feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    gbv_1794577084
    Format: 1 Online-Ressource (242 p.)
    ISBN: 9788860461780 , 9788860461773 , 9788860461780
    Content: The fundamental vision of the WOOD-UP project was to develop existing wood gasification plants in South Tyrol towards a polygenerative use in order to be able to produce not only energy but also high-quality charcoal (biochar) for the improvement of soil fertility and for climate protection. The project, funded by the European Regional Development Fund ERDF 2014–2020, was implemented by the Free University of Bolzano together with the Laimburg Research Centre. Based on the life cycle analysis (LCA) or scenario analysis of the entire production chain of wood gasification, strengths and weaknesses of the existing systems were identified with regard to their impact on the environment. Thanks to the results obtained, a number of suggestions for improvement could be formulated.; Il miglioramento verso un assetto poligenerativo degli attuali impianti altoatesini di gassificazione della biomassa legnosa, dove oltre all’energia si possa produrre biochar di qualità da impiegare in agricoltura come ammendante con effetti positivi sulla fertilità dei suoli e sulla mitigazione dei cambiamenti climatici è la visione che ha sostenuto il progetto WOOD-UP. Il progetto, finanziato con fondi FESR 2014-2020, ha visto la collaborazione tra la Libera Università di Bolzano e il Centro di Sperimentazione Laimburg. L’analisi del ciclo di vita e di scenario dell’intera filiera di gassificazione ha evidenziato elementi di forza e di debolezza dell’attuale filiera in termini di impatti ambientali e ha permesso di avanzare proposte di miglioramento sulla base dei risultati ottenuti dalla sperimentazione. ; Grundlegende Vision des Projektes WOOD-UP war die Entwicklung der bestehenden Holzvergasungsanlagen in Südtirol hin zu einer polygenerativen Nutzung, um neben Energie auch hochwertige Holzkohle (Biochar) zur Verbesserung der Bodenfruchtbarkeit und zum Klimaschutz erzeugen zu können. Das mit Mitteln aus dem Europäischen Fonds für regionale Entwicklung EFRE 2014–2020 finanzierte Projekt wurde von der Freien Universität Bozen gemeinsam mit dem Versuchszentrum Laimburg umgesetzt. Anhand der Lebenszyklusanalyse (LCA) bzw. der Szenarioanalyse der gesamten Produktionskette der Holzvergasung wurden Stärken und Schwächen der bestehenden Systeme hinsichtlich ihrer Auswirkungen auf die Umwelt aufgezeigt. Dank der erzielten Versuchsergebnisse konnte eine Reihe von Verbesserungsvorschlägen formuliert werden
    Note: Italian
    Language: Italian
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Hoboken :John Wiley & Sons,
    UID:
    almahu_9948197866702882
    Format: 1 online resource (336 pages)
    ISBN: 9781118243350 , 1118243358 , 9781118243343 , 111824334X
    Content: Dense phase carbon dioxide (DPCD) is a non-thermal method for food and pharmaceutical processing that can ensure safe products with minimal nutrient loss and better preserved quality attributes. Its application is quite different than, for example, supercritical extraction with CO 2 where the typical solubility of materials in CO 2 is in the order of 1% and therefore requires large volumes of CO 2. In contrast, processing with DPCD requires much less CO 2 (between 5 to 8% CO 2 by weight) and the pressures used are at least one order of magnitude less than those typically used in ultra high pre.
    Note: 5.2.5 Effects of combination treatments. , Dense Phase Carbon Dioxide: Food and Pharmaceutical Applications; Contents; Preface; Contributors; 1 Introduction to Dense Phase Carbon Dioxide Technology; 2 Thermodynamics of Solutions of CO2 with Effects of Pressure and Temperature; 2.1 Introduction; 2.2 Thermodynamics of liquid-vapour phase equilibria; 2.2.1 Calculation of?; 2.2.2 Calculation of F; 2.2.3 Calculation of the liquid-vapour phase equilibria; 2.3 Application to CO2-H2O system model; 2.3.1 Non-electrolyte models; 2.3.2 Electrolyte models; 2.4 Thermodynamics of solid-vapour equilibria; 2.5 List of symbols. , 3 Experimental Measurement of Carbon Dioxide Solubility3.1 Introduction; 3.2 Solubility of carbon dioxide in water; 3.2.1 Definition and brief review of early studies; 3.2.2 Physical properties associated with the phase diagram of carbon dioxide; 3.2.3 Effect of pressure and temperature on carbon dioxide solubility in water; 3.3 Experimental methods for carbon dioxide solubility measurement; 3.3.1 Analytical methods; 3.3.2 Synthetic methods; 3.4 Review of experimental results; 3.5 Conclusions; 4 Effects of Dense Phase Carbon Dioxide on Vegetative Cells; 4.1 Introduction. , 4.2 Gases used for inactivating microorganisms4.3 Effect of DPCD on vegetative microorganisms; 4.3.1 Effect of DPCD on bacterial cells; 4.3.2 Effect of DPCD on vegetative forms of fungi, pests and viruses; 4.4 Factors affecting the sensitivity of microorganisms to DPCD; 4.4.1 Effect of CO2 physical states; 4.4.2 Effect of temperature and pressure; 4.4.3 Effect of CO2 concentration; 4.4.4 Effect of agitation; 4.4.5 Effect of water content; 4.4.6 Effect of pressurization and depressurization rates; 4.4.7 Effect of pressure cycling; 4.4.8 Effect of microbial type. , 4.4.9 Effect of initial microbial number4.4.10 Effect of physical and chemical properties of suspension; 4.4.11 Effect of culture conditions and growth phases; 4.4.12 Injured microorganisms; 4.4.13 Effect of combination processes; 4.4.14 Effect of type of system; 4.4.15 Treatment time and inactivation kinetics; 4.5 Mechanisms of microbial inactivation by DPCD; 4.5.1 Solubilization of CO2 under pressure into suspension; 4.5.2 Cell membrane modification; 4.5.3 Cytoplasmic leakage; 4.5.4 Intracellular pH decrease; 4.5.5 Key enzyme inactivation. , 4.5.6 Inhibitory effect of molecular CO2 and HCO3- on metabolism4.5.7 Intracellular precipitation and electrolyte imbalance; 4.5.8 Extraction of vital cellular constituents; 4.5.9 Physical cell rupture; 4.6 Characterization of CO2 states and survival curves; 4.7 Quantifying inactivation; 4.8 Conclusions; 5 Effects of Dense Phase Carbon Dioxide on Bacterial and Fungal Spores; 5.1 Introduction; 5.2 Inactivation of bacterial spores by DPCD; 5.2.1 Effect of temperature; 5.2.2 Effect of pressure; 5.2.3 Effect of pH and aw of the treatment medium; 5.2.4 Susceptibility of different bacterial spores.
    Additional Edition: Print version: Balaban, Murat O. Dense Phase Carbon Dioxide : Food and Pharmaceutical Applications. Hoboken : John Wiley & Sons, ©2012 ISBN 9780813806495
    Language: English
    Keywords: Electronic books. ; Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almahu_9948315074102882
    Format: xv, 316 p. : , ill.
    Edition: Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
    Content: "Dense phase carbon dioxide (DPCD) is a non-thermal processing technology, mainly used for pasteurization of liquid foods. It has advantages compared to thermal pasteurization in its potential to preserve the sensory quality and nutrient content of the foods. It also has potential advantages over other non-thermal processes since it is a continuous process, and both the capital costs and operating costs are lower than some other non-thermal processes. The theory, microbial, enzymatic, quality, and process related issues have been researched. However, there is no compilation of all of this accumulated knowledge and know-how in a single volume. Dense Phase Carbon Dioxide: Applications for Food brings into one volume the diverse aspects and the accumulated knowledge regarding DPCD. International experts in the Dense Phase Carbon Dioxide applications to foods have contributed in their areas of expertise to create synergy that clarifies concepts and reveals potential application areas and future direction of research. Positioned as an industry reference book, Dense Phase Carbon Dioxide: Applications for Food will appeal to food scientists, food technologists, food engineers, food safety, quality and production managers; government officials, researchers and regulators; extension specialists; equipment and packaging suppliers; and particularly professionals in the juice, dairy and beverage industries"--
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages