feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    edochu_18452_28655
    Format: 1 Online-Ressource (20 Seiten)
    Content: Rhodopsins had long been considered non-fluorescent until a peculiar voltage-sensitive fluorescence was reported for archaerhodopsin-3 (Arch3) derivatives. These proteins named QuasArs have been used for imaging membrane voltage changes in cell cultures and small animals. However due to the low fluorescence intensity, these constructs require use of much higher light intensity than other optogenetic tools. To develop the next generation of sensors, it is indispensable to first understand the molecular basis of the fluorescence and its modulation by the membrane voltage. Based on spectroscopic studies of fluorescent Arch3 derivatives, we propose a unique photo-reaction scheme with extended excited-state lifetimes and inefficient photoisomerization. Molecular dynamics simulations of Arch3, of the Arch3 fluorescent derivative Archon1, and of several its mutants have revealed different voltage-dependent changes of the hydrogen-bonding networks including the protonated retinal Schiff-base and adjacent residues. Experimental observations suggest that under negative voltage, these changes modulate retinal Schiff base deprotonation and promote a decrease in the populations of fluorescent species. Finally, we identified molecular constraints that further improve fluorescence quantum yield and voltage sensitivity.
    Content: Peer Reviewed
    In: [London] : Nature Publishing Group UK, 13,1
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9949383602802882
    Format: 1 online resource : , text file, PDF.
    Edition: First edition.
    ISBN: 9781351242899 , 135124289X , 9781351242882 , 1351242881 , 9781351242875 , 1351242873 , 9781482218381 , 1482218380
    Series Statement: Foundations of biochemistry and biophysics
    Content: "This landmark collective work introduces the physical, chemical, and biological principles underlying photosynthesis: light absorption, excitation energy transfer, and charge separation. It begins with an introduction to properties of various pigments, and the pigment proteins in plant, algae, and bacterial systems. It addresses the underlying physics of light harvesting and key spectroscopic methods, including data analysis. It discusses assembly of the natural system, its energy transfer properties, and regulatory mechanisms. It also addresses light-harvesting in artificial systems and the impact of photosynthesis on our environment. The chapter authors are amongst the field's world recognized experts. Chapters are divided into five main parts, the first focused on pigments, their properties and biosynthesis, and the second section looking at photosynthetic proteins, including light harvesting in higher plants, algae, cyanobacteria, and green bacteria. The third part turns to energy transfer and electron transport, discussing modeling approaches, quantum aspects, photoinduced electron transfer, and redox potential modulation, followed by a section on experimental spectroscopy in light harvesting research. The concluding final section includes chapters on artificial photosynthesis, with topics such as use of cyanobacteria and algae for sustainable energy production. Robert Croce is Head of the Biophysics Group and full professor in biophysics of photosynthesis/energy at Vrije Universiteit, Amsterdam. Rienk van Grondelle is full professor at Vrije Universiteit, Amsterdam. Herbert van Amerongen is full professor of biophysics in the Department of Agrotechnology and Food Sciences at Wageningen University, where he is also director of the MicroSpectroscopy Research Facility. Ivo van Stokkum is associate professor in the Department of Physics and Astronomy, Faculty of Sciences, at Vrije Universiteit, Amsterdam."--Provided by publisher.
    Note: Cover; Half Title; Series Page; Title Page; Copyright Page; Table of Contents; Preface; Editors; Contributors; Part 1: Building the Light-Harvesting Apparatus: Pigments; Chapter 1: Pigments: General properties and biosynthesis; 1.1 Pigments overview; 1.2 Chlorophylls and bacteriochlorophylls; 1.2.1 Chemical structure and distribution; 1.2.2 Chlorophyll biosynthesis; 1.2.2.1 Formation of Protoporphyrin IX; 1.2.2.2 Formation of Protochlorophyllide a; 1.2.2.3 Chlorophyll a Biosynthesis; 1.2.2.4 Bacteriochlorophyll a Biosynthesis; 1.2.2.5 Chlorophyll Modification. , 1.3 Anabolic Pathway for Phycobilins in Phototrophs1.4 Carotenoid biosynthesis; References; Chapter 2: Chlorophylls in a protein environment: How to calculate their spectral and redox properties (from MO to DFT); 2.1 Introduction; 2.2 Spectral and redox properties from quantum chemistry methods; 2.3 Accounting for environment effects in chlorophyll properties; 2.3.1 Implicit QM/classical models: The continuum solvation models; 2.3.2 Explicit QM/classical approaches: The hybrid QM/MM models; References; Chapter 3: Carotenoids: Electronic states and biological functions; 3.1 Introduction. , 3.2 Energy levels of carotenoids3.2.1 Fluorescence spectroscopy of carotenoids; 3.2.2 Time-resolved optical spectroscopic determinations of S1 (21Ag) energies of carotenoids; 3.2.3 Two-photon spectroscopy; 3.2.4 Resonance Raman excitation spectroscopy and quantum computations; 3.3 Other dark excited states of carotenoids; 3.4 Triplet excited states of carotenoids; 3.5 Structures of Carotenoids; 3.6 Energy Transfer by Carotenoids; 3.7 Photoprotection by carotenoids; 3.8 Conclusions; Acknowledgments; References; Part 2: Building the Light-Harvesting Apparatus: Proteins. , Chapter 4: Light harvesting in higher plants and green algae4.1 Introduction; 4.2 LHC Family of Higher Plants and Green Algae; 4.3 Systems to characterize LHCs; 4.4 LHCs of higher plants; 4.4.1 LHCII; 4.4.2 Minor antenna complexes; 4.4.2.1 CP29 (Lhcb4); 4.4.2.2 CP26 (Lhcb5); 4.4.2.3 CP24 (Lhcb6); 4.4.3 LHCI; 4.5 LHCs in Chlamydomonas reinhardtii; 4.6 Assembly of the antenna complexes in supercomplexes; References; Chapter 5: Light harvesting in cyanobacteria: The phycobilisomes; 5.1 Structure of the PBS; 5.2 Energy transfer to reaction centers. , 5.3 Phycobiliproteins in vitro : studies of PC nanowires in bio-hybrid devices5.4 Phycobilisome dynamics; 5.4.1 State transition; 5.4.2 Nonphotochemical quenching; 5.4.3 PBS degradation; 5.4.4 Chromatic acclimation; References; Chapter 6: Photosynthetic apparatus in purple bacteria; 6.1 Purple phototrophic bacteria; 6.1.1 Rhodobacter sphaeroides; 6.1.2 The photosynthetic apparatus in purple phototrophs utilizes light to generate ATP; 6.2 Components of the bacterial photosynthetic apparatus; 6.2.1 Peripheral light-harvesting LH2 complex; 6.2.2 RCâ#x80;#x93;LH1 core complexes.
    Additional Edition: ISBN 9781351242882
    Additional Edition: ISBN 9781351242875
    Language: English
    Keywords: Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almahu_BV044901309
    Format: xiii, 597 Seiten : , Illustrationen.
    ISBN: 978-1-4822-1835-0
    Series Statement: Foundations of biochemistry and biophysics
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-1-351-24289-9
    Language: German
    Subjects: Mathematics
    RVK:
    Keywords: Photosynthese ; Biophysik ; Biochemie ; Photosynthese ; Pigment ; Proteine ; Energietransfer
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages