feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    almahu_9949244531602882
    Format: 1 online resource (385 pages)
    ISBN: 0-12-824210-8
    Series Statement: Elsevier Series on Advanced Topics in Biomaterials
    Content: "Musculoskeletal Tissue Engineering introduces the fundamental concepts and translational applications of musculoskeletal tissue engineering, in combination with emerging technologies and materials. Sections discuss Tissues and Technologies, covering a range of musculoskeletal tissues, including bone, cartilage, ligament and more. Each chapter in this section details core tissue engineering principles specific to each tissue type. Next, a Technologies section looks at the range of biomaterials used in musculoskeletal tissue engineering, focusing on biocompatibility of materials and interactions at the material-tissue interface. Other chapters cover nanotechnology, 3D printing, gene therapy, tissue chips, and more."--
    Note: Front Cover -- Musculoskeletal Tissue Engineering -- Copyright Page -- Dedication -- Contents -- List of contributors -- Preface -- Further reading -- 1 Bone tissue engineering -- 1.1 Current strategies for bone repair -- 1.1.1 Clinical challenges -- 1.1.2 Current standard of treatment -- 1.2 Bone tissue engineering -- 1.2.1 Cell sources for bone tissue engineering -- 1.2.2 Biomaterial scaffolds for bone tissue engineering -- 1.2.3 Growth factors in bone tissue engineering -- 1.3 Contemporary topics in bone regeneration -- 1.4 Outlook -- References -- 2 Cartilage tissue engineering -- 2.1 Development history of cartilage tissue engineering -- 2.2 Cells for cartilage repair and tissue engineering -- 2.2.1 Chondrocytes -- 2.2.2 Stem cells -- 2.2.2.1 Embryonic stem cells -- 2.2.2.2 Human-induced pluripotent stem cells -- 2.2.2.3 Mesenchymal stem cells -- 2.3 Signaling molecules related to cartilage regeneration -- 2.3.1 Transforming growth factor-β -- 2.3.2 Insulin-like growth factor -- 2.3.3 Fibroblast growth factors -- 2.3.4 Sox transcription factors -- 2.4 Biomaterials applied for cartilage tissue engineering -- 2.4.1 Hydrogels -- 2.4.2 Natural scaffolds -- 2.4.3 Synthetic polymers -- 2.4.4 Biomimetic materials -- 2.4.4.1 Glycopolypeptides -- 2.4.4.2 DNA-based materials -- 2.5 Limitations and development potential in cartilage tissue engineering -- References -- 3 Skeletal muscle tissue engineering -- 3.1 Structure and function of skeletal muscle -- 3.2 Regenerative ability of skeletal muscle -- 3.3 Overview of skeletal muscle tissue engineering -- 3.4 Cells -- 3.5 Scaffolds -- 3.6 Growth factors -- 3.7 Clinical implications and utility -- 3.8 Future directions and conclusion -- References -- 4 Ligament and tendon tissue engineering -- 4.1 Structure and function of tendon and ligaments -- 4.1.1 Cell biology of tendon and ligament. , 4.2 Chronic degeneration of tendon and ligament -- 4.3 Tendon/ligament injury and repair -- 4.3.1 Acute ligament injuries -- 4.3.2 Acute tendon injuries -- 4.3.3 Repairing tendon-bone -- 4.4 Tendon/ligament healing and complications -- 4.5 The cellular landscape of diseased tendon to inform tissue engineering -- 4.6 Types of cells used for tendon tissue engineering -- 4.6.1 Embryonic stem cells -- 4.6.2 Mesenchymal stem cells -- 4.6.3 C3H10T1/2 cells -- 4.6.4 Coculture studies -- 4.7 Tendon cell heterogeneity -- 4.8 Biomaterial approaches for tendon and ligament tissue engineering -- 4.9 Natural materials -- 4.9.1 Collagen -- 4.9.2 Chitosan -- 4.9.3 Gelatin -- 4.9.4 Alginate -- 4.9.5 Cellulose -- 4.10 Synthetic materials -- 4.10.1 Poly(glycolic acid) -- 4.10.2 Poly(lactic acid) -- 4.10.3 Poly(ε-caprolactone) -- 4.11 Utilizing regenerative models of healing to inform tendon/ligament tissue engineering -- 4.12 Future perspectives to enhance tendon and ligament tissue engineering -- References -- 5 Meniscus tissue engineering and repair -- 5.1 Introduction -- 5.1.1 Gross anatomy of the meniscus -- 5.1.2 Biochemical and cellular composition -- 5.2 Clinical significance of meniscus injuries -- 5.3 Clinical and preclinical treatments for meniscus injury and replacement -- 5.3.1 Clinical surgery approaches for treatment -- 5.3.2 Meniscus allograft transplantation -- 5.3.3 Engineered meniscus tissue replacement products currently in clinical use or close to clinical translation -- 5.3.4 Engineered meniscus replacement scaffolds in early-stage preclinical development -- 5.3.5 Clinical biologic approaches for treating meniscus injuries -- 5.3.6 Preclinical cell-based approaches in development for treating meniscus injuries -- 5.4 Conclusion -- References -- 6 Functions and applications of extracellular matrix in cartilage tissue engineering -- 6.1 Introduction. , 6.2 Molecular function and assembly of cartilage extracellular matrix -- 6.2.1 Collagen fibrillar network -- 6.2.2 Aggrecan aggregates -- 6.3 Pericellular matrix in cartilage function and disease -- 6.3.1 Structure, mechanics, and function of the pericellular matrix -- 6.3.2 Pericellular matrix in cartilage disease -- 6.4 Direct applications of extracellular matrix in cartilage regeneration -- 6.4.1 Decellularized extracellular matrix -- 6.4.2 Pericellular matrix and chondrons -- 6.5 Conclusions and outlook -- References -- 7 3D printing for soft musculoskeletal tissue engineering -- 7.1 Introduction -- 7.2 3D bioprinting for skeletal muscle tissue engineering -- 7.2.1 Bioprinting strategies for skeletal muscle tissue engineering -- 7.2.1.1 Extrusion bioprinting for skeletal muscle tissue engineering -- 7.2.1.2 Other bioprinting strategies for skeletal muscle tissue engineering -- 7.2.2 In vivo bioprinting for skeletal muscle tissue engineering -- 7.2.3 Bioink formulations for skeletal muscle tissue engineering -- 7.3 Future outlook and conclusions -- Acknowledgments -- References -- 8 A review on the 3D printing of composite scaffolds for bone tissue engineering -- 8.1 Introduction -- 8.2 Desirable scaffold properties for bone tissue engineering -- 8.3 Biocompatibility -- 8.4 Scaffold architecture -- 8.5 Mechanical properties -- 8.6 Controlled biodegradability -- 8.7 Bioactivity -- 8.8 Three-dimensional printing methods for fabricating bone scaffolds -- 8.8.1 Inkjet three-dimensional printing -- 8.8.2 Aerosol Jet three-dimensional printing -- 8.8.3 Extrusion-based three-dimensional printing -- 8.8.4 Light-assisted three-dimensional printing -- 8.8.5 Laser-assisted three-dimensional bioprinting -- 8.8.6 Particle fusion-based three-dimensional printing -- 8.9 Materials and composite materials used in bone tissue engineering -- 8.9.1 Polymers. , 8.9.1.1 Polycaprolactone -- 8.9.1.2 Polylactic acid -- 8.9.2 Hydrogels -- 8.9.3 Bone-like ceramics -- 8.9.3.1 Hydroxyapatite -- 8.9.3.2 Tricalcium phosphate -- 8.9.3.3 Bioactive glass -- 8.9.4 Metals and metal oxide composites -- 8.9.4.1 Iron -- 8.9.4.2 Zinc and zinc oxide -- 8.9.4.3 Magnesium and magnesium oxide -- 8.9.5 Bioagents -- 8.9.5.1 Transforming growth factor -- 8.9.5.2 Ribonucleic acid -- 8.10 Future direction -- References -- 9 Mechano-active materials for musculoskeletal tissue engineering -- 9.1 Introduction -- 9.2 Rationale of mechano-active biomaterials for tissue engineering -- 9.3 Mechano-active biomaterials for intervertebral disk tissue engineering -- 9.3.1 Intervertebral disk degeneration -- 9.3.2 Mechanobiology in intervertebral disk -- 9.3.2.1 Biological responses to mechanical stress -- 9.3.2.2 Biological response to the mechanical properties of extracellular matrix -- 9.3.3 Mechano-active materials for intervertebral disk repair -- 9.3.4 Mechanically responsive release of drug, cell, and gene -- 9.4 Mechano-active biomaterials for osteochondral tissue engineering -- 9.4.1 Osteochondral defect -- 9.4.2 Mechanobiology in osteochondral tissue related cells -- 9.4.2.1 Biological responses of cells to hydrostatic pressure -- 9.4.2.2 Effects of mechanical properties of materials on stem cell behaviors -- 9.4.3 Mechano-active materials for osteochondral defect repair -- 9.5 Mechano-active biomaterials for skeletal muscle tissue engineering -- 9.5.1 Mechanobiology in skeleton muscle -- 9.5.2 The roles of mechanical properties of materials in myogenic differentiation -- 9.5.3 Mechanical stimulation in skeletal muscle tissue engineering -- 9.6 Summary and outlook -- 9.7 Acknowledgments -- References -- 10 Musculoskeletal tissue chips -- 10.1 The musculoskeletal system -- 10.2 General musculoskeletal diseases and statistics. , 10.2.1 Bone, joint, and muscle diseases -- 10.3 2D cell culture to 3D cell culture -- 10.3.1 In vitro cell culture for the musculoskeletal system -- 10.4 Types of cell culture -- 10.4.1 Monolayer and suspension cell culture -- 10.4.2 Spheroids -- 10.4.3 Cell culture in hydrogel -- 10.4.4 Micropatterning -- 10.4.5 Cells in scaffold -- 10.4.6 3D printed model-The tissue chips -- 10.4.7 3D bio-printing -- 10.5 Musculoskeletal tissue chips -- 10.5.1 Musculoskeletal organs and diseases modeling In vitro -- 10.5.2 Current applications of musculoskeletal tissue chips -- 10.5.3 Benefits and challenges of tissue chips technologies -- 10.6 Conclusion -- References -- Further reading -- 11 Drug and gene delivery for musculoskeletal tissues -- 11.1 Introduction -- 11.2 Therapeutic drugs and genes for musculoskeletal diseases -- 11.2.1 Antibiotics -- 11.2.2 Antiinflammatory drugs -- 11.2.3 Anticancer drugs -- 11.2.4 Regenerative medicine -- 11.2.5 Growth factors -- 11.2.6 Gene therapy -- 11.3 Delivery strategies -- 11.3.1 Hydrogels -- 11.3.2 Scaffolds -- 11.3.3 Nanoparticles -- 11.3 Conclusion -- 11.4 Future -- References -- 12 Stem cells and regenerative medicine for musculoskeletal tissue -- 12.1 The clinical impact of bone fractures -- 12.2 Fracture healing process -- 12.2.1 Primary fracture healing -- 12.2.1.1 Contact healing -- 12.2.1.2 Gap healing -- 12.2.2 Secondary healing -- 12.2.3 The inflammation stage: hematoma and acute inflammation -- 12.2.4 The fibrovascular stage: angiogenesis and progenitor cell recruitment -- 12.2.5 The callus formation stage (soft and hard callus) -- 12.2.6 The remodeling stage -- 12.2.7 Nonunion -- 12.3 Fracture healing and progenitor cells -- 12.3.1 Stem cells in bone -- 12.3.1.1 Bone marrow -- 12.3.1.2 Endosteum/periosteum -- 12.3.2 Circulating progenitor cells. , 12.3.2.1 Bone marrow stromal cell-like circulating osteoprogenitors.
    Additional Edition: ISBN 0-12-823893-3
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    gbv_1838134395
    Format: 1 Online-Ressource
    Original writing title: 来华非洲人社会交往与跨文化适应
    Original writing publisher: 北京 : 社会科学文献出版社
    ISBN: 9787520185479
    Series Statement: Zhe jiang shi fan da xue fei zhou yan jiu wen ku fei zhou yan jiu xin shi ye xi lie
    Content: 本书从人类学、社会学和城市地理学的视角,采用定量分析方法,设计了调查问卷,在义乌、广州等地就来华非洲人的实际情况、跨文化社会交往状况与跨文化适应状况展开调查。此外,作者还通过田野调查对在华非洲人进行了研究,弥补了问卷调查的不足。调查发现,中非政治和经贸关系的发展促进了双方人员的来往,进一步加强了中非命运共同体的建设。这一频繁的人员流动也将进一步推动中国完善入境管理、移民管理,设立相应的制度等。
    Note: Pinyin-Umschrift und Langzeichen wurden automatisiert erstellt , 电子文献
    Language: Chinese
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    gbv_1698785305
    Edition: 清乾隆寫稿本
    Original writing title: 濂村詩集六十八卷附螢熠齋歲時紀略一卷 : 卷六十一至六十八 紀略
    Original writing title: 濂村诗集六十八卷附萤熠斋岁时纪略一卷 : 卷六十一至六十八 纪略
    Original writing person/organisation: 陳豫朋
    Original writing person/organisation: 陈豫朋
    ISBN: 9787501364978
    In: Zhong guo gu ji zhen ben cong kan ; 51: Di wu shi yi ce, Bei jing, 2018, (2018), Seite 1-368, 9787501364978
    In: year:2018
    In: pages:1-368
    Language: Chinese
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    gbv_1698785283
    Edition: 清乾隆寫稿本
    Original writing title: 濂村詩集六十八卷附螢熠齋歲時紀略一卷 : 卷四十六至六十
    Original writing title: 濂村诗集六十八卷附萤熠斋岁时纪略一卷 : 卷四十六至六十
    Original writing person/organisation: 陳豫朋
    Original writing person/organisation: 陈豫朋
    ISBN: 9787501364978
    In: Zhong guo gu ji zhen ben cong kan ; 50: Di wu shi ce, Bei jing, 2018, (2018), Seite 1-564, 9787501364978
    In: year:2018
    In: pages:1-564
    Language: Chinese
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    gbv_1698785240
    Edition: 清乾隆寫稿本
    Original writing title: 濂村詩集六十八卷附螢熠齋歲時紀略一卷 : 卷十六至三十
    Original writing title: 濂村诗集六十八卷附萤熠斋岁时纪略一卷 : 卷十六至三十
    Original writing person/organisation: 陳豫朋
    Original writing person/organisation: 陈豫朋
    ISBN: 9787501364978
    In: Zhong guo gu ji zhen ben cong kan ; 48: Di si shi ba ce, Bei jing, 2018, (2018), Seite 1-552, 9787501364978
    In: year:2018
    In: pages:1-552
    Language: Chinese
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    gbv_1698785216
    Edition: 清乾隆寫稿本
    Original writing title: 濂村詩集六十八卷附螢熠齋歲時紀略一卷 : 卷一至十五
    Original writing title: 濂村诗集六十八卷附萤熠斋岁时纪略一卷 : 卷一至十五
    Original writing person/organisation: 陳豫朋
    Original writing person/organisation: 陈豫朋
    ISBN: 9787501364978
    In: Zhong guo gu ji zhen ben cong kan ; 47: Di si shi qi ce, Bei jing, 2018, (2018), Seite 1-584, 9787501364978
    In: year:2018
    In: pages:1-584
    Language: Chinese
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    gbv_1698785267
    Edition: 清乾隆寫稿本
    Original writing title: 濂村詩集六十八卷附螢熠齋歲時紀略一卷 : 卷三十一至四十五
    Original writing title: 濂村诗集六十八卷附萤熠斋岁时纪略一卷 : 卷三十一至四十五
    Original writing person/organisation: 陳豫朋
    Original writing person/organisation: 陈豫朋
    ISBN: 9787501364978
    In: Zhong guo gu ji zhen ben cong kan ; 49: Di si shi jiu ce, Bei jing, 2018, (2018), Seite 1-526, 9787501364978
    In: year:2018
    In: pages:1-526
    Language: Chinese
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    edoccha_9960099785602883
    Format: 1 online resource (385 pages)
    ISBN: 0-12-824210-8
    Series Statement: Elsevier Series on Advanced Topics in Biomaterials
    Note: Front Cover -- Musculoskeletal Tissue Engineering -- Copyright Page -- Dedication -- Contents -- List of contributors -- Preface -- Further reading -- 1 Bone tissue engineering -- 1.1 Current strategies for bone repair -- 1.1.1 Clinical challenges -- 1.1.2 Current standard of treatment -- 1.2 Bone tissue engineering -- 1.2.1 Cell sources for bone tissue engineering -- 1.2.2 Biomaterial scaffolds for bone tissue engineering -- 1.2.3 Growth factors in bone tissue engineering -- 1.3 Contemporary topics in bone regeneration -- 1.4 Outlook -- References -- 2 Cartilage tissue engineering -- 2.1 Development history of cartilage tissue engineering -- 2.2 Cells for cartilage repair and tissue engineering -- 2.2.1 Chondrocytes -- 2.2.2 Stem cells -- 2.2.2.1 Embryonic stem cells -- 2.2.2.2 Human-induced pluripotent stem cells -- 2.2.2.3 Mesenchymal stem cells -- 2.3 Signaling molecules related to cartilage regeneration -- 2.3.1 Transforming growth factor-β -- 2.3.2 Insulin-like growth factor -- 2.3.3 Fibroblast growth factors -- 2.3.4 Sox transcription factors -- 2.4 Biomaterials applied for cartilage tissue engineering -- 2.4.1 Hydrogels -- 2.4.2 Natural scaffolds -- 2.4.3 Synthetic polymers -- 2.4.4 Biomimetic materials -- 2.4.4.1 Glycopolypeptides -- 2.4.4.2 DNA-based materials -- 2.5 Limitations and development potential in cartilage tissue engineering -- References -- 3 Skeletal muscle tissue engineering -- 3.1 Structure and function of skeletal muscle -- 3.2 Regenerative ability of skeletal muscle -- 3.3 Overview of skeletal muscle tissue engineering -- 3.4 Cells -- 3.5 Scaffolds -- 3.6 Growth factors -- 3.7 Clinical implications and utility -- 3.8 Future directions and conclusion -- References -- 4 Ligament and tendon tissue engineering -- 4.1 Structure and function of tendon and ligaments -- 4.1.1 Cell biology of tendon and ligament. , 4.2 Chronic degeneration of tendon and ligament -- 4.3 Tendon/ligament injury and repair -- 4.3.1 Acute ligament injuries -- 4.3.2 Acute tendon injuries -- 4.3.3 Repairing tendon-bone -- 4.4 Tendon/ligament healing and complications -- 4.5 The cellular landscape of diseased tendon to inform tissue engineering -- 4.6 Types of cells used for tendon tissue engineering -- 4.6.1 Embryonic stem cells -- 4.6.2 Mesenchymal stem cells -- 4.6.3 C3H10T1/2 cells -- 4.6.4 Coculture studies -- 4.7 Tendon cell heterogeneity -- 4.8 Biomaterial approaches for tendon and ligament tissue engineering -- 4.9 Natural materials -- 4.9.1 Collagen -- 4.9.2 Chitosan -- 4.9.3 Gelatin -- 4.9.4 Alginate -- 4.9.5 Cellulose -- 4.10 Synthetic materials -- 4.10.1 Poly(glycolic acid) -- 4.10.2 Poly(lactic acid) -- 4.10.3 Poly(ε-caprolactone) -- 4.11 Utilizing regenerative models of healing to inform tendon/ligament tissue engineering -- 4.12 Future perspectives to enhance tendon and ligament tissue engineering -- References -- 5 Meniscus tissue engineering and repair -- 5.1 Introduction -- 5.1.1 Gross anatomy of the meniscus -- 5.1.2 Biochemical and cellular composition -- 5.2 Clinical significance of meniscus injuries -- 5.3 Clinical and preclinical treatments for meniscus injury and replacement -- 5.3.1 Clinical surgery approaches for treatment -- 5.3.2 Meniscus allograft transplantation -- 5.3.3 Engineered meniscus tissue replacement products currently in clinical use or close to clinical translation -- 5.3.4 Engineered meniscus replacement scaffolds in early-stage preclinical development -- 5.3.5 Clinical biologic approaches for treating meniscus injuries -- 5.3.6 Preclinical cell-based approaches in development for treating meniscus injuries -- 5.4 Conclusion -- References -- 6 Functions and applications of extracellular matrix in cartilage tissue engineering -- 6.1 Introduction. , 6.2 Molecular function and assembly of cartilage extracellular matrix -- 6.2.1 Collagen fibrillar network -- 6.2.2 Aggrecan aggregates -- 6.3 Pericellular matrix in cartilage function and disease -- 6.3.1 Structure, mechanics, and function of the pericellular matrix -- 6.3.2 Pericellular matrix in cartilage disease -- 6.4 Direct applications of extracellular matrix in cartilage regeneration -- 6.4.1 Decellularized extracellular matrix -- 6.4.2 Pericellular matrix and chondrons -- 6.5 Conclusions and outlook -- References -- 7 3D printing for soft musculoskeletal tissue engineering -- 7.1 Introduction -- 7.2 3D bioprinting for skeletal muscle tissue engineering -- 7.2.1 Bioprinting strategies for skeletal muscle tissue engineering -- 7.2.1.1 Extrusion bioprinting for skeletal muscle tissue engineering -- 7.2.1.2 Other bioprinting strategies for skeletal muscle tissue engineering -- 7.2.2 In vivo bioprinting for skeletal muscle tissue engineering -- 7.2.3 Bioink formulations for skeletal muscle tissue engineering -- 7.3 Future outlook and conclusions -- Acknowledgments -- References -- 8 A review on the 3D printing of composite scaffolds for bone tissue engineering -- 8.1 Introduction -- 8.2 Desirable scaffold properties for bone tissue engineering -- 8.3 Biocompatibility -- 8.4 Scaffold architecture -- 8.5 Mechanical properties -- 8.6 Controlled biodegradability -- 8.7 Bioactivity -- 8.8 Three-dimensional printing methods for fabricating bone scaffolds -- 8.8.1 Inkjet three-dimensional printing -- 8.8.2 Aerosol Jet three-dimensional printing -- 8.8.3 Extrusion-based three-dimensional printing -- 8.8.4 Light-assisted three-dimensional printing -- 8.8.5 Laser-assisted three-dimensional bioprinting -- 8.8.6 Particle fusion-based three-dimensional printing -- 8.9 Materials and composite materials used in bone tissue engineering -- 8.9.1 Polymers. , 8.9.1.1 Polycaprolactone -- 8.9.1.2 Polylactic acid -- 8.9.2 Hydrogels -- 8.9.3 Bone-like ceramics -- 8.9.3.1 Hydroxyapatite -- 8.9.3.2 Tricalcium phosphate -- 8.9.3.3 Bioactive glass -- 8.9.4 Metals and metal oxide composites -- 8.9.4.1 Iron -- 8.9.4.2 Zinc and zinc oxide -- 8.9.4.3 Magnesium and magnesium oxide -- 8.9.5 Bioagents -- 8.9.5.1 Transforming growth factor -- 8.9.5.2 Ribonucleic acid -- 8.10 Future direction -- References -- 9 Mechano-active materials for musculoskeletal tissue engineering -- 9.1 Introduction -- 9.2 Rationale of mechano-active biomaterials for tissue engineering -- 9.3 Mechano-active biomaterials for intervertebral disk tissue engineering -- 9.3.1 Intervertebral disk degeneration -- 9.3.2 Mechanobiology in intervertebral disk -- 9.3.2.1 Biological responses to mechanical stress -- 9.3.2.2 Biological response to the mechanical properties of extracellular matrix -- 9.3.3 Mechano-active materials for intervertebral disk repair -- 9.3.4 Mechanically responsive release of drug, cell, and gene -- 9.4 Mechano-active biomaterials for osteochondral tissue engineering -- 9.4.1 Osteochondral defect -- 9.4.2 Mechanobiology in osteochondral tissue related cells -- 9.4.2.1 Biological responses of cells to hydrostatic pressure -- 9.4.2.2 Effects of mechanical properties of materials on stem cell behaviors -- 9.4.3 Mechano-active materials for osteochondral defect repair -- 9.5 Mechano-active biomaterials for skeletal muscle tissue engineering -- 9.5.1 Mechanobiology in skeleton muscle -- 9.5.2 The roles of mechanical properties of materials in myogenic differentiation -- 9.5.3 Mechanical stimulation in skeletal muscle tissue engineering -- 9.6 Summary and outlook -- 9.7 Acknowledgments -- References -- 10 Musculoskeletal tissue chips -- 10.1 The musculoskeletal system -- 10.2 General musculoskeletal diseases and statistics. , 10.2.1 Bone, joint, and muscle diseases -- 10.3 2D cell culture to 3D cell culture -- 10.3.1 In vitro cell culture for the musculoskeletal system -- 10.4 Types of cell culture -- 10.4.1 Monolayer and suspension cell culture -- 10.4.2 Spheroids -- 10.4.3 Cell culture in hydrogel -- 10.4.4 Micropatterning -- 10.4.5 Cells in scaffold -- 10.4.6 3D printed model-The tissue chips -- 10.4.7 3D bio-printing -- 10.5 Musculoskeletal tissue chips -- 10.5.1 Musculoskeletal organs and diseases modeling In vitro -- 10.5.2 Current applications of musculoskeletal tissue chips -- 10.5.3 Benefits and challenges of tissue chips technologies -- 10.6 Conclusion -- References -- Further reading -- 11 Drug and gene delivery for musculoskeletal tissues -- 11.1 Introduction -- 11.2 Therapeutic drugs and genes for musculoskeletal diseases -- 11.2.1 Antibiotics -- 11.2.2 Antiinflammatory drugs -- 11.2.3 Anticancer drugs -- 11.2.4 Regenerative medicine -- 11.2.5 Growth factors -- 11.2.6 Gene therapy -- 11.3 Delivery strategies -- 11.3.1 Hydrogels -- 11.3.2 Scaffolds -- 11.3.3 Nanoparticles -- 11.3 Conclusion -- 11.4 Future -- References -- 12 Stem cells and regenerative medicine for musculoskeletal tissue -- 12.1 The clinical impact of bone fractures -- 12.2 Fracture healing process -- 12.2.1 Primary fracture healing -- 12.2.1.1 Contact healing -- 12.2.1.2 Gap healing -- 12.2.2 Secondary healing -- 12.2.3 The inflammation stage: hematoma and acute inflammation -- 12.2.4 The fibrovascular stage: angiogenesis and progenitor cell recruitment -- 12.2.5 The callus formation stage (soft and hard callus) -- 12.2.6 The remodeling stage -- 12.2.7 Nonunion -- 12.3 Fracture healing and progenitor cells -- 12.3.1 Stem cells in bone -- 12.3.1.1 Bone marrow -- 12.3.1.2 Endosteum/periosteum -- 12.3.2 Circulating progenitor cells. , 12.3.2.1 Bone marrow stromal cell-like circulating osteoprogenitors.
    Additional Edition: ISBN 0-12-823893-3
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    edocfu_9960099785602883
    Format: 1 online resource (385 pages)
    ISBN: 0-12-824210-8
    Series Statement: Elsevier Series on Advanced Topics in Biomaterials
    Note: Front Cover -- Musculoskeletal Tissue Engineering -- Copyright Page -- Dedication -- Contents -- List of contributors -- Preface -- Further reading -- 1 Bone tissue engineering -- 1.1 Current strategies for bone repair -- 1.1.1 Clinical challenges -- 1.1.2 Current standard of treatment -- 1.2 Bone tissue engineering -- 1.2.1 Cell sources for bone tissue engineering -- 1.2.2 Biomaterial scaffolds for bone tissue engineering -- 1.2.3 Growth factors in bone tissue engineering -- 1.3 Contemporary topics in bone regeneration -- 1.4 Outlook -- References -- 2 Cartilage tissue engineering -- 2.1 Development history of cartilage tissue engineering -- 2.2 Cells for cartilage repair and tissue engineering -- 2.2.1 Chondrocytes -- 2.2.2 Stem cells -- 2.2.2.1 Embryonic stem cells -- 2.2.2.2 Human-induced pluripotent stem cells -- 2.2.2.3 Mesenchymal stem cells -- 2.3 Signaling molecules related to cartilage regeneration -- 2.3.1 Transforming growth factor-β -- 2.3.2 Insulin-like growth factor -- 2.3.3 Fibroblast growth factors -- 2.3.4 Sox transcription factors -- 2.4 Biomaterials applied for cartilage tissue engineering -- 2.4.1 Hydrogels -- 2.4.2 Natural scaffolds -- 2.4.3 Synthetic polymers -- 2.4.4 Biomimetic materials -- 2.4.4.1 Glycopolypeptides -- 2.4.4.2 DNA-based materials -- 2.5 Limitations and development potential in cartilage tissue engineering -- References -- 3 Skeletal muscle tissue engineering -- 3.1 Structure and function of skeletal muscle -- 3.2 Regenerative ability of skeletal muscle -- 3.3 Overview of skeletal muscle tissue engineering -- 3.4 Cells -- 3.5 Scaffolds -- 3.6 Growth factors -- 3.7 Clinical implications and utility -- 3.8 Future directions and conclusion -- References -- 4 Ligament and tendon tissue engineering -- 4.1 Structure and function of tendon and ligaments -- 4.1.1 Cell biology of tendon and ligament. , 4.2 Chronic degeneration of tendon and ligament -- 4.3 Tendon/ligament injury and repair -- 4.3.1 Acute ligament injuries -- 4.3.2 Acute tendon injuries -- 4.3.3 Repairing tendon-bone -- 4.4 Tendon/ligament healing and complications -- 4.5 The cellular landscape of diseased tendon to inform tissue engineering -- 4.6 Types of cells used for tendon tissue engineering -- 4.6.1 Embryonic stem cells -- 4.6.2 Mesenchymal stem cells -- 4.6.3 C3H10T1/2 cells -- 4.6.4 Coculture studies -- 4.7 Tendon cell heterogeneity -- 4.8 Biomaterial approaches for tendon and ligament tissue engineering -- 4.9 Natural materials -- 4.9.1 Collagen -- 4.9.2 Chitosan -- 4.9.3 Gelatin -- 4.9.4 Alginate -- 4.9.5 Cellulose -- 4.10 Synthetic materials -- 4.10.1 Poly(glycolic acid) -- 4.10.2 Poly(lactic acid) -- 4.10.3 Poly(ε-caprolactone) -- 4.11 Utilizing regenerative models of healing to inform tendon/ligament tissue engineering -- 4.12 Future perspectives to enhance tendon and ligament tissue engineering -- References -- 5 Meniscus tissue engineering and repair -- 5.1 Introduction -- 5.1.1 Gross anatomy of the meniscus -- 5.1.2 Biochemical and cellular composition -- 5.2 Clinical significance of meniscus injuries -- 5.3 Clinical and preclinical treatments for meniscus injury and replacement -- 5.3.1 Clinical surgery approaches for treatment -- 5.3.2 Meniscus allograft transplantation -- 5.3.3 Engineered meniscus tissue replacement products currently in clinical use or close to clinical translation -- 5.3.4 Engineered meniscus replacement scaffolds in early-stage preclinical development -- 5.3.5 Clinical biologic approaches for treating meniscus injuries -- 5.3.6 Preclinical cell-based approaches in development for treating meniscus injuries -- 5.4 Conclusion -- References -- 6 Functions and applications of extracellular matrix in cartilage tissue engineering -- 6.1 Introduction. , 6.2 Molecular function and assembly of cartilage extracellular matrix -- 6.2.1 Collagen fibrillar network -- 6.2.2 Aggrecan aggregates -- 6.3 Pericellular matrix in cartilage function and disease -- 6.3.1 Structure, mechanics, and function of the pericellular matrix -- 6.3.2 Pericellular matrix in cartilage disease -- 6.4 Direct applications of extracellular matrix in cartilage regeneration -- 6.4.1 Decellularized extracellular matrix -- 6.4.2 Pericellular matrix and chondrons -- 6.5 Conclusions and outlook -- References -- 7 3D printing for soft musculoskeletal tissue engineering -- 7.1 Introduction -- 7.2 3D bioprinting for skeletal muscle tissue engineering -- 7.2.1 Bioprinting strategies for skeletal muscle tissue engineering -- 7.2.1.1 Extrusion bioprinting for skeletal muscle tissue engineering -- 7.2.1.2 Other bioprinting strategies for skeletal muscle tissue engineering -- 7.2.2 In vivo bioprinting for skeletal muscle tissue engineering -- 7.2.3 Bioink formulations for skeletal muscle tissue engineering -- 7.3 Future outlook and conclusions -- Acknowledgments -- References -- 8 A review on the 3D printing of composite scaffolds for bone tissue engineering -- 8.1 Introduction -- 8.2 Desirable scaffold properties for bone tissue engineering -- 8.3 Biocompatibility -- 8.4 Scaffold architecture -- 8.5 Mechanical properties -- 8.6 Controlled biodegradability -- 8.7 Bioactivity -- 8.8 Three-dimensional printing methods for fabricating bone scaffolds -- 8.8.1 Inkjet three-dimensional printing -- 8.8.2 Aerosol Jet three-dimensional printing -- 8.8.3 Extrusion-based three-dimensional printing -- 8.8.4 Light-assisted three-dimensional printing -- 8.8.5 Laser-assisted three-dimensional bioprinting -- 8.8.6 Particle fusion-based three-dimensional printing -- 8.9 Materials and composite materials used in bone tissue engineering -- 8.9.1 Polymers. , 8.9.1.1 Polycaprolactone -- 8.9.1.2 Polylactic acid -- 8.9.2 Hydrogels -- 8.9.3 Bone-like ceramics -- 8.9.3.1 Hydroxyapatite -- 8.9.3.2 Tricalcium phosphate -- 8.9.3.3 Bioactive glass -- 8.9.4 Metals and metal oxide composites -- 8.9.4.1 Iron -- 8.9.4.2 Zinc and zinc oxide -- 8.9.4.3 Magnesium and magnesium oxide -- 8.9.5 Bioagents -- 8.9.5.1 Transforming growth factor -- 8.9.5.2 Ribonucleic acid -- 8.10 Future direction -- References -- 9 Mechano-active materials for musculoskeletal tissue engineering -- 9.1 Introduction -- 9.2 Rationale of mechano-active biomaterials for tissue engineering -- 9.3 Mechano-active biomaterials for intervertebral disk tissue engineering -- 9.3.1 Intervertebral disk degeneration -- 9.3.2 Mechanobiology in intervertebral disk -- 9.3.2.1 Biological responses to mechanical stress -- 9.3.2.2 Biological response to the mechanical properties of extracellular matrix -- 9.3.3 Mechano-active materials for intervertebral disk repair -- 9.3.4 Mechanically responsive release of drug, cell, and gene -- 9.4 Mechano-active biomaterials for osteochondral tissue engineering -- 9.4.1 Osteochondral defect -- 9.4.2 Mechanobiology in osteochondral tissue related cells -- 9.4.2.1 Biological responses of cells to hydrostatic pressure -- 9.4.2.2 Effects of mechanical properties of materials on stem cell behaviors -- 9.4.3 Mechano-active materials for osteochondral defect repair -- 9.5 Mechano-active biomaterials for skeletal muscle tissue engineering -- 9.5.1 Mechanobiology in skeleton muscle -- 9.5.2 The roles of mechanical properties of materials in myogenic differentiation -- 9.5.3 Mechanical stimulation in skeletal muscle tissue engineering -- 9.6 Summary and outlook -- 9.7 Acknowledgments -- References -- 10 Musculoskeletal tissue chips -- 10.1 The musculoskeletal system -- 10.2 General musculoskeletal diseases and statistics. , 10.2.1 Bone, joint, and muscle diseases -- 10.3 2D cell culture to 3D cell culture -- 10.3.1 In vitro cell culture for the musculoskeletal system -- 10.4 Types of cell culture -- 10.4.1 Monolayer and suspension cell culture -- 10.4.2 Spheroids -- 10.4.3 Cell culture in hydrogel -- 10.4.4 Micropatterning -- 10.4.5 Cells in scaffold -- 10.4.6 3D printed model-The tissue chips -- 10.4.7 3D bio-printing -- 10.5 Musculoskeletal tissue chips -- 10.5.1 Musculoskeletal organs and diseases modeling In vitro -- 10.5.2 Current applications of musculoskeletal tissue chips -- 10.5.3 Benefits and challenges of tissue chips technologies -- 10.6 Conclusion -- References -- Further reading -- 11 Drug and gene delivery for musculoskeletal tissues -- 11.1 Introduction -- 11.2 Therapeutic drugs and genes for musculoskeletal diseases -- 11.2.1 Antibiotics -- 11.2.2 Antiinflammatory drugs -- 11.2.3 Anticancer drugs -- 11.2.4 Regenerative medicine -- 11.2.5 Growth factors -- 11.2.6 Gene therapy -- 11.3 Delivery strategies -- 11.3.1 Hydrogels -- 11.3.2 Scaffolds -- 11.3.3 Nanoparticles -- 11.3 Conclusion -- 11.4 Future -- References -- 12 Stem cells and regenerative medicine for musculoskeletal tissue -- 12.1 The clinical impact of bone fractures -- 12.2 Fracture healing process -- 12.2.1 Primary fracture healing -- 12.2.1.1 Contact healing -- 12.2.1.2 Gap healing -- 12.2.2 Secondary healing -- 12.2.3 The inflammation stage: hematoma and acute inflammation -- 12.2.4 The fibrovascular stage: angiogenesis and progenitor cell recruitment -- 12.2.5 The callus formation stage (soft and hard callus) -- 12.2.6 The remodeling stage -- 12.2.7 Nonunion -- 12.3 Fracture healing and progenitor cells -- 12.3.1 Stem cells in bone -- 12.3.1.1 Bone marrow -- 12.3.1.2 Endosteum/periosteum -- 12.3.2 Circulating progenitor cells. , 12.3.2.1 Bone marrow stromal cell-like circulating osteoprogenitors.
    Additional Edition: ISBN 0-12-823893-3
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages