feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    b3kat_BV048228646
    Format: 1 Online-Ressource (243 Seiten)
    ISBN: 9781119694199 , 9781119694175
    Note: Description based on publisher supplied metadata and other sources , Cover -- Title Page -- Copyright -- Contents -- Author Biographies -- Preface -- Acknowledgments -- Acronyms -- Notation -- Chapter 1 Introduction -- Chapter 2 Motivation and Basic Construction of PID Passivity‐Based Control -- 2.1 ℒ2‐Stability and Output Regulation to Zero -- 2.2 Well‐Posedness Conditions -- 2.3 PID‐PBC and the Dissipation Obstacle -- 2.3.1 Passive Systems and the Dissipation Obstacle -- 2.3.2 Steady‐State Operation and the Dissipation Obstacle -- 2.4 PI‐PBC with y0 and Control by Interconnection -- Bibliography -- Chapter 3 Use of Passivity for Analysis and Tuning of PIDs: Two Practical Examples -- 3.1 Tuning of the PI Gains for Control of Induction Motors -- 3.1.1 Problem Formulation -- 3.1.2 Change of Coordinates -- 3.1.3 Tuning Rules and Performance Intervals -- 3.1.4 Concluding Remarks -- 3.2 PI‐PBC of a Fuel Cell System -- 3.2.1 Control Problem Formulation -- 3.2.2 Limitations of Current Controllers and the Role of Passivity -- 3.2.3 Model Linearization and Useful Properties -- 3.2.4 Main Result -- 3.2.5 An Asymptotically Stable PI‐PBC -- 3.2.6 Simulation Results -- 3.2.7 Concluding Remarks and Future Work -- Bibliography -- Chapter 4 PID‐PBC for Nonzero Regulated Output Reference -- 4.1 PI‐PBC for Global Tracking -- 4.1.1 PI Global Tracking Problem -- 4.1.2 Construction of a Shifted Passive Output -- 4.1.3 A PI Global Tracking Controller -- 4.2 Conditions for Shifted Passivity of General Nonlinear Systems -- 4.2.1 Shifted Passivity Definition -- 4.2.2 Main Results -- 4.3 Conditions for Shifted Passivity of Port‐Hamiltonian Systems -- 4.3.1 Problems Formulation -- 4.3.2 Shifted Passivity -- 4.3.3 Shifted Passifiability via Output‐Feedback -- 4.3.4 Stability of the Forced Equilibria -- 4.3.5 Application to Quadratic pH Systems -- 4.4 PI‐PBC of Power Converters -- 4.4.1 Model of the Power Converters , 4.4.2 Construction of a Shifted Passive Output -- 4.4.3 PI Stabilization -- 4.4.4 Application to a Quadratic Boost Converter -- 4.5 PI‐PBC of HVDC Power Systems -- 4.5.1 Background -- 4.5.2 Port‐Hamiltonian Model of the System -- 4.5.3 Main Result -- 4.5.4 Relation of PI‐PBC with Akagi's PQ Method -- 4.6 PI‐PBC of Wind Energy Systems -- 4.6.1 Background -- 4.6.2 System Model -- 4.6.3 Control Problem Formulation -- 4.6.4 Proposed PI‐PBC -- 4.7 Shifted Passivity of PI‐Controlled Permanent Magnet Synchronous Motors -- 4.7.1 Background -- 4.7.2 Motor Models -- 4.7.3 Problem Formulation -- 4.7.4 Main Result -- 4.7.5 Conclusions and Future Research -- Bibliography -- Chapter 5 Parameterization of All Passive Outputs for Port‐Hamiltonian Systems -- 5.1 Parameterization of All Passive Outputs -- 5.2 Some Particular Cases -- 5.3 Two Additional Remarks -- 5.4 Examples -- 5.4.1 A Level Control System -- 5.4.2 A Microelectromechanical Optical Switch -- Bibliography -- Chapter 6 Lyapunov Stabilization of Port‐Hamiltonian Systems -- 6.1 Generation of Lyapunov Functions -- 6.1.1 Basic PDE -- 6.1.2 Lyapunov Stability Analysis -- 6.2 Explicit Solution of the PDE -- 6.2.1 The Power Shaping Output -- 6.2.2 A More General Solution -- 6.2.3 On the Use of Multipliers -- 6.3 Derivative Action on Relative Degree Zero Outputs -- 6.3.1 Preservation of the Port‐Hamiltonian Structure of I‐PBC -- 6.3.2 Projection of the New Passive Output -- 6.3.3 Lyapunov Stabilization with the New PID‐PBC -- 6.4 Examples -- 6.4.1 A Microelectromechanical Optical Switch (Continued) -- 6.4.2 Boost Converter -- 6.4.3 Two‐Dimensional Controllable LTI Systems -- 6.4.4 Control by Interconnection vs. PI‐PBC -- 6.4.5 The Use of the Derivative Action -- Bibliography -- Chapter 7 Underactuated Mechanical Systems -- 7.1 Historical Review and Chapter Contents , 7.1.1 Potential Energy Shaping of Fully Actuated Systems -- 7.1.2 Total Energy Shaping of Underactuated Systems -- 7.1.3 Two Formulations of PID‐PBC -- 7.2 Shaping the Energy with a PID -- 7.3 PID‐PBC of Port‐Hamiltonian Systems -- 7.3.1 Assumptions on the System -- 7.3.2 A Suitable Change of Coordinates -- 7.3.3 Generating New Passive Outputs -- 7.3.4 Projection of the Total Storage Function -- 7.3.5 Main Stability Result -- 7.4 PID‐PBC of Euler‐Lagrange Systems -- 7.4.1 Passive Outputs for Euler-Lagrange Systems -- 7.4.2 Passive Outputs for Euler-Lagrange Systems in Spong's Normal Form -- 7.5 Extensions -- 7.5.1 Tracking Constant Speed Trajectories -- 7.5.2 Removing the Cancellation of Va(qa) -- 7.5.3 Enlarging the Class of Integral Actions -- 7.6 Examples -- 7.6.1 Tracking for Inverted Pendulum on a Cart -- 7.6.2 Cart‐Pendulum on an Inclined Plane -- 7.7 PID‐PBC of Constrained Euler-Lagrange Systems -- 7.7.1 System Model and Problem Formulation -- 7.7.2 Reduced Purely Differential Model -- 7.7.3 Design of the PID‐PBC -- 7.7.4 Main Stability Result -- 7.7.5 Simulation Results -- 7.7.6 Experimental Results -- Bibliography -- Chapter 8 Disturbance Rejection in Port‐Hamiltonian Systems -- 8.1 Some Remarks on Notation and Assignable Equilibria -- 8.1.1 Notational Simplifications -- 8.1.2 Assignable Equilibria for Constant d -- 8.2 Integral Action on the Passive Output -- 8.3 Solution Using Coordinate Changes -- 8.3.1 A Feedback Equivalence Problem -- 8.3.2 Local Solutions of the Feedback Equivalent Problem -- 8.3.3 Stability of the Closed‐Loop -- 8.4 Solution Using Nonseparable Energy Functions -- 8.4.1 Matched and Unmatched Disturbances -- 8.4.2 Robust Matched Disturbance Rejection -- 8.5 Robust Integral Action for Fully Actuated Mechanical Systems -- 8.6 Robust Integral Action for Underactuated Mechanical Systems , 8.6.1 Standard Interconnection and Damping Assignment PBC -- 8.6.2 Main Result -- 8.7 A New Robust Integral Action for Underactuated Mechanical Systems -- 8.7.1 System Model -- 8.7.2 Coordinate Transformation -- 8.7.3 Verification of Requisites -- 8.7.4 Robust Integral Action Controller -- 8.8 Examples -- 8.8.1 Mechanical Systems with Constant Inertia Matrix -- 8.8.2 Prismatic Robot -- 8.8.3 The Acrobot System -- 8.8.4 Disk on Disk System -- 8.8.5 Damped Vertical Take‐off and Landing Aircraft -- Bibliography -- Appendix A Passivity and Stability Theory for State‐Space Systems -- A.1 Characterization of Passive Systems -- A.2 Passivity Theorem -- A.3 Lyapunov Stability of Passive Systems -- Bibliography -- Appendix B Two Stability Results and Assignable Equilibria -- B.1 Two Stability Results -- B.2 Assignable Equilibria -- Bibliography -- Appendix C Some Differential Geometric Results -- C.1 Invariant Manifolds -- C.2 Gradient Vector Fields -- C.3 A Technical Lemma -- Bibliography -- Appendix D Port-Hamiltonian Systems -- D.1 Definition of Port‐Hamiltonian Systems and Passivity Property -- D.2 Physical Examples -- D.2.1 Mechanical Systems -- D.2.2 Electromechanical Systems -- D.2.3 Power Converters -- D.3 Euler-Lagrange Models -- D.4 Port‐Hamiltonian Representation of GAS Systems -- Bibliography -- Index -- EULA.
    Additional Edition: Erscheint auch als Druck-Ausgabe Ortega, Romeo PID Passivity-Based Control of Nonlinear Systems with Applications Newark : John Wiley & Sons, Incorporated,c2021 ISBN 9781119694168
    Language: English
    Keywords: Nichtlineares System ; PID-Regler
    Author information: Ortega, Romeo 1954-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    gbv_1677710373
    ISSN: 0005-1098
    In: Automatica, Amsterdam [u.a.] : Elsevier, Pergamon Press, 1963, 50(2014), 12, Seite 3224-3230, 0005-1098
    In: volume:50
    In: year:2014
    In: number:12
    In: pages:3224-3230
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    gbv_1678387207
    ISBN: 9781479924981
    Note: Konferenz: 2013 Australian Control Conference, AUCC, Fremantle, WA, Australia, 4-5 November 2013
    In: 2013 3rd Australian Control Conference (AUCC), Piscataway, NJ : IEEE, 2013, (2013), Seite 251-256, 9781479924981
    In: 1479924997
    In: 9781479924998
    In: year:2013
    In: pages:251-256
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    gbv_1678386529
    ISSN: 1474-6670
    Note: Kongress: 19th IFAC World Congress, Cape Town, South Africa, 24-29 August 2014
    In: Internationale Förderung für Automatische Lenkung, IFAC Proceedings Volumes, Amsterdam : Elsevier, 2019, 47(2014), 3, Seite 9171-9176, 1474-6670
    In: volume:47
    In: year:2014
    In: number:3
    In: pages:9171-9176
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    gbv_1677986263
    ISSN: 2405-8963
    Note: Kongress: 20th IFAC World Congress, Toulouse, France, 9-14 July 2017
    In: Internationale Förderung für Automatische Lenkung, IFAC-PapersOnLine, Frankfurt : Elsevier, 2015, 50(2017), 1, Seite 15012-15027, 2405-8963
    In: volume:50
    In: year:2017
    In: number:1
    In: pages:15012-15027
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    gbv_167770778X
    ISSN: 0005-1098
    In: Automatica, Amsterdam [u.a.] : Elsevier, Pergamon Press, 1963, 62(2015), Seite 208-212, 0005-1098
    In: volume:62
    In: year:2015
    In: pages:208-212
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages