feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
Subjects(RVK)
Keywords
  • 1
    UID:
    almafu_BV024512601
    Format: 4 ungezählte Seiten, 259 Seiten.
    ISBN: 0-08-026181-7
    Series Statement: Tables internationales de constantes sélectionées 19
    Note: Text englisch und französisch
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-1-4831-5431-2
    Language: French
    Subjects: Physics
    RVK:
    Keywords: Spektralanalyse ; Wasser
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almafu_9961445041302883
    Format: 1 online resource (384 pages)
    ISBN: 9781394264759 , 1394264755
    Series Statement: Space exploration and technology. Space and Earth
    Content: How can atmospheric variables such as temperature, wind, rain and ozone be measured by satellites? How are these measurements taken and what has been learned since the first measurements in the 1970s? What data are currently available and what data are expected in the future? The first volume of this encyclopedic book answers these questions by reporting the history of satellite meteorology and addresses how national and international agencies define coordinated programs to cover user needs. It also presents the principles of satellite remote sensing to deliver products suited to user requirements. This book is completed by a glossary and appendices with a list of supporting instruments already in use.
    Note: Part 1 Satellite Observation of the Earth's Atmosphere: International Cooperation -- Chapter 1 History of Meteorological Satellites 3 Sylvain LE MOAL -- 1.1 The beginnings of remote sensing and the conquest of space -- 1.2 It all began with Tiros-1, the first meteorological satellite -- 1.3 American meteorological satellites -- 1.3.1 Polar-orbiting satellites -- 1.3.2 Geostationary satellites -- 1.4 Russian meteorological satellites -- 1.4.1 Polar-orbiting satellites -- 1.4.2 Geostationary satellites -- 1.5 European meteorological satellites -- 1.5.1 The Meteosat saga -- 1.5.2 46 years after Tiros-1, MetOp enters the scene -- 1.6 Elsewhere -- 1.6.1 Japan -- 1.6.2 China -- 1.6.3 Korea -- 1.6.4 India -- 1.7 References -- 1.8 Websites -- Chapter 2 Contribution of the National Oceanic and Atmospheric Administration (NOAA, USA) Meteorological Satellites Program: An Overview 37 Sid-Ahmed BOUKABARA, Mitch GOLDBERG, Timothy J SCHMIT, Andrew HEIDINGER, Satya KALLURI, Patricia WEIR, Frank GALLAGHER, David SPENCER and Ross N HOFFMAN -- 2.1 NOAA Satellite Program: historical background -- 2.1.1 Origins of NASA-NOAA Polar and Geostationary Environmental Satellite Programs -- 2.1.2 Low Earth orbit (LEO) missions -- 2.1.3 Geostationary Earth orbit (GEO) missions -- 2.2 NOAA Current Space Constellation -- 2.2.1 The NOAA Joint Polar Satellite System (JPSS) Program -- 2.2.2 GOES-R series -- 2.2.3 Collaborative programs -- 2.3 Applications -- 2.4 Looking ahead: designing the next-generation architecture -- 2.4.1 Factors impacting the NOAA strategy -- 2.4.2 Next-generation NOAA space architecture -- 2.5 Summary -- 2.6 Acknowledgments -- 2.7 References -- Chapter 3 The Role of the National Aeronautics and Space Administration (NASA, USA) 67 Michael SEABLOM -- 3.1 The beginnings of the National Aeronautics and Space Administration (NASA) -- 3.2 The Nimbus Era (1964-1979) -- 3.3 The Earth Observing System (1982-2004) -- 3.4 The "A-train" (2004-present) -- 3.5 Decadal surveys and technological disruption (2007-present) -- 3.6 References -- Chapter 4 The Role of the European Space Agency (ESA) 89 Paul INGMANN -- 4.1 Missions in geostationary Earth orbit (GEO) - ESA's Start in Earth Observation -- 4.2 Missions in low Earth orbit (LEO) -- 4.2.1 ERS -- 4.2.2 Envisat -- 4.2.3 MetOp -- 4.2.4 The Earth Explorer and Earth Watch Concept -- 4.3 ESA's Climate Change Initiative (CCI) -- 4.4 References -- Chapter 5 The Role of EUMETSAT (Europe) 117 François MONTAGNER -- 5.1 Introduction: What does EUMETSAT do? -- 5.1.1 Public service value of weather satellites -- 5.1.2 EUMETSAT, a key player in Europe -- 5.1.3 Climate and environment -- 5.2 The organization -- 5.2.1 First steps -- 5.2.2 Stability and growth -- 5.2.3 Government -- 5.2.4 European pooling: EUMETSAT, ECMWF and EUMETNET -- 5.2.5 Global pooling by the World Meteorological Organization (WMO) -- 5.3 Geostationary weather satellites: from synoptic to regional zoom -- 5.3.1 Meteosat first generation -- 5.3.2 Meteosat second generation -- 5.3.3 Agility of geostationary missions -- 5.3.4 Stabilization by rotation or on three axes: system aspects -- 5.3.5 Meteosat Third Generation -- 5.4 MetOp satellites, the first source for numerical weather forecasting -- 5.4.1 Synergy of observations -- 5.4.2 Continuity and innovation -- 5.4.3 The second generation of the European Polar System -- 5.4.4 Scale economies -- 5.4.5 Cooperation regarding the polar orbit -- 5.5 Weather perspective and innovation -- 5.6 Climate -- 5.7 EUMETSAT and Copernicus -- 5.7.1 A convenient partnership -- 5.7.2 EUMETSAT and the Copernicus services -- 5.7.3 Continuity and expansion: the challenge of CO2 -- 5.8 References -- Chapter 6 The Role of the National Center for Space Studies (CNES, France) 141 Carole DENIEL and Pierre TABARY -- 6.1 The CNES and its scientific missions -- 6.2 Greenhouse gases and composition of the atmosphere -- 6.2.1 Merlin, a political French-German will -- 6.2.2 Microcarb, a strategic and continuous project... -- 6.2.3 TRAQ, Geotrope, Mageaq, promising projects but no future developments... -- 6.3 IASI and IASI-NG, for meteorology, atmospheric composition and climate -- 6.4 Physical properties of the atmosphere -- 6.4.1 Aerosols and clouds: PARASOL, CALIPSO and the A-Train -- 6.4.2 Next: 3MI and EarthCare -- 6.4.3 A study in the longer term: ACCP -- 6.4.4 Megha-Tropiques and rainfall -- 6.5 Additional facilities and means of observation -- 6.6 The role of numerical models -- 6.7 References -- Chapter 7 A Coordinated International Effort 163 Jérôme LAFEUILLE -- 7.1 The challenges of international coordination -- 7.2 Multilateral coordination instances -- 7.2.1 Overview -- 7.2.2 The World Weather Watch and its space component -- 7.2.3 CGMS -- 7.2.4 CEOS -- 7.3 The benefits of coordination -- 7.3.1 Mission continuity -- 7.3.2 Intercalibration of instruments in orbit -- 7.3.3 The climate observation strategy -- 7.3.4 Use of the radio frequency spectrum -- 7.3.5 Access to data -- 7.3.6 Bilateral cooperation -- 7.4 An extended community of space operators -- 7.4.1 A growing number of national operational agencies -- 7.4.2 The emergence of the private sector -- 7.5 Conclusion -- 7.6 References -- Part 2 The Physical Basis -- Chapter 8 Satellite Orbits for Atmospheric Observation 189 Michel CAPDEROU -- 8.1 Introduction -- 8.2 Preliminaries -- 8.3 Satellites in low Earth orbit -- 8.3.1 Orbital characteristics -- 8.3.2 Sun-synchronous satellites -- 8.3.3 Non-Sun-synchronous satellites -- 8.3.4 Recurrent satellites -- 8.3.5 Spatio-temporal sampling -- 8.3.6 Collaboration with LEO satellites -- 8.4 Satellites in geostationary orbits -- 8.4.1 Orbit characteristics -- 8.4.2 Observation conditions -- 8.5 Other types of orbits used -- 8.5.1 Satellites in HEO orbits -- 8.5.2 Uses of satellites in MEO orbit -- 8.6 References -- Chapter 9 Measurement Physics 215 Clémence PIERANGELO, Fatima KARBOU and Claude CAMY-PEYRET -- 9.1 Physical principles of observation of the atmosphere by satellite -- 9.1.1 Basic principles of remote sensing -- 9.1.2 Absorption, scattering, emission -- 9.1.3 Spectroscopy of gaseous species -- 9.1.4 Optical properties of particles -- 9.1.5 At the surface: reflection and emission -- 9.1.6 Spectroscopic parameter database -- 9.1.7 Aerosol and cloud databases -- 9.1.8 Atmospheric profile databases -- 9.1.9 Surface databases -- 9.2 Radiative transfer equation -- 9.2.1 Differential RTE -- 9.2.2 Integration of the RTE -- 9.2.3 Polarized RTE -- 9.2.4 Recent advances for radiative transfer -- 9.2.5 RTE analysis and implications for space-based remote sensing of the atmosphere -- 9.2.6 Example: the 4A/OP source code -- 9.3 Passive optical sensors: radiometers and spectrometers -- 9.3.1 Radiometers -- 9.3.2 Spectrometers -- 9.3.3 Level 1 processing -- 9.3.4 The sensors of the future -- 9.4 Active optical sensors: lidars -- 9.4.1 Lidar principle -- 9.4.2 Lidar equation -- 9.4.3 Different types of spatial Lidar -- 9.4.4 Comparison of optical sensors -- 9.5 Passive and active microwave sensors -- 9.5.1 Specificities of microwave sensors -- 9.5.2 Passive microwave sensors -- 9.5.3 Active microwave sensors -- 9.5.4 List of microwave instruments -- 9.6 References -- Chapter 10 The Inverse Problem and Techniques for Atmospheric Variable Retrieval 253 Clémence PIERANGELO -- 10.1 General remarks on the inversion of atmospheric parameters -- 10.2 Matrix expression of the direct problem -- 10.2.1 Matrix expression -- 10.2.2 Linearization of the problem -- 10.2.3 Typical dimensions of the problem -- 10.3 Solutions to the inverse problem -- 10.3.1 Least squares -- 10.3.2 Probabilistic methods -- 10.3.3 Methods with pre-calculated bases -- 10.4 References -- Appendices -- Appendix 1 269 Claude CAMY-PEYRET -- Appendix 2 277 Claude CAMY-PEYRET -- Appendix 3 -- Appendix 4 -- Glossary -- List of Authors -- Index -- Summary of Volume 2.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almafu_9961445041002883
    Format: 1 online resource (416 pages)
    ISBN: 9781394264780 , 139426478X
    Content: How can atmospheric variables such as temperature, wind, rain and ozone be measured by satellites? How are these measurements taken and what has been learned since the first measurements in the 1970s? What data are currently available and what data are expected in the future? The second volume of this encyclopedic book presents each field of application - meteorology, atmospheric composition and climate - with its main aims as well as the specific areas which can be addressed through the use of satellite remote sensing. This book presents the satellite products used for operational purposes as well as those that allow for the advancement of scientific knowledge. The instruments that are at their origin are described, as well as the processing, delivery times and the knowledge they provide. This book is completed by a glossary and appendices with a list of supporting instruments already in use.
    Note: Acknowledgments -- List of Acronyms -- Introduction xxxiii Thierry PHULPIN -- Part 1 Meteorology -- Introduction to Part 1 3 Hervé ROQUET -- Chapter 1 Operational Sounding of Thermodynamic Variables in the Atmosphere 9 Thomas AUGUST -- 1.1 Introduction -- 1.2 Operational use of TIR and MW sounders -- 1.2.1 Satisfying ever-more demanding users -- 1.2.2 Clouds: an obstacle to sounding and a very useful geophysical product -- 1.2.3 Demonstrating and maintaining product quality -- 1.2.4 Different operational algorithmic strategies -- 1.2.5 Application perspectives -- 1.3 Acknowledgments -- 1.4 References -- Chapter 2 Wind Observations 31 Régis BORDE and Jean PAILLEUX -- 2.1 Introduction -- 2.2 AMVs -- 2.2.1 Extraction of AMVs -- 2.2.2 Current production and outlook -- 2.3 3D winds derived from hyperspectral sounders -- 2.4 Measuring wind from space using Doppler lidar -- 2.4.1 Introduction -- 2.4.2 Measurements from ALADIN lidar onboard Aeolus -- 2.4.3 Culmination of a long process -- 2.4.4 Situation in 2022 and outlook -- 2.5 References -- Chapter 3 Surface Variables 47 Jean-François MAHFOUF -- 3.1 Observation of the Earth's surface from space -- 3.2 Energy balances at the surface and at the top of the atmosphere -- 3.3 Ocean surfaces -- 3.3.1 Surface temperature -- 3.3.2 Surface wind -- 3.3.3 Sea ice -- 3.4 Continental surfaces -- 3.4.1 Surface temperature -- 3.4.2 Water content of soil -- 3.4.3 Surface albedo -- 3.4.4 Vegetation properties -- 3.5 Snow-covered surfaces -- 3.5.1 Spatial coverage and albedo -- 3.5.2 Equivalent water content -- 3.6 Expected changes -- 3.7 References -- Chapter 4 The Assimilation of Satellite Data in Numerical Weather Prediction Systems 69 Bill BELL, Jean-Noël THÉPAUT and John EYRE -- 4.1 Introduction -- 4.2 Early meteorological satellites -- 4.3 Assimilation of satellite soundings 1970-2000 -- 4.3.1 Early sounding instruments -- 4.3.2 Assimilation experience: 1970s -- 4.3.3 Assimilation experience: early 1980s -- 4.3.4 Problems arising in the late 1980s -- 4.4 Relevant aspects of data assimilation theory -- 4.5 The modern era (2000 to present) -- 4.5.1 Assimilation strategies -- 4.5.2 Advanced infrared sounders -- 4.5.3 Microwave sounders and imagers -- 4.5.4 Radiative transfer modeling -- 4.5.5 Observation uncertainties -- 4.5.6 Atmospheric motion vectors (AMVs) -- 4.5.7 Scatterometers -- 4.5.8 Radio occultation observations -- 4.5.9 Impacts -- 4.5.10 Reanalyses -- 4.6 Summary and conclusion -- 4.7 References -- Chapter 5 Nowcasting 97 Thibaut MONTMERLE -- 5.1 Introduction -- 5.2 Satellite data for nowcasting -- 5.2.1 Polar-orbiting satellites -- 5.2.2 Geostationary satellites -- 5.3 Observed phenomena -- 5.3.1 Air mass instability -- 5.3.2 Convective systems -- 5.3.3 Characteristics of clouds -- 5.3.4 Hydrometeors -- 5.3.5 Wind -- 5.4 Nowcasting of detected phenomena -- 5.4.1 Method based on the tracking of structures -- 5.4.2 Method based on image extrapolation -- 5.4.3 Method based on artificial intelligence -- 5.4.4 Use of numerical forecasting -- 5.4.5 OBS-NWP fusion -- 5.4.6 Probabilistic forecast -- 5.5 Perspectives -- 5.6 References -- Chapter 6 Observation and Monitoring of Tropical Cyclones from Space 119 Frank ROUX -- 6.1 Introduction -- 6.2 Visible and infrared imagery -- 6.3 Microwave imaging -- 6.4 Microwave sounding -- 6.5 Surface wind measurements -- viii Satellites for Atmospheric Sciences -- 6.6 Ocean parameters -- 6.7 Climatology of cyclones -- 6.8 Conclusion -- 6.9 References -- Part 2 Atmospheric Composition -- Introduction to Part 2 Air Composition and the Contribution from Satellite Observations 139 Thierry PHULPIN and Claude CAMY-PEYRET -- Chapter 7 Reactive Tropospheric Chemistry 143 Sarah SAFIEDDINE and Camille VIATTE -- 7.1 Introduction -- 7.2 Methane -- 7.3 Reactive organic species -- 7.3.1 Isoprene -- 7.3.2 Other non-methane volatile organic compounds -- 7.4 Reactive inorganic species -- 7.5 Conclusion -- 7.6 Acknowledgment -- 7.7 References -- Chapter 8 Major Pollutants: Ozone and Fine Particulate Matter 153 Juan CUESTA and Gaëlle DUFOUR -- 8.1 Introduction -- 8.2 Tropospheric ozone -- 8.2.1 Beginnings of satellite-based tropospheric ozone observations -- 8.2.2 Current capabilities for tropospheric ozone monitoring -- 8.2.3 Multi-wavelength synergy for ozone pollution monitoring -- 8.3 Pollution aerosols -- 8.3.1 Optical thickness of pollution aerosols -- 8.3.2 Altitude of pollution aerosols -- 8.4 References -- Chapter 9 Desert Dust 167 Juan CUESTA -- 9.1 Introduction -- 9.2 Qualitative satellite detection of desert dust -- 9.3 Satellite observation of the optical depth of desert dust -- 9.4 Vertical profiles of desert dust by spaceborne lidar -- 9.5 3D distribution of desert dust by infrared spectrometer -- 9.6 Conclusion -- 9.7 References -- Chapter 10 Species Emitted by Fires 179 Camille VIATTE and Pasquale SELLITTO -- 10.1 Introduction -- 10.2 Biomass burning gases -- 10.2.1 Greenhouses gases -- 10.2.2 Carbon monoxide (CO) -- 10.2.3 Volatile organic compounds (VOCs) -- 10.2.4 Ammonia (NH3) -- 10.2.5 Nitrous acid (HONO) -- 10.3 Biomass burning aerosols -- 10.3.1 AOD observations with nadir-viewing instruments -- 10.3.2 Extinction observations with limb-viewing instruments -- 10.3.3 Lidar profiles observations -- 10.4 Fire detection systems from space -- 10.5 Conclusion -- 10.6 Acknowledgments -- 10.7 References -- Chapter 11 Stratospheric Chemistry 189 Claude CAMY-PEYRET and Sarah SAFIEDDINE -- 11.1 Introduction -- 11.2 Stratospheric ozone chemistry -- 11.2.1 Polar ozone depletion -- 11.2.2 Antarctic ozone distribution -- 11.2.3 Arctic ozone distribution -- 11.3 Stratospheric chemistry of other species -- 11.3.1 Chemistry of the stratosphere and models -- 11.3.2 Radical processes and cycles for the major families -- 11.3.3 The example of methane in the stratosphere -- 11.4 Satellite measurements of trace species in the stratosphere -- 11.5 Conclusion -- 11.6 Acknowledgments -- 11.7 References -- Part 3 Atmosphere and climate -- Introduction to Part 3 Atmosphere and Climate and the Contribution of Space 205 Paul POLI -- Chapter 12 Climate Monitoring 209 Paul POLI and Jörg SCHULZ -- 12.1 General concepts about the climate -- 12.1.1 What is climate? -- 12.1.2 Is climate limited to atmospheric phenomena? -- 12.1.3 A question for Nobel Prize laureates: is the climate stable? -- 12.2 From space-based measurements to climate products -- 12.2.1 Sensing the environment -- 12.2.2 The role of space-based observations -- 12.2.3 The concept of essential climate variables -- 12.2.4 Observation-based products -- 12.2.5 Model-assisted climate products -- 12.3 Climate data records and uncertainty estimates -- 12.3.1 Why reprocessing? -- 12.3.2 Calibration -- 12.3.3 Uncertainty -- 12.4 The usage of climate data records in science and services -- 12.5 Looking ahead -- 12.6 References -- 12.7 References of the data sources cited in Figure 12.1 -- Chapter 13 Anthropogenic Greenhouse Gases: CO2 and CH4 235 Cyril CREVOISIER -- 13.1 Monitoring anthropogenic greenhouse gases -- 13.1.1 Biogeochemical cycles -- 13.1.2 Determination of gas sources and sinks -- 13.1.3 The global observation network -- 13.2 Contribution of spatial observation of greenhouse gases -- 13.2.1 Specificities of greenhouse gas observation -- 13.2.2 Particularly rich spatial programming -- 13.3 Measurement techniques -- 13.3.1 Passive observations in the infrared range -- 13.3.2 Passive observations by solar reflection -- 13.3.3 Passive observations by solar occultation -- 13.3.4 Active observations using lidar -- 13.4 From radiation measurement to gas flux at the surface -- 13.4.1 From radiation measurement to gas concentrations -- 13.4.2 From concentration to fluxes -- 13.4.3 Main limitations -- 13.5 Challenges for the future -- 13.5.1 Towards the observation of anthropogenic emissions by spatial imagery -- 13.5.2 Reducing spatio-temporal sampling biases -- 13.5.3 Towards an operational greenhouse gas monitoring service -- 13.6 References , 〉 14.2 Observations of water vapor -- 14.2.1 Passive sensors -- 14.2.2 Active sensors -- 14.2.3 Homogenization and intercomparison -- 14.3 Observation of cloud properties -- 14.3.1 Observations using passive instruments -- 14.3.2 Observations using active instruments -- 14.3.3 Multi-instrument synergy for the establishment of cloud climatologies -- 14.4 References -- Chapter 15 Precipitation 287 Vincenzo LEVIZZANI and Christopher KIDD -- 15.1 Need for global precipitation measurements -- 15.2 Satellite observation of rainfall -- 15.2.1 Visible/Infrared -- 15.2.2 Passive microwave -- 15.2.3 Radar -- 15.2.4 Merged products -- 15.3 Observation of solid precipitation -- 15.4 Precipitation and the Earth water cycle -- 15.5 References -- Appendices -- Appendix 1 309 Claude CAMY-PEYRET -- Appendix 2 317 Claude CAMY-PEYRET -- Appendix 3 -- Appendix 4 -- Glossary -- List of Authors -- Index -- Summary of Volume 1.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages