Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Basel : MDPI - Multidisciplinary Digital Publishing Institute
    UID:
    almahu_9949345639202882
    Format: 1 electronic resource (282 p.)
    Content: Environmental challenges posed by wrong end of lifeplastic management drive the plastics recycling schemes for energy recovery and cutting emissions, penalties, energy consumption, non-renewable resources, and manufacturing costs. Plastic recycling has the lowest environmental impact on global warming potential and total energy use. However, under-utilised plastic wastes due to low value issues with sorting/contamination pose major challenges. Novel technologies drive innovation in a circular economy model for plastics and employ reuse, recycling and responsible manufacture solutions, support the development of new industries and jobs, reduce emissions and increase efficient use of natural resources (including energy, water and materials). Many economies are working towards achieving a zero plastic waste economy. This Special Issue covers the applications of recycled plastics in the areas of energy recovery/alternative fuels, economic analyses, bitumen additives, flame retardants, recycled polymer nanocomposites to enhance the mechanical property, thermomechanical recycling to improve physical properties, mechano-chemical treatment, cryogenic waste tyre recycling, application in decarbonizing technology, e.g., cement industry, waste characterization, improving agricultural soil quality, as smart fertilizers. The Editors express their appreciation to all the contributors across the world in the development of this reprint. This reprint gives different perspectives and technical ideas for the transformation of plastic wastes into value-added products and to achieve higher recycling rates in the coming years.
    Note: English
    Additional Edition: ISBN 3-0365-4538-7
    Additional Edition: ISBN 3-0365-4537-9
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    b3kat_BV044978935
    Format: 1 Online-Ressource
    ISBN: 9781498733069
    Note: Description based on publisher supplied metadata and other sources
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-1-4987-3302-1
    Language: English
    Keywords: Bergbau ; Rohstoffwirtschaft ; Energiewirtschaft ; Recycling ; Nachhaltigkeit
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    edocfu_9961222109102883
    Format: 1 online resource (456 pages)
    Edition: 1st ed.
    ISBN: 0-323-95554-1
    Content: "This book begins by outlining the processes, theory, and technology underlying hydrogen energy, from production to storage and dissemination. Each chapter outlines the potential and the hurdles for developing each element toward a workable hydrogen infrastructure. The later parts consider the social, and environmental issues surrounding the hydrogen economy, and suggest updated governmental policies." -
    Note: Title Page -- Copyright -- Table of Contents -- Contributors -- Preface -- Acknowledgment -- Section 1 Hydrogen Economy and International hydrogen strategy -- Chapter 1.1 Hydrogen economy and international hydrogen strategies -- 1.1.1 Introduction -- 1.1.2 Concept of the hydrogen economy -- 1.1.3 Properties of hydrogen -- 1.1.4 Overview of hydrogen production methods -- 1.1.5 Overview on hydrogen storage methods -- 1.1.6 Overview on hydrogen supply and delivery methods -- 1.1.7 Overview on application of hydrogen -- 1.1.8 Hydrogen safety -- 1.1.9 International strategies on hydrogen -- 1.1.10 Summary -- References -- Chapter 1.2 Potential market failures inhibiting the development of a green hydrogen export industry -- 1.2.1 Introduction -- 1.2.2 Market failures -- 1.2.3 Policy development and recommendations to address market failures for hydrogen exports -- Acknowledgments -- References -- Chapter 1.3 Global hydrogen economy and hydrogen strategy overview -- 1.3.1 Introduction -- 1.3.2 Global hydrogen consumption and fossil fuel dependence -- 1.3.3 Future potential applications -- 1.3.4 Hydrogen commitments through global climate targets and emission reduction goals by the public and private sector -- 1.3.5 Role of hydrogen in decarbonizing global economy -- 1.3.6 Towards a hydrogen economy -- 1.3.7 Need for national hydrogen strategies -- 1.3.8 Strategy announcements and legislative commitments -- 1.3.9 Value chain and sectoral focus -- 1.3.10 Green hydrogen exporters and trade -- References -- Section 2 Hydrogen Production -- Chapter 2.1 Recent progress and developments in photocatalytic overall water splitting -- 2.1.1 Introduction -- 2.1.2 Mechanism -- 2.1.3 Measuring the photocatalytic activity and performance -- 2.1.4 Progress in OWS process and technology -- 2.1.5 Nitride and oxynitride-based materials. , 2.1.6 Oxysulfide-based photocatalysts -- 2.1.7 Conjugated polymers for OWS -- 2.1.8 Metal-free photocatalysts -- 2.1.9 ABX3-type photocatalysts -- 2.1.10 Role of cocatalysts in realizing efficient OWS -- 2.1.11 Scalable H2 production via OWS -- 2.1.12 Summary and future prospects -- References -- Section 3 Hydrogen Storage -- Chapter 3.1 Current state and challenges for hydrogen storage technologies -- 3.1.1 Introduction -- 3.1.2 Physical hydrogen storage -- 3.1.3 Chemical storage -- 3.1.4 Opportunities and challenges -- 3.1.5 Conclusion -- References -- Chapter 3.2 Hydrogen storage in high entropy alloys -- 3.2.1 Introduction -- 3.2.2 Energy sources -- 3.2.3 Hydrogen energy: sustainable energy system/advantages of hydrogen -- 3.2.4 Hydrogen storage -- 3.2.5 Types of hydrogen storage -- 3.2.6 Hydrogen storage in intermetallic metal hydrides -- 3.2.7 Hydrogen storage mechanism in metal -- 3.2.8 Multiprincipal high entropy alloys (MPHEA) -- 3.2.9 The concept and thermodynamic parameters of high-entropy alloys -- 3.2.10 Synthesis techniques of HEMs -- 3.2.11 Possibilities of hydrogen storage in HEMs -- 3.2.12 Hydrogen storage in BCC HEAs -- 3.2.13 Hydrogen storage in HEAs at room temperature -- 3.2.14 Summary -- Acknowledgments -- References -- Further reading -- Chapter 3.3 Hydrogen storage technology -- 3.3.1 Compressed hydrogen storage -- 3.3.2 Liquid hydrogen storage -- 3.3.3 Solid-state hydrogen storage -- References -- Section 4 Hydrogen Transportation and Distribution -- Chapter 4.1 Hydrogen transportation and distribution -- 4.1.1 Hydrogen delivery infrastructures -- 4.1.2 Environmental impact -- 4.1.3 Cost of hydrogen transportation and distribution -- 4.1.4 Safety in hydrogen transportation and distribution -- 4.1.5 Policies -- 4.1.6 Hydrogen transportation model -- 4.1.7 Conclusion -- Appendix -- References. , Chapter 4.2 Commercially available resources for physical hydrogen storage and distribution -- 4.2.1 Introduction -- 4.2.2 Physical hydrogen storage -- 4.2.3 Hydrogen distribution in gaseous or liquid forms -- 4.2.4 Thermodynamics of hydrogen phase change -- 4.2.5 Way forward towards completing the hydrogen energy square -- References -- Chapter 4.3 Metal hydride hydrogen storage: A systems perspective -- 4.3.1 Introduction -- 4.3.2 Classification of metal hydride hydrogen storage tanks -- 4.3.3 Safety and reliability -- 4.3.4 Present status -- References -- Section 5 Hydrogen Safety/ Standards (National and International Document Standards on Hydrogen Energy and Fuel Cells) -- Chapter 5.1 Hydrogen sensors for safety applications -- 5.1.1 Introduction -- 5.1.2 Risks and hazards of hydrogen usage -- 5.1.3 Hydrogen sensors -- 5.1.4 Hydrogen sensor market -- 5.1.5 Future trend in hydrogen sensors -- References -- Chapter 5.2 Hydrogen safety/standards (national and international document standards on hydrogen energy and fuel cell) -- 5.2.1 Introduction -- 5.2.2 Hazards, incidents, and preventions -- 5.2.3 Regulations, codes, and standards -- 5.2.4 Global technical regulations-2022 -- 5.2.5 Conclusion -- References -- Section 6 Power to Gas 'Pathway' -- Chapter 6.1 Potential of hydrogen in powering mobility and grid sectors -- 6.1.1 Introduction -- 6.1.2 Hydrogen as fuel -- 6.1.3 Power conversion methodologies -- 6.1.4 Safety issues -- 6.1.5 Engine characteristics for hydrogen fuel -- 6.1.6 Hydrogen-blended syngas -- 6.1.7 Internal combustion engines -- 6.1.8 Power production and power blending -- 6.1.9 Conclusions -- Acknowledgment -- References -- Section 7 Potential use of hydrogen for vehicular and power grid application -- Chapter 7.1 Total cost of ownership analysis of fuel cell electric vehicles in India -- 7.1.1 Introduction -- 7.1.2 Methodology. , 7.1.3 Results and discussion -- 7.1.4 Conclusion -- Acknowledgment -- References -- Chapter 7.2 Overview on application of hydrogen -- 7.2.1 Introduction -- 7.2.2 Use of hydrogen in the industrial sector -- 7.2.3 Power sector -- 7.2.4 Transport sector -- 7.2.5 Household applications -- 7.2.6 Conclusion -- References -- Chapter 7.3 Fuel Cell applications: Portable-domestic-distributed-mobility -- 7.3.1 Introduction -- 7.3.2 Types of fuel cells and their applications -- 7.3.3 Fuel cell fundamentals -- 7.3.4 Evolution of fuel cells -- 7.3.5 Potential applications -- 7.3.6 Safety considerations for hydrogen fuel cell applications -- 7.3.7 Innovations in fuel cells and cost reduction -- 7.3.8 Conclusion -- References -- Section 8 Current and Future (of) hydrogen economy -- Chapter 8.1 Current and future of the hydrogen economy -- 8.1.1 Introduction -- 8.1.2 The hydrogen economy -- 8.1.3 Hydrogen production -- 8.1.4 Hydrogen storage and transportation -- 8.1.5 Hydrogen utilization -- 8.1.6 Hydrogen as a working fluid/improvement of its "functional quality" -- 8.1.7 Safety and standards -- 8.1.8 Recycling of components -- 8.1.9 Concluding Remarks -- References -- Index.
    Additional Edition: Print version: Jaiswal-Nagar, Deepshikha Towards Hydrogen Infrastructure San Diego : Elsevier,c2023 ISBN 9780323955539
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    edoccha_9961222109102883
    Format: 1 online resource (456 pages)
    Edition: 1st ed.
    ISBN: 0-323-95554-1
    Content: "This book begins by outlining the processes, theory, and technology underlying hydrogen energy, from production to storage and dissemination. Each chapter outlines the potential and the hurdles for developing each element toward a workable hydrogen infrastructure. The later parts consider the social, and environmental issues surrounding the hydrogen economy, and suggest updated governmental policies." -
    Note: Title Page -- Copyright -- Table of Contents -- Contributors -- Preface -- Acknowledgment -- Section 1 Hydrogen Economy and International hydrogen strategy -- Chapter 1.1 Hydrogen economy and international hydrogen strategies -- 1.1.1 Introduction -- 1.1.2 Concept of the hydrogen economy -- 1.1.3 Properties of hydrogen -- 1.1.4 Overview of hydrogen production methods -- 1.1.5 Overview on hydrogen storage methods -- 1.1.6 Overview on hydrogen supply and delivery methods -- 1.1.7 Overview on application of hydrogen -- 1.1.8 Hydrogen safety -- 1.1.9 International strategies on hydrogen -- 1.1.10 Summary -- References -- Chapter 1.2 Potential market failures inhibiting the development of a green hydrogen export industry -- 1.2.1 Introduction -- 1.2.2 Market failures -- 1.2.3 Policy development and recommendations to address market failures for hydrogen exports -- Acknowledgments -- References -- Chapter 1.3 Global hydrogen economy and hydrogen strategy overview -- 1.3.1 Introduction -- 1.3.2 Global hydrogen consumption and fossil fuel dependence -- 1.3.3 Future potential applications -- 1.3.4 Hydrogen commitments through global climate targets and emission reduction goals by the public and private sector -- 1.3.5 Role of hydrogen in decarbonizing global economy -- 1.3.6 Towards a hydrogen economy -- 1.3.7 Need for national hydrogen strategies -- 1.3.8 Strategy announcements and legislative commitments -- 1.3.9 Value chain and sectoral focus -- 1.3.10 Green hydrogen exporters and trade -- References -- Section 2 Hydrogen Production -- Chapter 2.1 Recent progress and developments in photocatalytic overall water splitting -- 2.1.1 Introduction -- 2.1.2 Mechanism -- 2.1.3 Measuring the photocatalytic activity and performance -- 2.1.4 Progress in OWS process and technology -- 2.1.5 Nitride and oxynitride-based materials. , 2.1.6 Oxysulfide-based photocatalysts -- 2.1.7 Conjugated polymers for OWS -- 2.1.8 Metal-free photocatalysts -- 2.1.9 ABX3-type photocatalysts -- 2.1.10 Role of cocatalysts in realizing efficient OWS -- 2.1.11 Scalable H2 production via OWS -- 2.1.12 Summary and future prospects -- References -- Section 3 Hydrogen Storage -- Chapter 3.1 Current state and challenges for hydrogen storage technologies -- 3.1.1 Introduction -- 3.1.2 Physical hydrogen storage -- 3.1.3 Chemical storage -- 3.1.4 Opportunities and challenges -- 3.1.5 Conclusion -- References -- Chapter 3.2 Hydrogen storage in high entropy alloys -- 3.2.1 Introduction -- 3.2.2 Energy sources -- 3.2.3 Hydrogen energy: sustainable energy system/advantages of hydrogen -- 3.2.4 Hydrogen storage -- 3.2.5 Types of hydrogen storage -- 3.2.6 Hydrogen storage in intermetallic metal hydrides -- 3.2.7 Hydrogen storage mechanism in metal -- 3.2.8 Multiprincipal high entropy alloys (MPHEA) -- 3.2.9 The concept and thermodynamic parameters of high-entropy alloys -- 3.2.10 Synthesis techniques of HEMs -- 3.2.11 Possibilities of hydrogen storage in HEMs -- 3.2.12 Hydrogen storage in BCC HEAs -- 3.2.13 Hydrogen storage in HEAs at room temperature -- 3.2.14 Summary -- Acknowledgments -- References -- Further reading -- Chapter 3.3 Hydrogen storage technology -- 3.3.1 Compressed hydrogen storage -- 3.3.2 Liquid hydrogen storage -- 3.3.3 Solid-state hydrogen storage -- References -- Section 4 Hydrogen Transportation and Distribution -- Chapter 4.1 Hydrogen transportation and distribution -- 4.1.1 Hydrogen delivery infrastructures -- 4.1.2 Environmental impact -- 4.1.3 Cost of hydrogen transportation and distribution -- 4.1.4 Safety in hydrogen transportation and distribution -- 4.1.5 Policies -- 4.1.6 Hydrogen transportation model -- 4.1.7 Conclusion -- Appendix -- References. , Chapter 4.2 Commercially available resources for physical hydrogen storage and distribution -- 4.2.1 Introduction -- 4.2.2 Physical hydrogen storage -- 4.2.3 Hydrogen distribution in gaseous or liquid forms -- 4.2.4 Thermodynamics of hydrogen phase change -- 4.2.5 Way forward towards completing the hydrogen energy square -- References -- Chapter 4.3 Metal hydride hydrogen storage: A systems perspective -- 4.3.1 Introduction -- 4.3.2 Classification of metal hydride hydrogen storage tanks -- 4.3.3 Safety and reliability -- 4.3.4 Present status -- References -- Section 5 Hydrogen Safety/ Standards (National and International Document Standards on Hydrogen Energy and Fuel Cells) -- Chapter 5.1 Hydrogen sensors for safety applications -- 5.1.1 Introduction -- 5.1.2 Risks and hazards of hydrogen usage -- 5.1.3 Hydrogen sensors -- 5.1.4 Hydrogen sensor market -- 5.1.5 Future trend in hydrogen sensors -- References -- Chapter 5.2 Hydrogen safety/standards (national and international document standards on hydrogen energy and fuel cell) -- 5.2.1 Introduction -- 5.2.2 Hazards, incidents, and preventions -- 5.2.3 Regulations, codes, and standards -- 5.2.4 Global technical regulations-2022 -- 5.2.5 Conclusion -- References -- Section 6 Power to Gas 'Pathway' -- Chapter 6.1 Potential of hydrogen in powering mobility and grid sectors -- 6.1.1 Introduction -- 6.1.2 Hydrogen as fuel -- 6.1.3 Power conversion methodologies -- 6.1.4 Safety issues -- 6.1.5 Engine characteristics for hydrogen fuel -- 6.1.6 Hydrogen-blended syngas -- 6.1.7 Internal combustion engines -- 6.1.8 Power production and power blending -- 6.1.9 Conclusions -- Acknowledgment -- References -- Section 7 Potential use of hydrogen for vehicular and power grid application -- Chapter 7.1 Total cost of ownership analysis of fuel cell electric vehicles in India -- 7.1.1 Introduction -- 7.1.2 Methodology. , 7.1.3 Results and discussion -- 7.1.4 Conclusion -- Acknowledgment -- References -- Chapter 7.2 Overview on application of hydrogen -- 7.2.1 Introduction -- 7.2.2 Use of hydrogen in the industrial sector -- 7.2.3 Power sector -- 7.2.4 Transport sector -- 7.2.5 Household applications -- 7.2.6 Conclusion -- References -- Chapter 7.3 Fuel Cell applications: Portable-domestic-distributed-mobility -- 7.3.1 Introduction -- 7.3.2 Types of fuel cells and their applications -- 7.3.3 Fuel cell fundamentals -- 7.3.4 Evolution of fuel cells -- 7.3.5 Potential applications -- 7.3.6 Safety considerations for hydrogen fuel cell applications -- 7.3.7 Innovations in fuel cells and cost reduction -- 7.3.8 Conclusion -- References -- Section 8 Current and Future (of) hydrogen economy -- Chapter 8.1 Current and future of the hydrogen economy -- 8.1.1 Introduction -- 8.1.2 The hydrogen economy -- 8.1.3 Hydrogen production -- 8.1.4 Hydrogen storage and transportation -- 8.1.5 Hydrogen utilization -- 8.1.6 Hydrogen as a working fluid/improvement of its "functional quality" -- 8.1.7 Safety and standards -- 8.1.8 Recycling of components -- 8.1.9 Concluding Remarks -- References -- Index.
    Additional Edition: Print version: Jaiswal-Nagar, Deepshikha Towards Hydrogen Infrastructure San Diego : Elsevier,c2023 ISBN 9780323955539
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almahu_9949551251502882
    Format: 1 online resource (456 pages)
    Edition: 1st ed.
    ISBN: 0-323-95554-1
    Content: "This book begins by outlining the processes, theory, and technology underlying hydrogen energy, from production to storage and dissemination. Each chapter outlines the potential and the hurdles for developing each element toward a workable hydrogen infrastructure. The later parts consider the social, and environmental issues surrounding the hydrogen economy, and suggest updated governmental policies." -
    Note: Title Page -- Copyright -- Table of Contents -- Contributors -- Preface -- Acknowledgment -- Section 1 Hydrogen Economy and International hydrogen strategy -- Chapter 1.1 Hydrogen economy and international hydrogen strategies -- 1.1.1 Introduction -- 1.1.2 Concept of the hydrogen economy -- 1.1.3 Properties of hydrogen -- 1.1.4 Overview of hydrogen production methods -- 1.1.5 Overview on hydrogen storage methods -- 1.1.6 Overview on hydrogen supply and delivery methods -- 1.1.7 Overview on application of hydrogen -- 1.1.8 Hydrogen safety -- 1.1.9 International strategies on hydrogen -- 1.1.10 Summary -- References -- Chapter 1.2 Potential market failures inhibiting the development of a green hydrogen export industry -- 1.2.1 Introduction -- 1.2.2 Market failures -- 1.2.3 Policy development and recommendations to address market failures for hydrogen exports -- Acknowledgments -- References -- Chapter 1.3 Global hydrogen economy and hydrogen strategy overview -- 1.3.1 Introduction -- 1.3.2 Global hydrogen consumption and fossil fuel dependence -- 1.3.3 Future potential applications -- 1.3.4 Hydrogen commitments through global climate targets and emission reduction goals by the public and private sector -- 1.3.5 Role of hydrogen in decarbonizing global economy -- 1.3.6 Towards a hydrogen economy -- 1.3.7 Need for national hydrogen strategies -- 1.3.8 Strategy announcements and legislative commitments -- 1.3.9 Value chain and sectoral focus -- 1.3.10 Green hydrogen exporters and trade -- References -- Section 2 Hydrogen Production -- Chapter 2.1 Recent progress and developments in photocatalytic overall water splitting -- 2.1.1 Introduction -- 2.1.2 Mechanism -- 2.1.3 Measuring the photocatalytic activity and performance -- 2.1.4 Progress in OWS process and technology -- 2.1.5 Nitride and oxynitride-based materials. , 2.1.6 Oxysulfide-based photocatalysts -- 2.1.7 Conjugated polymers for OWS -- 2.1.8 Metal-free photocatalysts -- 2.1.9 ABX3-type photocatalysts -- 2.1.10 Role of cocatalysts in realizing efficient OWS -- 2.1.11 Scalable H2 production via OWS -- 2.1.12 Summary and future prospects -- References -- Section 3 Hydrogen Storage -- Chapter 3.1 Current state and challenges for hydrogen storage technologies -- 3.1.1 Introduction -- 3.1.2 Physical hydrogen storage -- 3.1.3 Chemical storage -- 3.1.4 Opportunities and challenges -- 3.1.5 Conclusion -- References -- Chapter 3.2 Hydrogen storage in high entropy alloys -- 3.2.1 Introduction -- 3.2.2 Energy sources -- 3.2.3 Hydrogen energy: sustainable energy system/advantages of hydrogen -- 3.2.4 Hydrogen storage -- 3.2.5 Types of hydrogen storage -- 3.2.6 Hydrogen storage in intermetallic metal hydrides -- 3.2.7 Hydrogen storage mechanism in metal -- 3.2.8 Multiprincipal high entropy alloys (MPHEA) -- 3.2.9 The concept and thermodynamic parameters of high-entropy alloys -- 3.2.10 Synthesis techniques of HEMs -- 3.2.11 Possibilities of hydrogen storage in HEMs -- 3.2.12 Hydrogen storage in BCC HEAs -- 3.2.13 Hydrogen storage in HEAs at room temperature -- 3.2.14 Summary -- Acknowledgments -- References -- Further reading -- Chapter 3.3 Hydrogen storage technology -- 3.3.1 Compressed hydrogen storage -- 3.3.2 Liquid hydrogen storage -- 3.3.3 Solid-state hydrogen storage -- References -- Section 4 Hydrogen Transportation and Distribution -- Chapter 4.1 Hydrogen transportation and distribution -- 4.1.1 Hydrogen delivery infrastructures -- 4.1.2 Environmental impact -- 4.1.3 Cost of hydrogen transportation and distribution -- 4.1.4 Safety in hydrogen transportation and distribution -- 4.1.5 Policies -- 4.1.6 Hydrogen transportation model -- 4.1.7 Conclusion -- Appendix -- References. , Chapter 4.2 Commercially available resources for physical hydrogen storage and distribution -- 4.2.1 Introduction -- 4.2.2 Physical hydrogen storage -- 4.2.3 Hydrogen distribution in gaseous or liquid forms -- 4.2.4 Thermodynamics of hydrogen phase change -- 4.2.5 Way forward towards completing the hydrogen energy square -- References -- Chapter 4.3 Metal hydride hydrogen storage: A systems perspective -- 4.3.1 Introduction -- 4.3.2 Classification of metal hydride hydrogen storage tanks -- 4.3.3 Safety and reliability -- 4.3.4 Present status -- References -- Section 5 Hydrogen Safety/ Standards (National and International Document Standards on Hydrogen Energy and Fuel Cells) -- Chapter 5.1 Hydrogen sensors for safety applications -- 5.1.1 Introduction -- 5.1.2 Risks and hazards of hydrogen usage -- 5.1.3 Hydrogen sensors -- 5.1.4 Hydrogen sensor market -- 5.1.5 Future trend in hydrogen sensors -- References -- Chapter 5.2 Hydrogen safety/standards (national and international document standards on hydrogen energy and fuel cell) -- 5.2.1 Introduction -- 5.2.2 Hazards, incidents, and preventions -- 5.2.3 Regulations, codes, and standards -- 5.2.4 Global technical regulations-2022 -- 5.2.5 Conclusion -- References -- Section 6 Power to Gas 'Pathway' -- Chapter 6.1 Potential of hydrogen in powering mobility and grid sectors -- 6.1.1 Introduction -- 6.1.2 Hydrogen as fuel -- 6.1.3 Power conversion methodologies -- 6.1.4 Safety issues -- 6.1.5 Engine characteristics for hydrogen fuel -- 6.1.6 Hydrogen-blended syngas -- 6.1.7 Internal combustion engines -- 6.1.8 Power production and power blending -- 6.1.9 Conclusions -- Acknowledgment -- References -- Section 7 Potential use of hydrogen for vehicular and power grid application -- Chapter 7.1 Total cost of ownership analysis of fuel cell electric vehicles in India -- 7.1.1 Introduction -- 7.1.2 Methodology. , 7.1.3 Results and discussion -- 7.1.4 Conclusion -- Acknowledgment -- References -- Chapter 7.2 Overview on application of hydrogen -- 7.2.1 Introduction -- 7.2.2 Use of hydrogen in the industrial sector -- 7.2.3 Power sector -- 7.2.4 Transport sector -- 7.2.5 Household applications -- 7.2.6 Conclusion -- References -- Chapter 7.3 Fuel Cell applications: Portable-domestic-distributed-mobility -- 7.3.1 Introduction -- 7.3.2 Types of fuel cells and their applications -- 7.3.3 Fuel cell fundamentals -- 7.3.4 Evolution of fuel cells -- 7.3.5 Potential applications -- 7.3.6 Safety considerations for hydrogen fuel cell applications -- 7.3.7 Innovations in fuel cells and cost reduction -- 7.3.8 Conclusion -- References -- Section 8 Current and Future (of) hydrogen economy -- Chapter 8.1 Current and future of the hydrogen economy -- 8.1.1 Introduction -- 8.1.2 The hydrogen economy -- 8.1.3 Hydrogen production -- 8.1.4 Hydrogen storage and transportation -- 8.1.5 Hydrogen utilization -- 8.1.6 Hydrogen as a working fluid/improvement of its "functional quality" -- 8.1.7 Safety and standards -- 8.1.8 Recycling of components -- 8.1.9 Concluding Remarks -- References -- Index.
    Additional Edition: Print version: Jaiswal-Nagar, Deepshikha Towards Hydrogen Infrastructure San Diego : Elsevier,c2023 ISBN 9780323955539
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    b3kat_BV048532281
    Format: 1 Online-Ressource (VIII, 268 Seiten) , Illustrationen, Diagramme
    ISBN: 9783036545370
    Note: Printed edition of the special issue published in Polymers
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-0365-4538-7
    Language: English
    Keywords: Umweltschutzmarkt ; Plastik ; Recycling ; Aufsatzsammlung
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edocfu_9960074006802883
    Format: 1 online resource (624 pages)
    ISBN: 0-12-821709-X
    Series Statement: Micro & nano technologies
    Note: Front Cover -- Nano Tools and Devices for Enhanced Renewable Energy -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Modern perspective of renewable energy with Nano tools & -- devices -- 1 High-performance polymer applications for renewable energy -- 1.1 Introduction -- 1.2 Energy conservation and optimization of polymer materials -- 1.3 Improvement of conventional energy sources -- 1.3.1 Polymer-based electrochemical cells -- 1.4 Improvement of renewable energy sources -- 1.4.1 Polymer-based solar photovoltaics -- 1.4.2 Waste-to-energy technologies -- 1.4.3 Alternative energy sources: water, geothermal energy, wind, and tides -- 1.5 Energy storage -- 1.6 Nanotechnology as cross-cutting technology for renewable energy-final conclusions -- Acknowledgments -- References -- 2 Nanocomposite polymer electrolytes for energy devices -- 2.1 Introduction -- 2.1.1 Polymer electrolytes -- 2.1.1.1 Polymer-salt complexes -- 2.1.1.2 Plasticized polymer electrolytes -- 2.1.1.3 Composite polymer electrolytes -- 2.1.1.4 Composite plasticized polymer electrolytes -- 2.2 Synthesis -- 2.3 Results -- 2.3.1 PVdF-HFP-based nanocomposite plasticized polymer electrolytes containing NH4BF4 -- 2.3.1.1 Electrical properties -- 2.3.1.2 Structural characterization -- 2.3.2 PVdF-HFP-based nanocomposite plasticized polymer electrolytes containing NH4F -- 2.3.2.1 Electrical properties -- 2.3.2.2 Structural properties -- 2.3.2.2.1 Advantages -- 2.4 Present status of nanocomposite polymer electrolytes -- 2.5 Conclusion and future scope -- References -- Websites -- 3 Nanodispersed polymer gels used as electrolytes in lithium-ion batteries -- 3.1 Introduction -- 3.1.1 Classification of polymer electrolytes -- 3.1.1.1 Polyelectrolytes -- 3.1.1.2 Polymer-salt complexes -- 3.1.1.3 Polymer gel electrolytes -- 3.1.1.4 Composite polymer gel electrolytes. , 3.2 Materials and method of preparation -- 3.3 PMMA-based nanodispersed polymer gel electrolytes containing LiCF3SO3 -- 3.4 PMMA-based nanodispersed polymer gel electrolytes containing LiBF4 -- 3.5 Conclusion -- 3.6 Present status and future scope -- References -- 2 Nano tools & -- devices-synthesis, fabrication & -- characterization -- 4 Surface modification of all-inorganic lead halide perovskite nanocrystals -- 4.1 Introduction -- 4.2 Surface science of all-inorganic metal trihalide perovskite nanocrystals-an outline -- 4.3 Surface-modification of all-inorganic metal halide perovskite nanocrystals-Classification and developments -- 4.3.1 Surface modification of lead halide perovskite nanocrystals using organic and organometallic compounds -- 4.3.2 Surface modification of lead halide perovskite nanocrystals using inorganic compounds -- 4.3.3 Surface modification of lead halide perovskite nanocrystals using doping of metal ions -- 4.3.4 Surface modification of lead halide perovskite nanocrystals using organic/inorganic hybrid compounds -- 4.3.5 Miscellaneous -- 4.4 Conclusion and future perspectives -- Acknowledgments -- References -- 5 Nanomaterials in renewable energy: UV-Visible spectroscopy characterization and applications -- 5.1 Introduction -- 5.2 Properties of nanomaterials -- 5.3 Synthesis of nanomaterials -- 5.4 Characterization of nanomaterials -- 5.5 UV-Visible spectroscopy-based characterizations of nanomaterials -- 5.6 Application of nanomaterials characterized using UV-Visible spectroscopy -- 5.6.1 Applications of nanomaterials in dye-sensitized solar cells -- 5.6.2 Applications of nanomaterials in nanofluids for solar absorption -- 5.7 Conclusions -- References -- 6 Describing nanoclusters as the way forward for hydrogen economy using Pd nanoclusters as a base -- 6.1 Introduction -- 6.2 Metal hydrides for hydrogen economy. , 6.2.1 Hydriding mechanisms -- 6.3 Palladium and magnesium hydrides for hydrogen economy -- 6.4 Hybrid palladium and magnesium films for hydrogen economy -- 6.4.1 Nanoclusters for energy storage -- 6.4.2 Nanocluster formation -- 6.5 Nanocluster growth model -- 6.6 Hybrid palladium and magnesium nanoclusters for hydrogen economy -- 6.7 Conclusions -- References -- 3 Nano energy generation tools & -- devices -- 7 Triboelectric nanogenerators for scavenging biomechanical energy: fabrication process to its self-powered applications -- 7.1 Introduction -- 7.1.1 Importance of triboelectric nanogenerator -- 7.2 Principle and mechanism of the triboelectric nanogenerator -- 7.2.1 The principle of the triboelectric nanogenerator -- 7.2.2 Working mechanism of a triboelectric nanogenerator -- 7.2.2.1 Vertical contact-separation mode -- 7.2.2.2 Lateral sliding mode -- 7.2.2.3 Free-standing triboelectric-layer mode -- 7.2.2.4 Single-electrode mode -- 7.3 Fabrication of TENG devices -- 7.3.1 Fabrication of flexible TENG device and its surface modification process -- 7.3.1.1 Smart seat TENG -- 7.3.1.2 Smart backpack TENG -- 7.3.1.3 Household TENG -- 7.3.1.4 Edible TENG -- 7.4 Mechanical motion generation techniques and electrical measurement setup -- 7.4.1 Electrodynamic shaker -- 7.4.2 Linear motor -- 7.4.3 Electrical measurement setup -- 7.5 Electrical analysis of TENG devices -- 7.5.1 Smart mobile pouch TENG -- 7.5.1.1 Water-proof TENG -- 7.5.1.2 Cellulose TENG -- 7.5.1.3 Smart computer mouse TENG -- 7.6 TENG-based self-powered applications -- 7.6.1 Self-powered smart puzzle -- 7.6.2 Battery-free smart electronic toys -- 7.6.3 Smart-buoy based self-powered position tracker -- 7.7 Conclusion -- References -- 8 Nanogenerators: a new paradigm in blue energy harvesting -- 8.1 Introduction -- 8.2 Origin of nanogenerators -- 8.3 Piezoelectric nanogenerator. , 8.4 Triboelectric nanogenerator -- 8.5 Pyroelectric nanogenerator -- 8.6 Thermoelectric nanogenerator -- 8.7 Blue energy harvesting using nanogenerators -- 8.7.1 Water-involved TENG -- 8.7.2 Nonwater-involved TENG -- 8.8 Summary and perspective -- References -- 9 Nanostructures as a tool for energy generation -- 9.1 Introduction -- 9.2 Reaction mechanism and coke deposition -- 9.3 Catalytic systems -- 9.3.1 Core-shell-type catalytic systems -- 9.3.2 Effect of the promoters -- 9.3.3 Microporous and mesoporous supports -- 9.4 Conclusion -- Acknowledgments -- References -- 4 Nano energy storage tools & -- devices -- 10 Electrospun PVDF-based composite nanofabrics: an emerging trend toward energy harvesting -- 10.1 Introduction -- 10.1.1 Polymorphism of poly(vinylidene fluoride) -- 10.2 Electrospinning method and poly(vinylidene fluoride) nanofabrics -- 10.3 Electrospinning of poly(vinylidene fluoride)-based composite nanofabrics -- 10.3.1 Piezoelectric fillers -- 10.3.2 Conducting fillers -- 10.3.3 Nonconducting fillers -- 10.3.4 Hybrid fillers -- 10.4 Conclusion and future trend -- References -- 11 Polymer and polymer-based nanocomposite materials for energy -- 11.1 Introduction -- 11.1.1 Nanofluids for energy applications -- 11.1.2 Piezoelectric polymer composites for energy harvesting -- 11.1.3 Conducting polymers for energy applications -- 11.1.3.1 Applications in batteries -- 11.1.3.2 Applications in light-emitting diodes -- 11.1.3.3 Applications in solar cells -- 11.1.3.4 Applications in supercapacitors -- 11.1.3.5 Polymers in thermoelectric applications -- 11.2 Summary -- References -- 12 Solid-state hydrogen storage as a future renewable energy technology -- 12.1 Introduction -- 12.2 Hydrogen as a renewable energy infrastructure enabler -- 12.3 Current hydrogen storage technologies -- 12.3.1 Gaseous-state hydrogen storage. , 12.3.2 Liquid-state hydrogen storage -- 12.3.3 Solid-state hydrogen storage -- 12.4 Solid-state hydrogen storage in materials-the fundamentals -- 12.4.1 Thermodynamics of hydrogen in materials -- 12.4.1.1 Tailoring thermodynamics via nanosizing -- 12.4.1.2 Tailoring thermodynamics via alloy formation and doping -- 12.4.2 Kinetics of hydrogen in materials -- 12.4.2.1 Tailoring kinetics via catalysis and nanosizing -- 12.5 Status on current hydrogen storage materials -- 12.5.1 Metal, alloys, and intermetallics -- 12.5.2 Complex hydrides -- 12.5.3 Nanosizing hydrides -- 12.6 Conclusion and outlook -- References -- 5 Nanotools and devices in wind power energy -- 13 Micro- and nanodevices for wind energy harvesting -- 13.1 Introduction -- 13.2 Flow-induced vibration mechanisms -- 13.2.1 Vortex-induced vibrations -- 13.2.2 Galloping -- 13.2.3 Wake galloping -- 13.2.4 Flutter -- 13.3 Energy harvesting transducers -- 13.3.1 Piezoelectric energy harvesting transducers -- 13.3.1.1 Materials -- 13.3.1.2 Architectures -- 13.3.1.3 Devices -- 13.3.1.3.1 Rotational PEHs -- 13.3.1.3.2 Nonrotational flow-driven PEHs -- 13.3.1.4 Figures of merit for PENGs in wind power -- 13.3.2 Triboelectric EHTs -- 13.3.2.1 Materials -- 13.3.2.2 Architectures -- 13.3.2.3 Devices -- 13.3.2.3.1 Rotational TENGs -- 13.3.2.3.2 Nonrotational flutter-driven TENGs -- 13.3.2.4 Figure of merits for TENGs in wind power harvesting -- 13.3.3 Electrostatic EHTs -- 13.3.3.1 Materials -- 13.3.3.2 Architectures -- 13.3.3.3 Devices -- 13.3.3.3.1 Rotational ESEHs -- 13.3.3.3.2 Nonrotational ESEHs -- 13.3.3.4 Figures of merit for ESEHs for wind energy harvesting -- 13.3.4 Electromagnetic EHTs -- 13.3.4.1 Materials -- 13.3.4.2 Architectures and devices -- 13.3.4.2.1 Rotational EMEHs -- 13.3.4.2.2 Nonrotational EMEHs -- 13.3.4.3 Figures of merit for EMEHs for wind energy harvesting -- 13.3.5 Hybrid EHTs. , 13.4 Conclusion: summary and challenges.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    almahu_9949697577102882
    Format: 1 online resource (624 pages)
    ISBN: 0-12-821709-X
    Series Statement: Micro & nano technologies
    Note: Front Cover -- Nano Tools and Devices for Enhanced Renewable Energy -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Modern perspective of renewable energy with Nano tools & -- devices -- 1 High-performance polymer applications for renewable energy -- 1.1 Introduction -- 1.2 Energy conservation and optimization of polymer materials -- 1.3 Improvement of conventional energy sources -- 1.3.1 Polymer-based electrochemical cells -- 1.4 Improvement of renewable energy sources -- 1.4.1 Polymer-based solar photovoltaics -- 1.4.2 Waste-to-energy technologies -- 1.4.3 Alternative energy sources: water, geothermal energy, wind, and tides -- 1.5 Energy storage -- 1.6 Nanotechnology as cross-cutting technology for renewable energy-final conclusions -- Acknowledgments -- References -- 2 Nanocomposite polymer electrolytes for energy devices -- 2.1 Introduction -- 2.1.1 Polymer electrolytes -- 2.1.1.1 Polymer-salt complexes -- 2.1.1.2 Plasticized polymer electrolytes -- 2.1.1.3 Composite polymer electrolytes -- 2.1.1.4 Composite plasticized polymer electrolytes -- 2.2 Synthesis -- 2.3 Results -- 2.3.1 PVdF-HFP-based nanocomposite plasticized polymer electrolytes containing NH4BF4 -- 2.3.1.1 Electrical properties -- 2.3.1.2 Structural characterization -- 2.3.2 PVdF-HFP-based nanocomposite plasticized polymer electrolytes containing NH4F -- 2.3.2.1 Electrical properties -- 2.3.2.2 Structural properties -- 2.3.2.2.1 Advantages -- 2.4 Present status of nanocomposite polymer electrolytes -- 2.5 Conclusion and future scope -- References -- Websites -- 3 Nanodispersed polymer gels used as electrolytes in lithium-ion batteries -- 3.1 Introduction -- 3.1.1 Classification of polymer electrolytes -- 3.1.1.1 Polyelectrolytes -- 3.1.1.2 Polymer-salt complexes -- 3.1.1.3 Polymer gel electrolytes -- 3.1.1.4 Composite polymer gel electrolytes. , 3.2 Materials and method of preparation -- 3.3 PMMA-based nanodispersed polymer gel electrolytes containing LiCF3SO3 -- 3.4 PMMA-based nanodispersed polymer gel electrolytes containing LiBF4 -- 3.5 Conclusion -- 3.6 Present status and future scope -- References -- 2 Nano tools & -- devices-synthesis, fabrication & -- characterization -- 4 Surface modification of all-inorganic lead halide perovskite nanocrystals -- 4.1 Introduction -- 4.2 Surface science of all-inorganic metal trihalide perovskite nanocrystals-an outline -- 4.3 Surface-modification of all-inorganic metal halide perovskite nanocrystals-Classification and developments -- 4.3.1 Surface modification of lead halide perovskite nanocrystals using organic and organometallic compounds -- 4.3.2 Surface modification of lead halide perovskite nanocrystals using inorganic compounds -- 4.3.3 Surface modification of lead halide perovskite nanocrystals using doping of metal ions -- 4.3.4 Surface modification of lead halide perovskite nanocrystals using organic/inorganic hybrid compounds -- 4.3.5 Miscellaneous -- 4.4 Conclusion and future perspectives -- Acknowledgments -- References -- 5 Nanomaterials in renewable energy: UV-Visible spectroscopy characterization and applications -- 5.1 Introduction -- 5.2 Properties of nanomaterials -- 5.3 Synthesis of nanomaterials -- 5.4 Characterization of nanomaterials -- 5.5 UV-Visible spectroscopy-based characterizations of nanomaterials -- 5.6 Application of nanomaterials characterized using UV-Visible spectroscopy -- 5.6.1 Applications of nanomaterials in dye-sensitized solar cells -- 5.6.2 Applications of nanomaterials in nanofluids for solar absorption -- 5.7 Conclusions -- References -- 6 Describing nanoclusters as the way forward for hydrogen economy using Pd nanoclusters as a base -- 6.1 Introduction -- 6.2 Metal hydrides for hydrogen economy. , 6.2.1 Hydriding mechanisms -- 6.3 Palladium and magnesium hydrides for hydrogen economy -- 6.4 Hybrid palladium and magnesium films for hydrogen economy -- 6.4.1 Nanoclusters for energy storage -- 6.4.2 Nanocluster formation -- 6.5 Nanocluster growth model -- 6.6 Hybrid palladium and magnesium nanoclusters for hydrogen economy -- 6.7 Conclusions -- References -- 3 Nano energy generation tools & -- devices -- 7 Triboelectric nanogenerators for scavenging biomechanical energy: fabrication process to its self-powered applications -- 7.1 Introduction -- 7.1.1 Importance of triboelectric nanogenerator -- 7.2 Principle and mechanism of the triboelectric nanogenerator -- 7.2.1 The principle of the triboelectric nanogenerator -- 7.2.2 Working mechanism of a triboelectric nanogenerator -- 7.2.2.1 Vertical contact-separation mode -- 7.2.2.2 Lateral sliding mode -- 7.2.2.3 Free-standing triboelectric-layer mode -- 7.2.2.4 Single-electrode mode -- 7.3 Fabrication of TENG devices -- 7.3.1 Fabrication of flexible TENG device and its surface modification process -- 7.3.1.1 Smart seat TENG -- 7.3.1.2 Smart backpack TENG -- 7.3.1.3 Household TENG -- 7.3.1.4 Edible TENG -- 7.4 Mechanical motion generation techniques and electrical measurement setup -- 7.4.1 Electrodynamic shaker -- 7.4.2 Linear motor -- 7.4.3 Electrical measurement setup -- 7.5 Electrical analysis of TENG devices -- 7.5.1 Smart mobile pouch TENG -- 7.5.1.1 Water-proof TENG -- 7.5.1.2 Cellulose TENG -- 7.5.1.3 Smart computer mouse TENG -- 7.6 TENG-based self-powered applications -- 7.6.1 Self-powered smart puzzle -- 7.6.2 Battery-free smart electronic toys -- 7.6.3 Smart-buoy based self-powered position tracker -- 7.7 Conclusion -- References -- 8 Nanogenerators: a new paradigm in blue energy harvesting -- 8.1 Introduction -- 8.2 Origin of nanogenerators -- 8.3 Piezoelectric nanogenerator. , 8.4 Triboelectric nanogenerator -- 8.5 Pyroelectric nanogenerator -- 8.6 Thermoelectric nanogenerator -- 8.7 Blue energy harvesting using nanogenerators -- 8.7.1 Water-involved TENG -- 8.7.2 Nonwater-involved TENG -- 8.8 Summary and perspective -- References -- 9 Nanostructures as a tool for energy generation -- 9.1 Introduction -- 9.2 Reaction mechanism and coke deposition -- 9.3 Catalytic systems -- 9.3.1 Core-shell-type catalytic systems -- 9.3.2 Effect of the promoters -- 9.3.3 Microporous and mesoporous supports -- 9.4 Conclusion -- Acknowledgments -- References -- 4 Nano energy storage tools & -- devices -- 10 Electrospun PVDF-based composite nanofabrics: an emerging trend toward energy harvesting -- 10.1 Introduction -- 10.1.1 Polymorphism of poly(vinylidene fluoride) -- 10.2 Electrospinning method and poly(vinylidene fluoride) nanofabrics -- 10.3 Electrospinning of poly(vinylidene fluoride)-based composite nanofabrics -- 10.3.1 Piezoelectric fillers -- 10.3.2 Conducting fillers -- 10.3.3 Nonconducting fillers -- 10.3.4 Hybrid fillers -- 10.4 Conclusion and future trend -- References -- 11 Polymer and polymer-based nanocomposite materials for energy -- 11.1 Introduction -- 11.1.1 Nanofluids for energy applications -- 11.1.2 Piezoelectric polymer composites for energy harvesting -- 11.1.3 Conducting polymers for energy applications -- 11.1.3.1 Applications in batteries -- 11.1.3.2 Applications in light-emitting diodes -- 11.1.3.3 Applications in solar cells -- 11.1.3.4 Applications in supercapacitors -- 11.1.3.5 Polymers in thermoelectric applications -- 11.2 Summary -- References -- 12 Solid-state hydrogen storage as a future renewable energy technology -- 12.1 Introduction -- 12.2 Hydrogen as a renewable energy infrastructure enabler -- 12.3 Current hydrogen storage technologies -- 12.3.1 Gaseous-state hydrogen storage. , 12.3.2 Liquid-state hydrogen storage -- 12.3.3 Solid-state hydrogen storage -- 12.4 Solid-state hydrogen storage in materials-the fundamentals -- 12.4.1 Thermodynamics of hydrogen in materials -- 12.4.1.1 Tailoring thermodynamics via nanosizing -- 12.4.1.2 Tailoring thermodynamics via alloy formation and doping -- 12.4.2 Kinetics of hydrogen in materials -- 12.4.2.1 Tailoring kinetics via catalysis and nanosizing -- 12.5 Status on current hydrogen storage materials -- 12.5.1 Metal, alloys, and intermetallics -- 12.5.2 Complex hydrides -- 12.5.3 Nanosizing hydrides -- 12.6 Conclusion and outlook -- References -- 5 Nanotools and devices in wind power energy -- 13 Micro- and nanodevices for wind energy harvesting -- 13.1 Introduction -- 13.2 Flow-induced vibration mechanisms -- 13.2.1 Vortex-induced vibrations -- 13.2.2 Galloping -- 13.2.3 Wake galloping -- 13.2.4 Flutter -- 13.3 Energy harvesting transducers -- 13.3.1 Piezoelectric energy harvesting transducers -- 13.3.1.1 Materials -- 13.3.1.2 Architectures -- 13.3.1.3 Devices -- 13.3.1.3.1 Rotational PEHs -- 13.3.1.3.2 Nonrotational flow-driven PEHs -- 13.3.1.4 Figures of merit for PENGs in wind power -- 13.3.2 Triboelectric EHTs -- 13.3.2.1 Materials -- 13.3.2.2 Architectures -- 13.3.2.3 Devices -- 13.3.2.3.1 Rotational TENGs -- 13.3.2.3.2 Nonrotational flutter-driven TENGs -- 13.3.2.4 Figure of merits for TENGs in wind power harvesting -- 13.3.3 Electrostatic EHTs -- 13.3.3.1 Materials -- 13.3.3.2 Architectures -- 13.3.3.3 Devices -- 13.3.3.3.1 Rotational ESEHs -- 13.3.3.3.2 Nonrotational ESEHs -- 13.3.3.4 Figures of merit for ESEHs for wind energy harvesting -- 13.3.4 Electromagnetic EHTs -- 13.3.4.1 Materials -- 13.3.4.2 Architectures and devices -- 13.3.4.2.1 Rotational EMEHs -- 13.3.4.2.2 Nonrotational EMEHs -- 13.3.4.3 Figures of merit for EMEHs for wind energy harvesting -- 13.3.5 Hybrid EHTs. , 13.4 Conclusion: summary and challenges.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    edoccha_9960074006802883
    Format: 1 online resource (624 pages)
    ISBN: 0-12-821709-X
    Series Statement: Micro & nano technologies
    Note: Front Cover -- Nano Tools and Devices for Enhanced Renewable Energy -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Modern perspective of renewable energy with Nano tools & -- devices -- 1 High-performance polymer applications for renewable energy -- 1.1 Introduction -- 1.2 Energy conservation and optimization of polymer materials -- 1.3 Improvement of conventional energy sources -- 1.3.1 Polymer-based electrochemical cells -- 1.4 Improvement of renewable energy sources -- 1.4.1 Polymer-based solar photovoltaics -- 1.4.2 Waste-to-energy technologies -- 1.4.3 Alternative energy sources: water, geothermal energy, wind, and tides -- 1.5 Energy storage -- 1.6 Nanotechnology as cross-cutting technology for renewable energy-final conclusions -- Acknowledgments -- References -- 2 Nanocomposite polymer electrolytes for energy devices -- 2.1 Introduction -- 2.1.1 Polymer electrolytes -- 2.1.1.1 Polymer-salt complexes -- 2.1.1.2 Plasticized polymer electrolytes -- 2.1.1.3 Composite polymer electrolytes -- 2.1.1.4 Composite plasticized polymer electrolytes -- 2.2 Synthesis -- 2.3 Results -- 2.3.1 PVdF-HFP-based nanocomposite plasticized polymer electrolytes containing NH4BF4 -- 2.3.1.1 Electrical properties -- 2.3.1.2 Structural characterization -- 2.3.2 PVdF-HFP-based nanocomposite plasticized polymer electrolytes containing NH4F -- 2.3.2.1 Electrical properties -- 2.3.2.2 Structural properties -- 2.3.2.2.1 Advantages -- 2.4 Present status of nanocomposite polymer electrolytes -- 2.5 Conclusion and future scope -- References -- Websites -- 3 Nanodispersed polymer gels used as electrolytes in lithium-ion batteries -- 3.1 Introduction -- 3.1.1 Classification of polymer electrolytes -- 3.1.1.1 Polyelectrolytes -- 3.1.1.2 Polymer-salt complexes -- 3.1.1.3 Polymer gel electrolytes -- 3.1.1.4 Composite polymer gel electrolytes. , 3.2 Materials and method of preparation -- 3.3 PMMA-based nanodispersed polymer gel electrolytes containing LiCF3SO3 -- 3.4 PMMA-based nanodispersed polymer gel electrolytes containing LiBF4 -- 3.5 Conclusion -- 3.6 Present status and future scope -- References -- 2 Nano tools & -- devices-synthesis, fabrication & -- characterization -- 4 Surface modification of all-inorganic lead halide perovskite nanocrystals -- 4.1 Introduction -- 4.2 Surface science of all-inorganic metal trihalide perovskite nanocrystals-an outline -- 4.3 Surface-modification of all-inorganic metal halide perovskite nanocrystals-Classification and developments -- 4.3.1 Surface modification of lead halide perovskite nanocrystals using organic and organometallic compounds -- 4.3.2 Surface modification of lead halide perovskite nanocrystals using inorganic compounds -- 4.3.3 Surface modification of lead halide perovskite nanocrystals using doping of metal ions -- 4.3.4 Surface modification of lead halide perovskite nanocrystals using organic/inorganic hybrid compounds -- 4.3.5 Miscellaneous -- 4.4 Conclusion and future perspectives -- Acknowledgments -- References -- 5 Nanomaterials in renewable energy: UV-Visible spectroscopy characterization and applications -- 5.1 Introduction -- 5.2 Properties of nanomaterials -- 5.3 Synthesis of nanomaterials -- 5.4 Characterization of nanomaterials -- 5.5 UV-Visible spectroscopy-based characterizations of nanomaterials -- 5.6 Application of nanomaterials characterized using UV-Visible spectroscopy -- 5.6.1 Applications of nanomaterials in dye-sensitized solar cells -- 5.6.2 Applications of nanomaterials in nanofluids for solar absorption -- 5.7 Conclusions -- References -- 6 Describing nanoclusters as the way forward for hydrogen economy using Pd nanoclusters as a base -- 6.1 Introduction -- 6.2 Metal hydrides for hydrogen economy. , 6.2.1 Hydriding mechanisms -- 6.3 Palladium and magnesium hydrides for hydrogen economy -- 6.4 Hybrid palladium and magnesium films for hydrogen economy -- 6.4.1 Nanoclusters for energy storage -- 6.4.2 Nanocluster formation -- 6.5 Nanocluster growth model -- 6.6 Hybrid palladium and magnesium nanoclusters for hydrogen economy -- 6.7 Conclusions -- References -- 3 Nano energy generation tools & -- devices -- 7 Triboelectric nanogenerators for scavenging biomechanical energy: fabrication process to its self-powered applications -- 7.1 Introduction -- 7.1.1 Importance of triboelectric nanogenerator -- 7.2 Principle and mechanism of the triboelectric nanogenerator -- 7.2.1 The principle of the triboelectric nanogenerator -- 7.2.2 Working mechanism of a triboelectric nanogenerator -- 7.2.2.1 Vertical contact-separation mode -- 7.2.2.2 Lateral sliding mode -- 7.2.2.3 Free-standing triboelectric-layer mode -- 7.2.2.4 Single-electrode mode -- 7.3 Fabrication of TENG devices -- 7.3.1 Fabrication of flexible TENG device and its surface modification process -- 7.3.1.1 Smart seat TENG -- 7.3.1.2 Smart backpack TENG -- 7.3.1.3 Household TENG -- 7.3.1.4 Edible TENG -- 7.4 Mechanical motion generation techniques and electrical measurement setup -- 7.4.1 Electrodynamic shaker -- 7.4.2 Linear motor -- 7.4.3 Electrical measurement setup -- 7.5 Electrical analysis of TENG devices -- 7.5.1 Smart mobile pouch TENG -- 7.5.1.1 Water-proof TENG -- 7.5.1.2 Cellulose TENG -- 7.5.1.3 Smart computer mouse TENG -- 7.6 TENG-based self-powered applications -- 7.6.1 Self-powered smart puzzle -- 7.6.2 Battery-free smart electronic toys -- 7.6.3 Smart-buoy based self-powered position tracker -- 7.7 Conclusion -- References -- 8 Nanogenerators: a new paradigm in blue energy harvesting -- 8.1 Introduction -- 8.2 Origin of nanogenerators -- 8.3 Piezoelectric nanogenerator. , 8.4 Triboelectric nanogenerator -- 8.5 Pyroelectric nanogenerator -- 8.6 Thermoelectric nanogenerator -- 8.7 Blue energy harvesting using nanogenerators -- 8.7.1 Water-involved TENG -- 8.7.2 Nonwater-involved TENG -- 8.8 Summary and perspective -- References -- 9 Nanostructures as a tool for energy generation -- 9.1 Introduction -- 9.2 Reaction mechanism and coke deposition -- 9.3 Catalytic systems -- 9.3.1 Core-shell-type catalytic systems -- 9.3.2 Effect of the promoters -- 9.3.3 Microporous and mesoporous supports -- 9.4 Conclusion -- Acknowledgments -- References -- 4 Nano energy storage tools & -- devices -- 10 Electrospun PVDF-based composite nanofabrics: an emerging trend toward energy harvesting -- 10.1 Introduction -- 10.1.1 Polymorphism of poly(vinylidene fluoride) -- 10.2 Electrospinning method and poly(vinylidene fluoride) nanofabrics -- 10.3 Electrospinning of poly(vinylidene fluoride)-based composite nanofabrics -- 10.3.1 Piezoelectric fillers -- 10.3.2 Conducting fillers -- 10.3.3 Nonconducting fillers -- 10.3.4 Hybrid fillers -- 10.4 Conclusion and future trend -- References -- 11 Polymer and polymer-based nanocomposite materials for energy -- 11.1 Introduction -- 11.1.1 Nanofluids for energy applications -- 11.1.2 Piezoelectric polymer composites for energy harvesting -- 11.1.3 Conducting polymers for energy applications -- 11.1.3.1 Applications in batteries -- 11.1.3.2 Applications in light-emitting diodes -- 11.1.3.3 Applications in solar cells -- 11.1.3.4 Applications in supercapacitors -- 11.1.3.5 Polymers in thermoelectric applications -- 11.2 Summary -- References -- 12 Solid-state hydrogen storage as a future renewable energy technology -- 12.1 Introduction -- 12.2 Hydrogen as a renewable energy infrastructure enabler -- 12.3 Current hydrogen storage technologies -- 12.3.1 Gaseous-state hydrogen storage. , 12.3.2 Liquid-state hydrogen storage -- 12.3.3 Solid-state hydrogen storage -- 12.4 Solid-state hydrogen storage in materials-the fundamentals -- 12.4.1 Thermodynamics of hydrogen in materials -- 12.4.1.1 Tailoring thermodynamics via nanosizing -- 12.4.1.2 Tailoring thermodynamics via alloy formation and doping -- 12.4.2 Kinetics of hydrogen in materials -- 12.4.2.1 Tailoring kinetics via catalysis and nanosizing -- 12.5 Status on current hydrogen storage materials -- 12.5.1 Metal, alloys, and intermetallics -- 12.5.2 Complex hydrides -- 12.5.3 Nanosizing hydrides -- 12.6 Conclusion and outlook -- References -- 5 Nanotools and devices in wind power energy -- 13 Micro- and nanodevices for wind energy harvesting -- 13.1 Introduction -- 13.2 Flow-induced vibration mechanisms -- 13.2.1 Vortex-induced vibrations -- 13.2.2 Galloping -- 13.2.3 Wake galloping -- 13.2.4 Flutter -- 13.3 Energy harvesting transducers -- 13.3.1 Piezoelectric energy harvesting transducers -- 13.3.1.1 Materials -- 13.3.1.2 Architectures -- 13.3.1.3 Devices -- 13.3.1.3.1 Rotational PEHs -- 13.3.1.3.2 Nonrotational flow-driven PEHs -- 13.3.1.4 Figures of merit for PENGs in wind power -- 13.3.2 Triboelectric EHTs -- 13.3.2.1 Materials -- 13.3.2.2 Architectures -- 13.3.2.3 Devices -- 13.3.2.3.1 Rotational TENGs -- 13.3.2.3.2 Nonrotational flutter-driven TENGs -- 13.3.2.4 Figure of merits for TENGs in wind power harvesting -- 13.3.3 Electrostatic EHTs -- 13.3.3.1 Materials -- 13.3.3.2 Architectures -- 13.3.3.3 Devices -- 13.3.3.3.1 Rotational ESEHs -- 13.3.3.3.2 Nonrotational ESEHs -- 13.3.3.4 Figures of merit for ESEHs for wind energy harvesting -- 13.3.4 Electromagnetic EHTs -- 13.3.4.1 Materials -- 13.3.4.2 Architectures and devices -- 13.3.4.2.1 Rotational EMEHs -- 13.3.4.2.2 Nonrotational EMEHs -- 13.3.4.3 Figures of merit for EMEHs for wind energy harvesting -- 13.3.5 Hybrid EHTs. , 13.4 Conclusion: summary and challenges.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Taylor and Francis,
    UID:
    almahu_9949865660902882
    Format: 1 online resource : , illustrations
    ISBN: 1498733069 , 9781498733069
    Content: Sustainable practices within the mining and energy sectors are assuming greater significance due to uncertainty and change within the global economy and safety, security, and health concerns. This book examines sustainability issues facing the mining and energy sectors by addressing six major themes: Mining and Mineral Processing; Metallurgy and Recycling; Environment; Energy; Socioeconomic and Regulatory; and Sustainable Materials and Fleets. Emphasizing an integrated transdisciplinary approach, it deliberates on optimizing mining productivity and energy efficiency and discusses integrated waste management practices. It discusses risk management, cost cutting, and integration of sustainable practices for long-term business value. It gives a comprehensive outlook for sustainable mineral futures from academic and industry perspectives covering mine to mill optimization, waste, risk and water management, improved efficiencies in mining tools and equipment, and performance indicators for sustainable developments. It covers how innovation and research underpin management of natural resources including sustainable carbon management. Focuses on mining and mineral processing, metallurgy and recycling, the environment, energy, socioeconomic and regulatory issues, and sustainable materials and fleets. Describes metallurgy and recycling and uses economic, environmental and social parameter analyses to identify areas for improvement in iron, steel, aluminium, lead, zinc, copper, and gold production. Discusses current research on mining, performance indicators for sustainable development, sustainability in mining equipment, risk and safety management, and renewable energy resourcesCovers alternative and conventional energy sources for the mineral sector as well water treatment and remediation and energy sustainability in mining. Provides an overview of sustainable carbon management. Offers an interdisciplinary approach with international focus."
    Note: Section 1. Mining and mineral processing -- section 2. Metallurgy/recycling -- section 3. Environment -- section 4. Energy -- section 5. Socio-economic, regulatory -- section 6. Sustainable materials, fleets.
    Additional Edition: Print version: Devasahayam, Sheila. Sustainability in the Mineral and Energy Sectors. Taylor and Francis, 2016 ISBN 9781498733021
    Additional Edition: ISBN 1498733026
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages