES WITH DYNAMIC MORPHOLOGY -- 8.3 CONSTRAINED MOTION OF DNA NANOSTRUCTURES IN THERMODYNAMIC EQUILIBRIUM -- 8.4 CONCLUSIONS -- REFERENCES -- 9 - Smart Polymers With Nanoarchitectonics -- 9.1 INTRODUCTION -- 9.2 CLASSIFICATION ON THE BASIS OF STIMULI -- 9.2.1 Physical Stimuli -- 9.2.2 Chemical Stimuli -- 9.3 APPLICATIONS OF SMART POLYMERS -- 9.3.1 Smart Hydrogels -- 9.3.2 Smart Surfaces -- 9.3.3 Smart Nanofibers -- 9.3.4 Smart Shape Memory -- 9.4 CONCLUSIONS -- REFERENCES -- 10 - Crystal-Induced Nanoarchitectonics of Organic Polymer Materials -- 10.1 INTRODUCTION -- 10.2 ORGANIC POLYMER MATERIALS FOR NANOARCHITECTONICS -- 10.2.1 Polymerization and Morphogenesis in Interspace of Nanocrystals. , 10.2.2 Polymerization and Morphogenesis Using Surface of Oxidant Crystals -- 10.2.3 Polymerization and Morphogenesis Using Monomer Solid Crystals -- 10.3 CONCLUSIONS -- REFERENCES -- 11 - Nanoarchitectonics for Cyclodextrin-Mediated Solubilization and Nanoassembly of Therapeutic Agents -- 11.1 SUPRAMOLECULAR MANIPULATION: NANOMEDICINE WITH HOST-GUEST NANOARCHITECTONICS -- 11.2 CYCLODEXTRIN INCLUSION COMPLEX FORMATION TOWARD NANOASSEMBLED SYSTEMS -- 11.3 NANOASSEMBLY CONTROL USING A CD INCLUSION COMPLEX FOR PDT APPLICATION -- 11.4 SUMMARY -- REFERENCES -- 4 - Nanoarchitectonics for Energy/Environment -- 12 - Nanoarchitectonics Towards Smart Chemical Sensing -- 12.1 INTRODUCTION -- 12.2 RECENT EXAMPLES OF CHEMICAL SENSING -- 12.2.1 Ammonia Sensing -- 12.2.2 Mercury Sensing -- 12.2.3 Cesium Sensing -- 12.2.4 Methanol Sensing -- 12.2.5 Carcinogen Sensing -- 12.2.6 Explosive Sensing -- 12.2.7 Chemical Warfare Agent Sensing -- 12.2.8 Chiral Sensing -- 12.2.9 Biological Molecule Sensing -- 12.3 CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 13 - Nanoarchitectonics for Energy and Environment -- 13.1 INTRODUCTION -- 13.2 NANOARCHITECTONICS FOR DYE-SENSITIZED SOLAR CELLS -- 13.2.1 Development of Ru Complex Dyes for Enhancing the Photocurrent -- 13.2.2 Searching for an Effective Dye Structure for High Photovoltage -- 13.3 NANOARCHITECTONICS FOR BIOINSPIRED CATALYSIS -- 13.3.1 Photocatalysts Based on Light-Harvesting Supramolecular Nanotubes -- 13.3.2 Enzyme Reactors Based on Supramolecular Nanotubes With Tunable Diameters and Surfaces -- 13.4 NANOARCHITECTONICS FOR REVERSIBLE HYDROGEN STORAGE -- 13.5 DEVELOPMENT OF TEMPERATURE-RESPONSIVE HYDROGEL NANOPARTICLES FOR ENERGY-EFFICIENT CO2 SEPARATION -- 13.6 CONCLUSIONS -- REFERENCES -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- W -- Back Cover.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    almafu_9961421184602883
    Format: 1 online resource (648 pages)
    Edition: First edition.
    ISBN: 0-323-99473-3
    Series Statement: Micro and Nano Technologies Series
    Note: Front Cover -- Materials Nanoarchitectonics -- Copyright Page -- Dedication -- Contents -- List of contributors -- Preface -- Nanoarchitectonics as the method for everything in materials science -- 1 Nanoarchitectonics: a land of opportunities -- 1.1 Bottom-up creation of functional materials and devices -- References -- 2 Nitrogen functionalities assisted nanoporous carbon materials for supercapacitor studies -- 2.1 Introduction -- 2.2 Effect of morphology, pore structure, and heteroatoms functionalization on capacitive behavior -- 2.2.1 Controlled morphology influences capacitive behavior -- 2.2.2 Pore structure influences capacitive behavior -- 2.2.3 Heteroatoms functionalization on capacitive behavior -- 2.3 Electrolyte influence and its limitation on overall performance -- 2.3.1 Aqueous supercapacitors -- 2.3.2 Inorganic redox-active electrolyte supercapacitors system -- 2.3.3 Organic redox-active electrolyte supercapacitors system -- 2.3.4 Nonaqueous supercapacitors -- 2.4 Concluding remarks -- References -- 3 Membrane nanoarchitectonics: advanced nanoporous membranes for osmotic power generation -- 3.1 Introduction -- 3.2 Fundamental concepts -- 3.2.1 Reverse electrodialysis -- 3.2.2 Ion selectivity in nanoporous membranes -- 3.2.3 Membrane resistance -- 3.3 Fabrication of advanced reverse electrodialysis nanoporous membranes -- 3.3.1 Multichannel membranes -- 3.3.2 2D-based membranes -- 3.3.3 3D-based membranes -- 3.4 Recent advances in upscaled membranes -- 3.5 Current limitations and challenges -- 3.6 Conclusions -- References -- 4 Biointerfacial nanoarchitectonics: layer-by-layer assembly as a versatile technique for the fabrication of highly functio... -- 4.1 Introduction -- 4.2 The layer-by-layer technique -- 4.2.1 Building blocks and assembly procedures. , 4.2.2 Combination of the layer-by-layer assembly technique with other fabrication procedures -- 4.2.3 Structural characteristics of layer-by-layer multilayers -- 4.2.4 Effect of assembly conditions and postassembly treatment on the multilayer properties -- 4.2.4.1 Variables for the assembly process -- 4.2.4.2 Postassembly treatments -- 4.3 Interactions of materials with living systems -- 4.3.1 Cell adhesion and its relation to proliferation, motility and differentiation -- 4.4 Selected examples of the application of the layer-by-layer technique in biosciences -- 4.4.1 Platforms for cell behavior modulation -- 4.4.1.1 Tailoring physicochemical properties of the substrates -- 4.4.2 Simple tunable multifunctional devices -- 4.4.3 Gradients in physicochemical properties -- 4.5 Cell encapsulation and cell modification by layer-by-layer technique -- 4.6 Conclusions -- References -- 5 Charged porphyrins as building blocks of π-electronic ion-pairing assemblies -- 5.1 Introduction -- 5.2 Porphyrins with charged substituents at the meso positions -- 5.2.1 Ion-pairing assemblies comprising zwitterionic porphyrins -- 5.2.2 Ion-pairing assemblies comprising oppositely charged porphyrin derivatives -- 5.3 Porphyrins charged at the porphyrin skeleton -- 5.3.1 Negatively charged porphyrins formed by deprotonation -- 5.3.2 Heteroatom-containing charged porphyrin analogs -- 5.3.3 Positively charged porphyrin metal complexes with valence mismatch -- 5.3.4 Negatively charged porphyrin metal complexes with valence mismatch -- 5.4 π-Electronic ion-pairing assemblies of charged porphyrins -- 5.4.1 Negatively charged porphyrins with π-electronic cations -- 5.4.2 Porphyrin AuIII complexes with π-electronic receptor-Cl− complexes -- 5.4.3 Porphyrin AuIII complexes with π-electronic anions -- 5.5 Summary and future perspective -- References. , 6 Layered structures in soft nanoarchitectonics: towards functional photonic materials -- 6.1 Introduction -- 6.2 Naturally existing layered structures -- 6.3 Fabrication of nanoarchitectonics with layered structures in soft materials -- 6.3.1 Self-assembly of amphiphilic molecules -- 6.3.2 Self-assembly of block copolymers -- 6.3.3 Cyclic deposition of two materials -- 6.3.4 Multilayer coextrusion -- 6.3.5 Holographic photopolymerization -- 6.4 Potential applications -- 6.4.1 Layered structures for chemical/physical sensing -- 6.4.1.1 Strain sensitivity -- 6.4.1.2 Temperature sensitivity -- 6.4.1.3 Ionic-strength sensitivity -- 6.4.1.4 Electric-field sensitivity -- 6.4.2 Layered structures for anisotropic molecular diffusion -- 6.4.3 Layered structures used for light management purposes in devices -- 6.4.3.1 Optical filters -- 6.4.3.2 Photovoltaics -- 6.4.4 Layered structures used as soft templates for controllable synthesis -- 6.5 Excellent mechanical properties of nanoscale layered structures in soft materials -- 6.5.1 High fracture strength -- 6.5.2 Anisotropic mechanical properties -- 6.5.3 High crack resistance -- 6.6 Outlook and perspectives -- Acknowledgments -- References -- 7 Metal Nanoarchitectonics: Fabrication of Sophisticated Gold Nanostructures for Functional Plasmonic Devices -- 7.1 Introduction -- 7.2 Stimuli-responsive metal nanoparticles for configurable structures via assembly/disassembly -- 7.3 Nanoparticle assembly control with the aid of polymers as an additive -- 7.4 Precise active control of plasmonic nanostructures on polymer gels as a substrate -- 7.5 Active alignment control of gold nanorods with the aid of polymers brushes -- 7.6 Conclusion -- References -- 8 Molecular Imprinting as Key Technology for Smart Nanoarchitectonics -- 8.1 Introduction -- 8.2 Some technical details of molecular imprinting. , 8.2.1 Experimental procedures and chemicals employed for imprinting -- 8.2.2 Coverage of the surface of nanoarchitectures by MIP -- 8.3 Tactics to improve the guest-binding activity and selectivity of MIP -- 8.3.1 Post-imprinting modification to provide still more advanced functions -- 8.3.2 Cyclodextrins as functional monomers to memorize large-sized template by molecular imprinting -- 8.4 Examples of practical applications of MIP to nanoarchitectonics -- 8.4.1 Highly selective sensors -- 8.4.1.1 Sophisticated sensors prepared by post-imprinting strategy -- 8.4.1.2 Combination of MIP with DNA aptamer -- 8.4.2 Biological Applications of MIP -- 8.4.3 Developments of highly selective catalysts through molecular imprinting -- 8.4.4 Adsorbents to recover uranium from seawater -- 8.5 Conclusions -- References -- Further Reading -- 9 Self-assembled structures as emerging cellular scaffolds -- 9.1 Introduction -- 9.2 Self-assembled structures -- 9.2.1 Self-assembled vesicular structures -- 9.2.1.1 Principles of vesicle formation -- 9.2.1.2 Liposomes -- 9.2.1.3 Polymersomes -- 9.2.1.4 Hybrid vesicles -- 9.2.1.5 Colloidosomes -- 9.2.1.6 Proteinosomes -- 9.2.1.7 Dendrimersomes -- 9.2.2 Coacervate droplets -- 9.2.3 Multicompartment self-assembled structures -- 9.3 Methods for the construction of self-assembled structures -- 9.3.1 Film rehydration method -- 9.3.2 Electroformation method -- 9.3.3 Solvent displacement techniques -- 9.3.4 Polymerization-induced self-assembly -- 9.4 Applications -- 9.4.1 Cell models and cell mimics -- 9.4.2 Intracellular delivery vehicles -- 9.4.3 Micro-/nanoreactors for catalytic cascades -- 9.5 Conclusion -- References -- 10 2D materials-based nanoarchitectonics for metal-ion batteries -- 10.1 Introduction: novel materials for battery electrodes -- 10.1.1 Graphene -- 10.1.2 Molybdenum disulfide -- 10.1.3 Black phosphorus. , 10.1.4 Metallic nitrides and carbides (MXenes) -- 10.2 Nanoarchitected structures applied to metal-ion batteries -- 10.2.1 2D/2D nanoarchitected structures -- 10.2.2 2D/Oxides nanoarchitectonics -- 10.2.3 2D/Carbon nanotubes nanoarchitectonics -- 10.2.4 2D/conjugated polymer nanoarchitectonics -- 10.3 Conclusions -- Acknowledgments -- References -- 11 Thin film nanoarchitectonics via Langmuir-Blodgett and layer-by-layer methods -- 11.1 Introduction -- 11.2 Langmuir-Blodgett nanoarchitectonics -- 11.3 Layer-by-layer nanoarchitectonics -- 11.3.1 Layer-by-layer basics -- 11.3.2 Hierarchical layer-by-layer nanoarchitectonics with microfabrication -- 11.3.3 Hierarchical layer-by-layer nanoarchitectonics with artificial cell -- 11.3.4 Hierarchical layer-by-layer nanoarchitectonics with graphene and ionic liquid -- 11.3.5 Hierarchical layer-by-layer nanoarchitectonics with mesoporous carbon -- 11.3.6 Hierarchical layer-by-layer nanoarchitectonics, future -- 11.4 Short perspective -- References -- 12 Langmuir films-a universal method for fabricating organized monolayers from nanomaterials -- 12.1 Introduction -- 12.2 History and present of Langmuir films -- 12.3 Experimental details -- 12.3.1 Suitable subphases -- 12.3.2 Suitable solvents -- 12.3.3 Experimental procedure for preparation of Langmuir films† -- 12.3.4 Film deposition techniques -- 12.3.5 Experimental procedure for preparation of self-assembled Langmuir films -- 12.4 Applications -- 12.4.1 Plasmonics -- 12.4.2 Gas sensing -- 12.4.3 Electronics -- 12.4.4 Substrate patterning -- 12.4.5 Batteries -- 12.5 Summary -- References -- 13 MXenes and their applications in sensors -- 13.1 MXenes' properties -- 13.1.1 Chemical properties -- 13.1.2 Electric properties -- 13.1.3 Optical properties -- 13.1.4 Mechanical properties -- 13.1.5 Magnetic properties -- 13.1.6 Stability -- 13.2 MXenes synthesis. , 13.2.1 Hydrofluoric etching.
    Additional Edition: Print version: Ariga, Katsuhiko Materials Nanoarchitectonics San Diego : Elsevier,c2023 ISBN 9780323994729
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages