feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Subjects(RVK)
Access
  • 1
    UID:
    gbv_772754187
    Format: Online Ressource (23904 KB, 600 S.)
    Edition: 1. Aufl.
    ISBN: 0470624221
    Series Statement: Wiley Series in Protein and Peptide Science
    Content: This book describes approaches for recognizing and classifying proteins into families of evolutionary related proteins. Reviewing all the major resources for classifying protein families, the book combines descriptions of general philosophies of protein family classification systems with detailed descriptions and examples of selected families found in different biological systems. Scientists in diverse areas of biology and protein science will learn how to use the various resources and databases and gain valuable insight into how proteins evolve and how new functional repertoires emerge.
    Content: This book describes approaches for recognizing and classifying proteins into families of evolutionary related proteins. Reviewing all the major resources for classifying protein families, the book combines descriptions of general philosophies of protein family classification systems with detailed descriptions and examples of selected families found in different biological systems. Scientists in diverse areas of biology and protein science will learn how to use the various resources and databases and gain valuable insight into how proteins evolve and how new functional repertoires emerge
    Note: Description based upon print version of record , Cover; Title Page; Contents; Introduction; Contributors; Part I Concepts Underlying Protein Family Classification; Chapter 1 Automated Sequence-Based Approaches for Identifying Domain Families; 1.1 Introduction; 1.2 Motivation Behind Automated Classification; 1.3 Clustering the Sequence Space Graph; 1.4 Historical Overview of Sequence Clustering Algorithms; 1.5 Related Methods; 1.6 Quality Assessment; 1.7 ADDA-The Automatic Domain Delineation Algorithm; 1.8 Results; 1.9 Conclusions; References; Chapter 2 Sequence Classification of Protein Families: Pfam and other Resources; 2.1 Introduction , 2.2 Pfam2.3 Smart, Prosite Profiles, CDD and Tigrfams; 2.4 Philosophy of Pfam; 2.5 HMMER3 and Jackhmmer; 2.6 Sources of New Families; 2.7 Annotation of Families; 2.8 The InterPro Collection; 2.9 The Future of Sequence Classification; References; Chapter 3 Classifying Proteins into Domain Structure Families; 3.1 Introduction; 3.2 The Classification Hierarchies Adopted by Scop and Cath; 3.3 Challenges in Identifying Domains in Proteins; 3.4 Structure-Based Approaches for Identifying Related Folds and Homologs; 3.5 Approaches to Structure Comparison; 3.6 The DALI Algorithm , 3.7 The SSAP Algorithm Used for Fold Recognition in CATH3.8 Fast Approximate Methods Used to Recognize Folds in CATH; 3.9 Measuring Structural Similarity; 3.10 Multiple Structure Alignment; 3.11 Classification Protocols; 3.12 Population of the Hierarchy; 3.13 Comparisons Between Scop and CATH; 3.14 Hierarchical Classifications Versus Structural Continuum; 3.15 Websites; References; Chapter 4 Structural Annotations of Genomes with Superfamily and Gene3D; 4.1 Introduction; 4.2 The Importance of Being High Throughput; 4.3 The Use of Structural Information; 4.4 Applications; 4.5 History , 4.6 Technology4.7 Hidden Markov Models; 4.8 Building Models; 4.9 Domain Annotations; 4.10 High Throughput Computation; 4.11 Development of New Bioinformatics Algorithms; 4.12 Genomes; 4.13 e-Value Scores; 4.14 Other Sequence Sets; 4.15 Data Access; 4.16 Analysis Tools; 4.17 Conclusion; References; Chapter 5 Phylogenomic Databases and Orthology Prediction; 5.1 The Evolution of Novel Functions and Structures in Gene Families; 5.2 Homologs, Orthologs, Paralogs, and Other Evolutionary Terms; 5.3 The Standard Functional Annotation Protocol; 5.4 Orthology Identification Methods and Databases , 5.5 Challenges in Phylogenetic Methods of Ortholog Identification5.6 Evaluating Ortholog Identification Methods; 5.7 Orthology Databases; 5.8 Phylogenomic Databases; 5.9 PhyloFacts; 5.10 Subfamily Classification in Phylofacts; 5.11 PhyloFacts 3.0; 5.12 PhylomeDB; 5.13 Panther; 5.14 Structural Phylogenomics: Improved Functional Annotation Through Integration of Information from Structure and Evolution; 5.15 Specific Issues in Phylogenomic Pipelines; 5.16 Improving Functional Inference using Information from Protein Structure; 5.17 Example Case Studies; 5.18 Review of Key Points; References , Part II In-Depth Reviews of Protein Families
    Additional Edition: ISBN 1118742818
    Additional Edition: ISBN 1118743083
    Additional Edition: ISBN 9781118742815
    Additional Edition: ISBN 9781118743089
    Additional Edition: Erscheint auch als Druck-Ausgabe Protein Families Relating Protein Sequence, Structure, and Function
    Language: English
    Subjects: Biology
    RVK:
    Keywords: Electronic books
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9948318988202882
    Format: 1 online resource (567 pages) : , illustrations.
    ISBN: 9781118742853 (e-book)
    Series Statement: Wiley series in protein and peptide science ; 10
    Note: Includes index.
    Additional Edition: Print version: Protein families : relating protein sequence, structure, and function. Hoboken, New Jersey : Wiley, [2014] ISBN 9780470624227
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almahu_9948198060302882
    Format: 1 online resource
    ISBN: 9781118742815 , 1118742818 , 9781118742853 , 1118742850 , 9781118742846 , 1118742842 , 9781118743089 , 1118743083 , 0470624221 , 9780470624227 , 9781306140911 , 1306140919
    Series Statement: Wiley series on protein and peptide science
    Content: "This book describes approaches for recognizing and classifying proteins into families of evolutionary related proteins. Reviewing all the major resources for classifying protein families, the book combines descriptions of general philosophies of protein family classification systems with detailed descriptions and examples of selected families found in different biological systems. Scientists in diverse areas of biology and protein science will learn how to use the various resources and databases and gain valuable insight into how proteins evolve and how new functional repertoires emerge"--
    Note: Includes index. , Cover; Title Page; Contents; Introduction; Contributors; Part I Concepts Underlying Protein Family Classification; Chapter 1 Automated Sequence-Based Approaches for Identifying Domain Families; 1.1 Introduction; 1.2 Motivation Behind Automated Classification; 1.3 Clustering the Sequence Space Graph; 1.4 Historical Overview of Sequence Clustering Algorithms; 1.5 Related Methods; 1.6 Quality Assessment; 1.7 ADDA-The Automatic Domain Delineation Algorithm; 1.8 Results; 1.9 Conclusions; References; Chapter 2 Sequence Classification of Protein Families: Pfam and other Resources; 2.1 Introduction. , 2.2 Pfam2.3 Smart, Prosite Profiles, CDD and Tigrfams; 2.4 Philosophy of Pfam; 2.5 HMMER3 and Jackhmmer; 2.6 Sources of New Families; 2.7 Annotation of Families; 2.8 The InterPro Collection; 2.9 The Future of Sequence Classification; References; Chapter 3 Classifying Proteins into Domain Structure Families; 3.1 Introduction; 3.2 The Classification Hierarchies Adopted by Scop and Cath; 3.3 Challenges in Identifying Domains in Proteins; 3.4 Structure-Based Approaches for Identifying Related Folds and Homologs; 3.5 Approaches to Structure Comparison; 3.6 The DALI Algorithm. , 3.7 The SSAP Algorithm Used for Fold Recognition in CATH3.8 Fast Approximate Methods Used to Recognize Folds in CATH; 3.9 Measuring Structural Similarity; 3.10 Multiple Structure Alignment; 3.11 Classification Protocols; 3.12 Population of the Hierarchy; 3.13 Comparisons Between Scop and CATH; 3.14 Hierarchical Classifications Versus Structural Continuum; 3.15 Websites; References; Chapter 4 Structural Annotations of Genomes with Superfamily and Gene3D; 4.1 Introduction; 4.2 The Importance of Being High Throughput; 4.3 The Use of Structural Information; 4.4 Applications; 4.5 History. , 4.6 Technology4.7 Hidden Markov Models; 4.8 Building Models; 4.9 Domain Annotations; 4.10 High Throughput Computation; 4.11 Development of New Bioinformatics Algorithms; 4.12 Genomes; 4.13 e-Value Scores; 4.14 Other Sequence Sets; 4.15 Data Access; 4.16 Analysis Tools; 4.17 Conclusion; References; Chapter 5 Phylogenomic Databases and Orthology Prediction; 5.1 The Evolution of Novel Functions and Structures in Gene Families; 5.2 Homologs, Orthologs, Paralogs, and Other Evolutionary Terms; 5.3 The Standard Functional Annotation Protocol; 5.4 Orthology Identification Methods and Databases. , 5.5 Challenges in Phylogenetic Methods of Ortholog Identification5.6 Evaluating Ortholog Identification Methods; 5.7 Orthology Databases; 5.8 Phylogenomic Databases; 5.9 PhyloFacts; 5.10 Subfamily Classification in Phylofacts; 5.11 PhyloFacts 3.0; 5.12 PhylomeDB; 5.13 Panther; 5.14 Structural Phylogenomics: Improved Functional Annotation Through Integration of Information from Structure and Evolution; 5.15 Specific Issues in Phylogenomic Pipelines; 5.16 Improving Functional Inference using Information from Protein Structure; 5.17 Example Case Studies; 5.18 Review of Key Points; References.
    Additional Edition: Print version: Protein families. Hoboken, New Jersey : Wiley, [2014] ISBN 9780470624227
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages