feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949534794402882
    Format: XXI, 319 p. 22 illus., 20 illus. in color. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9783031329678
    Content: This volume discusses innovative advancements in soil and crop microbiome technology and methods to support agricultural sustainability and reduce soil degradation. As climate change impacts agricultural productivity and soil health in impacted regions throughout the world, potential alternatives to find balance between soil health and crop yield are increasingly needed. Therefore, this book provides a timely, global perspective with a collection of expert authors to address how microbiomes can be used to achieve agricultural sustainability in threatened and degraded areas, while also covering related matters including soil health, pest management, waste disposal, environmental contamination, biofertilizer production, composting, and microbial engineering. The book is meant to serve as a reference for agriculturalists, environmentalists, graduate and post-graduate students, researchers, and professors of sustainability and agricultural management.
    Note: Chapter 1. Integrated Approaches to Agri-Nanotechnology: Applications, Challenges and Future Perspectives -- Chapter 2. Microbiota in sustainable degradation of organic waste and its utilization in agricultural industry -- Chapter 3. Microbial degradation of toxic Agri wastes -- Chapter 4. Introduction of Biofertilizers in Agriculture with Emphasis on Nitrogen Fixers and Phosphate Solubilizers -- Chapter 5. Biofertilizers and biopesticides: approaches towards sustainable development -- Chapter 6. Credibility of biofertilizers towards restoration of fertility phenomenon in degraded soil environs -- Chapter 7. Macrophytes as biofertilizer for Agriculture: Concept and Applications -- Chapter 8. Potential role of biofertilizers in fruit crops -- Chapter 9. Microbial Biofertilizers: An Approach to Sustainable Agriculture -- Chapter 10. Actinomycetes as biofertilizers for Sustainable agriculture -- Chapter 11. Innovations in Biotechnology: Boon for Agriculture and Soil fertility -- Chapter 12. Microbiomes in Climate Smart Agriculture and sustainability -- Chapter 13. Genetic engineering towards improvement of phosphorus agricultural utilization -- Chapter 14. Pseudomonas as backbone for environmental health -- Chapter 15. Cyanobacteria as sustainable microbe for agricultural industries -- Chapter 16. Functional Diversity of Endophytic Microbiota in Crop Management of Cucumis sativus L -- Chapter 17. NANOSCIENCE IN AGRICULTURAL STEADINESS -- Chapter 18. Carbon and Silver Nanoparticles for Applications in Agriculture.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9783031329661
    Additional Edition: Printed edition: ISBN 9783031329685
    Additional Edition: Printed edition: ISBN 9783031329692
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almafu_9961574149802883
    Format: 1 online resource (0 pages)
    Edition: 1st ed. 2024.
    ISBN: 9783031572753
    Content: This volume highlights cutting-edge research on Zero waste management and the associated effects of waste on the environment. Predominantly, it focuses on the challenges of dealing with the amassed production of waste and the cumulative impact of increasing waste on the biosphere. Different sections of this book focus on the comprehensive overview of the technological advancements driving the Zero Waste movement. Furthermore, it explores innovations in waste reduction, recycling, and repurposing, from a global perspective, examining the diverse cultural, social, and economic factors influencing the adoption of zero waste strategies worldwide. In addition, it discusses the challenges, and opportunities inherent in promoting a unified global effort toward sustainable resource management. Discover the latest breakthroughs in waste reduction, recycling, and resource optimization. This essential guide empowers you to implement practical, innovative solutions for a greener future. Whether abusiness owner, environmental enthusiast, or simply curious about sustainable living, this book is a roadmap to a cleaner and healthier planet.
    Note: A comprehensive review on the development of zero waste management -- Crop residue management practices for sustaining soil health -- Biostimulation of microbes for enhanced oil removal from petroleum hydrocarbon contaminated soils: A zero waste remediation approach.
    Additional Edition: ISBN 9783031572746
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almafu_BV048638855
    Format: 1 Online-Ressource (XXIII, 303 p. 52 illus., 43 illus. in color).
    Edition: 1st ed. 2023
    ISBN: 978-3-031-18017-0
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-18016-3
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-18018-7
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-18019-4
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer Nature Switzerland, | Cham :Springer.
    UID:
    edoccha_BV049083936
    Format: 1 Online-Ressource (XXI, 319 p. 22 illus., 20 illus. in color).
    Edition: 1st ed. 2023
    ISBN: 978-3-031-32967-8
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-32966-1
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-32968-5
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-32969-2
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    London, England :Academic Press,
    UID:
    almahu_9949698028002882
    Format: 1 online resource (462 pages)
    ISBN: 0-323-85625-X
    Content: Bacterial Fish Diseases: Environmental and Economic Constraints will be useful for researchers and academics who need to understand the nature and consequences of bacteria-related disease in fishes. It has in-depth information on the complete genome of various bacterial species and identifies an essential number of virulence genes that affect the pathogenic potential of the bacteria in fish. Users will find the most relevant information derived from the available bacterial genomes concerning virulence and the diverse virulence factors that actively participate in host adherence, colonization and infection, including structural components, extracellular factors, secretion systems, iron acquisition and quorum sensing mechanisms. This reference is beneficial for understanding economic losses due to bacterial pathogens in fish fauna and its impact on the economy. It addition, it provides information on good aquaculture practices and how to scientifically manage aquaculture and fishery sectors.
    Note: Aquatic pollution and marine ecosystems -- Heavy metals as pollutants in the aquatic Black Sea ecosystem -- Effects of heavy metals and pesticides in fish -- Pesticide toxicity and bacterial diseases in fishes -- Impact of aquatic pollution on fish fauna -- Bacterial diseases in fish with regard to pollution and their consequences: a global scenario -- Common bacterial infections affecting freshwater fish fauna and impact of pollution and water quality characteristics on bacterial pathogenicity -- Global status of bacterial fish diseases in relation to aquatic pollution -- Understanding the pathogenesis of important bacterial diseases of fish -- Evaluation of the Fish Invasiveness Scoring Kit (FISK v2) for pleco fish or devil fish -- Profiling of common bacterial pathogens in fish -- Status of furunculosis in fish fauna -- Bacterial gill disease and aquatic pollution: a serious concern for the aquaculture industry -- Common bacterial pathogens in fish: an overview -- Bacterial diseases in cultured fishes: an update of advances in control measures -- Ulceration in fish: causes, diagnosis and prevention -- Application of probiotic bacteria for the management of fish health in aquaculture -- Efficacy of different treatments available against bacterial pathogens in fish -- Summary of economic losses due to bacterial pathogens in aquaculture industry.
    Additional Edition: Print version: Dar, Gowhar Hamid Bacterial Fish Diseases San Diego : Elsevier Science & Technology,c2022 ISBN 9780323856249
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    almahu_9949225716402882
    Format: 1 online resource (540 pages)
    ISBN: 0-323-88596-9
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the Editors -- Foreword -- Preface -- About the Book -- Chapter 1 - The history of phytoremediation -- 1.1 Introduction -- 1.1.1 Plants and pollutants before the 1980s -- 1.2 The 1980s and the phytoremediation -- 1.2.1 Phytoremediation from the 1990s to 2020 -- 1.3 Conclusion -- 1.4 Future perspectives -- References -- Chapter 2 - Potentially toxic elements and phytoremediation: Opportunities and challenges -- 2.1 Introduction -- 2.2 Phytoremediation of potentially toxic elements-polluted water -- 2.3 Toxicity of potentially toxic elements to plants -- 2.4 Effects of potentially toxic elements on human health -- 2.5 Cleanup of potentially toxic elements contaminated soils -- 2.6 Phytoremediation: a green technology -- 2.7 Strategies in phytoremediation -- 2.7.1 Phytoextraction -- 2.7.2 Phytofiltration -- 2.7.3 Phytostabilization -- 2.7.4 Phytovolatilization -- 2.7.5 Phytodegradation -- 2.7.6 Rhizodegradation -- 2.8 Phytoextraction of potentially toxic elements: natural vs artificial phytoremediation -- 2.8.1 Metallophytes -- 2.8.2 Excluders -- 2.8.3 Indicators -- 2.8.4 Hyperaccumulators -- 2.9 Phytoremediation of potentially toxic elements using constructed wetlands -- 2.10 Mechanism of potentially toxic elements uptake, translocation, and remediation -- 2.11 Phytoremediation and future prospects -- 2.12 Conclusions and recommendations -- References -- Chapter 3 - Mechanisms of phytoremediation -- 3.1 Introduction -- 3.2 Phytoremediation: plants promoting bioremediation -- 3.3 Mechanisms of phytoremediation -- 3.3.1 Phytoaccumulation -- 3.3.2 Phytohydraulic control -- 3.3.3 Phytodegradation -- 3.3.4 Rhizodegradation -- 3.3.5 Phytostabilization -- 3.3.6 Phytovolatilization -- 3.3.7 Rhizofiltration. , 3.4 Transgenic plants for improved phytoremediation -- 3.5 Conclusion -- 3.6 Futures perspectives -- References -- Chapter 4 - Phytoremediation at Molecular Level -- 4.1 Introduction -- 4.2 Phytoremediation techniques -- 4.2.1 Phytoextraction -- 4.2.2 Phytovolatilization -- 4.2.3 Phytostabilization -- 4.2.4 Rhizofiltration -- 4.2.5 Phytodegradation -- 4.3 Genetic basis and identified target genes in phytoremediation -- 4.4 Omics and phytoremediation -- 4.5 Physiological and molecular cross-talk involved in phytoremediation -- 4.6 Future directives and goals of phytoremediation -- References -- Chapter 5 - Microbial-assisted phytoremediation -- 5.1 Introduction -- 5.2 Mechanisms of microbe-assisted phytoremediation of environmental pollutants -- 5.2.1 Direct mechanism -- 5.2.2 Indirect mechanism -- 5.3 Phytoremediation of inorganic pollutants -- 5.3.1 Bacterial-assisted phytoremediation of inorganic pollutants -- 5.3.2 Fungal-assisted phytoremediation of inorganic pollutants -- 5.3.3 Remeidation of inorganic contaminants through root uptake and accumulation -- 5.4 Phytoremediation of organic pollutants -- 5.4.1 Bacterial-assisted phytoremediation of organic pollutants -- 5.4.2 Fungal-assisted degradation of organic pollutants -- 5.5 Rhizoremediation -- 5.6 Enzymes and their role in biodegradation of pollutants -- 5.7 Conclusion -- References -- Chapter 6 - Nano-phytoremediation for soil contamination: An emerging approach for revitalizing the tarnished resource -- 6.1 Introduction -- 6.2 Phytoremediation -- 6.3 The advent of nanotechnology and nano-phytoremediation -- 6.4 Soil contamination: a serious concern -- 6.5 Nano-phytoremediation of pollutants from contaminated soil environment -- 6.6 Role of nanomaterials on stress tolerance in experimental plants -- 6.7 Challenges of nano-phytoremediation. , 6.8 Conclusion and future perspectives -- Acknowledgments -- References -- Chapter 7 - Biomass amendments and phytoremediation of environmental pollutants -- 7.1 Introduction -- 7.2 Scope of biomass amendments -- 7.3 Biosolids/sewage sludge -- 7.4 Compost/plant residues -- 7.5 The behavior of biomass amendments in different environments -- 7.6 Efficacy of biomass amendments assisting phytoremediation -- 7.7 Mechanism of biomass amendments assisting phytoremediation -- 7.8 Comparison of biomass amendments and other amendments -- 7.9 Environmental risks and phytoremediated biomass handling -- 7.10 Conclusion and future strategies -- References -- Chapter 8 - Chemical amendments and phytoremediation -- 8.1 Introduction -- 8.2 Chemical amendments -- 8.2.1 Citric acid -- 8.2.2 Ethylene diamine tetra acetic acid -- 8.2.3 Glutathione -- 8.2.4 Sulfur -- 8.2.5 Nitric oxide -- 8.3 Chemical compounds used to improve the heavy metals phytoremediation -- 8.4 Conclusions -- References -- Chapter 9 - Omics and phytoremediation -- 9.1 Introduction -- 9.2 Genomics -- 9.3 Metagenome -- 9.4 Future prospects -- Acknowledgement -- References -- Chapter 10 - Recent advancement in plant genetic engineering for efficient phytoremediation -- 10.1 Introduction -- 10.2 Biochemical and physiological effect of contaminants on plants -- 10.3 Molecular mechanisms involved during phytoremediation -- 10.4 Genome editing for phytoremediation -- 10.5 Future prospects -- References -- Chapter 11 - Targeted genetic modification technologies: Potential benefits of their future use in Phytoremediation -- 11.1 Introduction -- 11.2 Phytoremediators -- 11.3 Molecular toolboxes for gene/genome editing -- 11.3.1 Zinc finger nucleases (ZFNs) -- 11.3.2 Transcription activator-like effector nucleases (TALENs) -- 11.3.3 CRISPR-Cas. , 11.3.3.1 CRISPR-Cas for genome editing -- 11.3.3.2 CRISPR-Cas for multiplexing -- 11.3.3.3 CRISPR-Cas for base editing -- 11.3.3.4 CRISPR-Cas for transcriptional and epigenome regulation -- 11.4 Conclusion and future perspectives -- References -- Chapter 12 - Benefits and limitations of phytoremediation: Heavy metal remediation review -- 12.1 Introduction -- 12.2 Contamination and pollution of soil by heavy metals -- 12.3 Biological remediation -- 12.4 Techniques of phytoremediation -- 12.4.1 Phytostabilization -- 12.4.2 Phytoextraction -- 12.4.3 Phytovolatilization -- 12.4.4 Phytofiltration -- 12.4.5 Phytodegradation -- 12.5 Advantages of phytoremediation -- 12.5.1 Eco-friendly -- 12.5.2 Hyperaccumulators -- 12.5.3 Cost effectiveness -- 12.5.4 Limitations -- 12.6 Conclusion -- Conflict of Interest -- References -- Chapter 13 - Phytoremediation of soil and water -- 13.1 Introduction -- 13.2 Water and soil pollution -- 13.3 Sources of water pollution -- 13.3.1 Groundwater pollution -- 13.3.2 Surface water -- 13.4 Various causes of water pollution -- 13.4.1 Industrial waste -- 13.4.2 Sewage and wastewater -- 13.4.3 Mining activities -- 13.4.4 Marine dumping and oil spillage -- 13.4.5 Fossil fuels -- 13.4.6 Use of chemical fertilizers and pesticides in agriculture -- 13.5 Sources of soil pollution -- 13.5.1 Heavy metals -- 13.5.2 Hydrocarbons -- 13.5.3 Radioactive waste spill and disposal -- 13.6 The consequence of water pollution -- 13.6.1 Destruction of the ecosystem -- 13.6.2 Diseases -- 13.6.3 Agriculture -- 13.7 Consequences of soil pollution -- 13.8 Need for soil and water purification -- 13.8.1 Types of pollutants (organic and inorganic) -- 13.8.2 Inorganic pollutant -- 13.9 Phytoremediation of various types of water pollutants and its mechanism -- 13.10 Mechanism of phytoremediation. , 13.10.1 Natural hyperaccumulator -- 13.10.2 Fast-growing high-biomass producing nonaccumulators -- 13.10.3 Genetically modified plant with enhanced accumulation of pollutants/heavy metals -- 13.11 Types of phytoremediation -- 13.12 Conclusion -- References -- Chapter 14 - Rhizoremediation of petroleum hydrocarbon-contaminated soils: A systematic review of mutualism between phytor ... -- 14.1   Introduction -- 14.2   Impact of soil hydrocarbon contamination on ecosystem and human health -- 14.3   Phytoremediation of hydrocarbon-contaminated soils -- 14.4   Microorganisms and rhizoremediation of PHC-contaminated soils -- 14.5   Factors affecting the efficiency of soil rhizoremediation -- 14.6   Characterization of rhizosphere microorganisms -- 14.7   The symbiosis between phytoremediation species and microbes in rhizosphere -- 14.8   Microbial inoculation for improved rhizoremediation -- 14.9   Conclusion -- Acknowledgments -- References -- Chapter 15 - Ecotoxicity of nickel and its possible remediation -- 15.1 Introduction -- 15.2 Hazardous effects of Ni in plants -- 15.2.1 Ni effects on nutrient absorption by roots -- 15.2.2 Accumulation of Ni in plants -- 15.3 Ni hazardous effects in photosynthesis -- 15.4 Ni effect in plant pigment content -- 15.5 Ni effect in plant respiration -- 15.5.1 Ni oxide nanoparticles -- 15.6 Ni metabolic effects -- 15.7 Ni affects enzyme activity -- 15.7.1 Ni effects on soil health -- 15.7.2 Effect of Ni contamination on soil enzymatic activities -- 15.8 Cyclic nucleotide-gated channels (CNGCs) -- 15.9 Ni and human health -- 15.10 Ni and industrial use -- 15.10.1 Ni and environment pollution -- 15.10.2 Ni and drinking water -- 15.10.3 Ni interaction global warming -- 15.11 How to control Ni-based contamination in relation to plants -- 15.11.1 Remediation of heavy metal-contaminated sites. , 15.11.2 Ni uptake by plants and phytoremediation.
    Additional Edition: ISBN 0-323-89874-2
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    almahu_9949697902302882
    Format: 1 online resource (458 pages)
    ISBN: 0-323-91926-X
    Series Statement: Advances in Pollution Research
    Note: Front Cover -- Microbial Consortium and Biotransformation for Pollution Decontamination -- Copyright Page -- Dedication -- Contents -- List of contributors -- About the editors -- Foreword -- Preface -- Acknowledgments -- About the book -- 1 Threats and consequences of untreated wastewater on freshwater environments -- 1.1 Introduction -- 1.2 What is sewage? -- 1.3 Contaminant sources of emerging concerns -- 1.3.1 Wastewater -- 1.3.2 Sewage sludge -- 1.3.3 Urban solid waste -- 1.4 Fate of contaminants -- 1.5 Ecological risk and health assessment of emerging contaminant in untreated water -- 1.6 Untreated wastewater as a cause of antibiotic resistance -- 1.7 Impact of wastewater on cities -- 1.8 Impact of wastewater on industry -- 1.9 Impact of wastewater on agriculture -- 1.10 Impact of wastewater on natural bodies of water -- 1.11 Impact of untreated wastewater on microbial diversity -- 1.12 Impact of wastewater in aquatic environments -- 1.13 Biologic hazards in aquatic environments -- 1.14 Major threats -- 1.15 Why should wastewater be treated? -- 1.16 Challenges and opportunities -- 1.17 Conclusion -- References -- 2 Unraveling a correlation between environmental contaminants and human health -- 2.1 Introduction -- 2.2 Environmental toxicology and related human health risks -- 2.2.1 Air pollution -- 2.2.2 Hazard effect on health -- 2.2.3 Nonpoint source pollution -- 2.2.4 Chemical pollution from the environment -- 2.3 The environmental impact of chemical fertilizers and excessive fertilizers on water quality -- 2.3.1 Oxygen consumption -- 2.3.2 Weed growth and algae bloom -- 2.4 Method to reveal the relationship between human body, environment, and emotion data -- 2.5 Conclusion -- References -- 3 Effect of wastewater from industries on freshwater ecosystem: threats and remedies -- 3.1 Introduction. , 3.2 Saline wastewater: its impact and treatment -- 3.2.1 Effect of salinity on freshwater ecosystem -- 3.3 Food-processing industry wastewater -- 3.4 Leather industry wastewater -- 3.5 Effluents from petroleum industry -- 3.6 Plastic industries and micro- and nanoplastic in freshwater ecosystem -- 3.6.1 Effect of microplastic on freshwater ecosystem -- 3.7 Effect of different wastewater from industries on freshwater organisms -- 3.8 Remedies to reduce industrial effluents -- 3.9 Conclusion -- References -- 4 Credibility on biosensors for monitoring contamination in aquatic environs -- 4.1 Introduction -- 4.2 Major sources of water pollution -- 4.3 Biosensors -- 4.3.1 Biosensors for the detection of heavy metals -- 4.3.1.1 Enzyme-based biosensors -- 4.3.1.2 Protein-based biosensor -- 4.3.1.3 Antibody-based biosensor -- 4.3.1.4 Deoxyribonucleic acid-based biosensor -- 4.3.1.5 Naturally occurring whole-cell biosensor -- 4.3.1.6 Genetic engineering-based biosensor -- 4.3.2 Biosensors for the detection of microorganisms -- 4.3.2.1 Optical biosensors -- 4.3.2.2 Electrochemical biosensor -- 4.3.3 Biosensors for the detection of organic pollutants -- 4.3.3.1 Organic pollutants -- 4.3.3.2 Optical biosensors -- 4.3.3.3 Electrochemical biosensors -- 4.3.3.4 Thermal biosensors -- 4.4 General limitations, challenges, and future prospects of biosensors in wastewater monitoring -- 4.5 Conclusion -- References -- 5 Microbial systems, current trends, and future prospective: a systemic analysis -- 5.1 Introduction -- 5.2 Microbiology for soil health, environmental protection, and sustainable agriculture -- 5.3 Future prospects of environmental microorganisms -- 5.4 Microbial pesticides -- 5.5 Microorganisms' impending visions -- 5.6 Interconnections between plants and soil microorganisms -- 5.7 Plant acquisition of nutrients: direct uptake from the soil. , 5.7.1 Mycorrhizal interactions with plants -- 5.8 Conclusion and remark -- References -- 6 Microbial consortia for pollution remediation-Success stories -- 6.1 Introduction -- 6.2 Bioremediation -- 6.3 Microbial consortia-a multispecialized biological system for bioremediation -- 6.4 Microbial consortia and degradation of pollutants -- 6.4.1 Degradation of petroleum components -- 6.4.2 Remediation of wastewater -- 6.4.3 Degradation of industrial dyes -- 6.4.4 Remediation of other organic pollutants -- 6.5 Conclusion and future perspective -- Acknowledgment -- References -- 7 Biological transformation as a technique in pollution decontamination -- 7.1 Introduction -- 7.2 Biological transformation -- 7.3 Biological transformation classes -- 7.3.1 Biotransformation -- 7.3.1.1 Biotransformation of pharmaceutical compounds -- 7.3.1.2 Biotransformation of metals and metalloids -- 7.3.1.3 Biotransformation of phenol compounds -- 7.3.1.4 Biotransformation of pesticides -- 7.3.1.5 Biotransformation of real effluents -- 7.3.2 Phytotransformation -- 7.3.2.1 Phytotransformation of fluorinated compounds -- 7.3.3 Mycotransformation -- 7.3.3.1 Mycotransformation of pesticides -- 7.3.3.2 Mycotransformation of metals -- 7.3.3.3 Mycotransformation of pharmaceutical compounds -- 7.3.3.4 Mycotransformation of phenol compounds -- 7.3.3.5 Mycotransformation of dyes -- 7.3.4 Phycotransformation -- 7.3.4.1 Phycotransformation of metals and metalloids -- 7.3.4.2 Phycotransformation of pharmaceutical compounds -- 7.3.5 Zootransformation -- 7.3.5.1 Zootransformation of fluorinated compounds -- 7.3.5.2 Zootransformation of metals and metalloids -- 7.4 Factors influencing biological transformation -- 7.5 Functional genes implicated in biological transformation -- 7.6 Enzymes involved in biological transformation -- 7.7 Nanomaterial biological transformation. , 7.8 Cometabolic biological transformation -- 7.8.1 Cometabolic biotransformation -- 7.8.2 Cometabolic phycotransformation -- 7.9 Conclusions and future perspectives -- References -- 8 Role of polyphosphate accumulating organisms in enhanced biological phosphorous removal -- 8.1 Introduction -- 8.2 Natural occurrence of polyphosphate accumulating organisms -- 8.3 Microbiology of EBPR and polyphosphate accumulating organisms -- 8.4 Biochemistry of EBPR and phosphate accumulating organism -- 8.5 EBPR with acetate as a carbon source -- 8.6 EBPR metabolism with substrates other than acetate -- 8.7 Enzymes involved in poly P metabolism -- 8.7.1 Poly P synthesis -- 8.7.2 Poly P degradation -- 8.8 EBPR configurations -- 8.8.1 Mainstream process -- 8.8.1.1 A/O or A2/O -- 8.8.1.2 University of Cape Town-modified process -- 8.8.1.3 Johannesburg configuration -- 8.8.2 Sidestream -- 8.8.2.1 PhoStrip -- 8.8.2.2 Biological-chemical phosphorous and nitrogen removal configuration -- 8.8.3 Cycling system -- 8.8.3.1 Biodenipho process -- 8.8.3.2 Oxidation ditch design -- 8.9 Parameters to consider in EBPR process -- 8.9.1 Temperature -- 8.9.1.1 Recent research on EBPR process in tropical conditions -- 8.9.2 Carbon source and wastewater composition -- 8.9.3 pH -- 8.9.4 Sludge age -- 8.9.5 Recycle of nitrates -- 8.9.6 Sludge phosphorous content -- 8.10 Criteria to monitor effective EBPR process -- 8.11 Transfer of energy pathway genes in microbial enhanced biological phosphorous removal communities -- 8.12 Novel and potential EBPR system -- 8.13 Conclusion and future perspective -- References -- 9 Genetically engineered bacteria: a novel technique for environmental decontamination -- 9.1 Introduction -- 9.2 Environmental contaminants -- 9.2.1 Heavy metal contamination -- 9.2.2 Dye-based hazardous pollutants -- 9.2.3 Radioactive compounds. , 9.2.4 Agricultural chemicals: herbicides, pesticides, and fertilizers -- 9.2.5 Petroleum and polycyclic aromatic hydrocarbon contaminants -- 9.2.6 Polychlorinated biphenyls -- 9.3 Genetically engineered bacteria and their construction -- 9.4 Genetically engineered bacteria for a sustainable environment -- 9.4.1 Remediation of toxic heavy metals -- 9.4.2 Bioremediation of dye by engineered bacteria -- 9.4.3 Bioremediation of radionuclides -- 9.4.4 Bioremediation of agricultural chemicals: herbicides, pesticides, and fertilizers -- 9.4.5 Petroleum and polycyclic aromatic hydrocarbons contaminants -- 9.4.6 Bioremediation of polychlorinated biphenyls -- 9.5 Factors affecting bioremediation from genetically engineered bacteria -- 9.6 Limitations and challenges of in-field release of genetically engineered bacteria -- 9.7 Survivability and sustenance of genetically engineered bacteria -- 9.8 Conclusion -- Acknowledgments -- Abbreviations -- References -- 10 An eco-friendly approach for the degradation of azo dyes and their effluents by Pleurotus florida -- 10.1 Introduction -- 10.2 White-rot fungi -- 10.2.1 Oyster mushroom or Pleurotus florida -- 10.3 Textile dyes -- 10.3.1 Description of dyes -- 10.4 Scenario of textile dyes utilized in India -- 10.5 Explication of dyeing process in textile industries -- 10.6 Hallmarks of wastes effected by the textile industry -- 10.7 Impact of textile dyes on environment -- 10.8 Dye decolorization methods -- 10.8.1 Physical method -- 10.8.2 Chemical method -- 10.8.3 Biological method -- 10.9 Oxidative and hydrolytic enzymes of Pleurotus florida used in decolorization of azo dyes -- 10.9.1 Laccase (E.C 1.10. 3.2) -- 10.9.2 Manganese peroxidase (E.C. 1.11.1.13) -- 10.9.3 Lignin peroxidase -- 10.10 Factors influencing the dye decolorization -- 10.10.1 Influence of pH and temperature -- 10.10.2 Impact of nitrogen source. , 10.10.3 Influence of carbon source.
    Additional Edition: Print version: Dar, Gowhar Hamid Microbial Consortium and Biotransformation for Pollution Decontamination San Diego : Elsevier,c2022 ISBN 9780323918930
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    almahu_BV046083423
    Format: 1 Online-Ressource (XV, 339 Seiten) : , Illustrationen, Diagramme, Karten (teilweise farbig).
    ISBN: 978-981-13-8277-2
    Additional Edition: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-981-138-276-5
    Additional Edition: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-981-138-279-6
    Language: English
    Subjects: Geography , General works
    RVK:
    RVK:
    RVK:
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    edoccha_9961574149802883
    Format: 1 online resource (0 pages)
    Edition: First edition.
    ISBN: 9783031572753
    Additional Edition: ISBN 9783031572746
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    b3kat_BV047094164
    Format: 1 Online-Ressource (xxi, 297 Seiten) , Illustrationen
    ISBN: 9783030487713
    In: 1
    Additional Edition: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-3-030-48770-6
    Additional Edition: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-3-030-48773-7
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages