feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Amsterdam [u.a.] :Elsevier,
    UID:
    almafu_BV042306889
    Format: 1 Online-Ressource (XII, 593 S.) : , Ill., graph. Darst., Kt.
    Edition: 1. ed.
    ISBN: 978-0-08-093161-6 , 0-08-093161-8
    Series Statement: Developments in earth & environmental sciences 8
    Note: This is the first book dedicated to the developing knowledge on how the world's largest ice sheet formed and changed over its 34 million years history. In explaining the story of Antartica, information on terrestrial and marine geology, sedimentology, glacier geophysics (including airborne reconnaissance), shipborne geophysics, and numerical ice sheet and climate modelling, will be interwoven within eleven chapters, each deling with an important historical theme. The approach will be to first 'set the scene', involving chapters dedicated to how ice sheets and their glacial history can be measured. This opening section will provide information necessary to comprehend the latter section of the book, in which five chapters will related the glacial and climate evolution of Antartica during the most important time-frames in which changes have occurred. - Includes bibliographical references and index , Text in English
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-0-444-52847-6
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 0-444-52847-4
    Language: English
    Subjects: Geography
    RVK:
    Keywords: Känozoikum ; Klimaänderung ; Aufsatzsammlung ; Electronic books ; Electronic books ; Aufsatzsammlung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    kobvindex_GFZEBC6799116
    Format: 1 Online-Ressource (806 Seiten)
    Edition: 2nd edition
    ISBN: 9780128191101
    Note: Contents List of contributors Preface 1 Antarctic Climate Evolution - second edition 1.1 Introduction 1.2 Structure and content of the book Acknowledgements References 2 Sixty years of coordination and support for Antarctic science - the role of SCAR 2.1 Introduction 2.2 Scientific value of research in Antarctica and the Southern Ocean 2.3 The international framework in which SCAR operates 2.4 The organisation of SCAR 2.5 Sixty years of significant Antarctic science discoveries 2.6 Scientific Horizon Scan 2.7 Summary References Appendix 3 Cenozoic history of Antarctic glaciation and climate from onshore and offshore studies 3.1 Introduction 3.2 Long-term tectonic drivers and ice sheet evolution 3.3 Global climate variability and direct evidence for Antarctic ice sheet variability in the Cenozoic 3.3.1 Late Cretaceous to early Oligocene evidence of Antarctic ice sheets and climate variability 3.3.2 The Eocene-Oligocene transition and continental-scale glaciation of Antarctica 3.3.3 Transient glaciations of the Oligocene and Miocene 3.3.4 Pliocene to Pleistocene 3.4 Regional seismic stratigraphies and drill core correlations, and future priorities to reconstruct Antarctica's Cenozoic 3.4.1 Ross Sea 3.4.2 Amundsen Sea 3.4.3 Bellingshausen Sea and Pacific coastline of Antarctic Peninsula 3.4.4 The Northern Antarctic Peninsula and South Shetland Islands 3.4.5 The Eastern Margin of the Antarctic Peninsula 3.4.6 The South Orkney Microcontinent and adjacent deep-water basins 3.4.7 East Antarctic Margin 3.4.7.1 Weddell Sea 3.4.7.1.1 Gondwana break-up, Weddell Sea opening and pre-ice-sheet depositional environment 3.4.7.1.2 The Eocene-Oligocene transition and paleoenvironment during increasing glacial conditions 3.4.7.1.3 Recent geophysical survey beneath the Ekström Ice Shelf and future directions for drilling 3.4.7.2 Prydz Bay 3.4.7.2.1 Early Cenozoic greenhouse and earliest glacial phase in late Eocene 3.4.7.2.2 Oligocene-Miocene ice-sheet development 3.4.7.2.3 The Polar Ice Sheet (late Miocene(?)-Pleistocene) 3.4.7.3 East Antarctic Margin - Sabrina Coast 3.4.7.4 Wilkes Land margin and Georges V Land 3.5 Summary, future directions and challenges Acknowledgements References 4 Water masses, circulation and change in the modern Southern Ocean 4.1 Introduction 4.1.1 Defining the Southern Ocean 4.2 Water masses - characteristics and distribution 4.2.1 Upper ocean 4.2.2 Intermediate depth waters 4.2.3 Deep water 4.2.4 Bottom water 4.3 Southern Ocean circulation 4.3.1 Antarctic Circumpolar Current (ACC) 4.3.2 Southern Ocean meridional overturning circulation (SOMOC) 4.3.3 Deep western boundary currents 4.3.3.1 Pacific deep western boundary current 4.3.3.2 Indian deep western boundary currents 4.3.3.3 Atlantic deep western boundary current 4.3.4 Subpolar circulation - gyres, slope and coastal currents 4.3.4.1 Gyres 4.3.4.2 Antarctic slope and coastal currents 4.4 Modern Southern Ocean change 4.4.1 Climate change 4.4.2 Ocean change 4.4.3 Change in dynamics and circulation 4.5 Concluding remarks References 5 Advances in numerical modelling of the Antarctic ice sheet 5.1 Introduction and aims 5.2 Advances in ice sheet modelling 5.2.1 Grounding line physics 5.2.2 Adaptive grids 5.2.3 Parallel ice sheet model - PISM 5.2.4 Coupled models 5.3 Model input - bed data 5.4 Advances in knowledge of bed processes 5.5 Model intercomparison 5.6 Brief case studies 5.7 Future work References 6 The Antarctic Continent in Gondwana: a perspective from the Ross Embayment and Potential Research Targets for Future Investigations 6.1 Introduction 6.2 The Antarctic plate and the present-day geological setting of the Ross Embayment 6.3 East Antarctica 6.3.1 The Main Geological Units during the Paleoproterozoic-Early Neoproterozoic Rodinia Assemblage 6.3.2 From Rodinia breakup to Gondwana (c. 800-650 Ma) 6.3.3 The 'Ross Orogen' in the Transantarctic Mountains during the late Precambrian-early Paleozoic evolution of the paleo-Pacific margin of Gondwana (c. 600-450 Ma) 6.4 West Antarctic Accretionary System 6.4.1 West Antarctica in the Precambrian to Mesozoic (c. 180 Ma) evolution of Gondwana until the middle Jurassic breakup 6.4.1.1 Precambrian to Cambrian metamorphic basement 6.4.1.2 Devono-Carboniferous arc magmatism ('Borchgrevink Event') (c. 370-350 Ma) 6.4.1.3 Beacon Supergroup (Devonian-Permo-Triassic-earliest Jurassic) 6.4.1.4 The Ellsworth-Whitmore Mountains Terrane and the Permo-Triassic arc magmatism 6.4.1.5 Ferrar Supergroup and the Gondwana breakup (c. 180Ma) 6.4.1.6 The Antarctic Andean Orogen 6.5 Mesozoic to Cenozoic Tectonic Evolution of the Transantarctic Mountains 6.6 Tectonic evolution in the Ross Sea Sector during the Cenozoic 6.7 Concluding remarks, open problems and potential research themes for future geoscience investigations in Antarctica 6.7.1 Persistent challenges for onshore geoscience investigations 6.7.2 Antarctica and the Ross Orogen in the Transantarctic Mountains 6.7.3 Antarctica after Gondwana fragmentation Acknowledgements References 7 The Eocene-Oligocene boundary climate transition: an Antarctic perspective 7.1 Introduction 7.2 Background 7.2.1 Plate tectonic setting 7.2.2 Antarctic paleotopography 7.2.3 Paleoceanographic setting 7.2.4 Global average and regional sea level response 7.2.5 Proxies to reconstruct past Antarctic climatic and environmental evolution 7.2.6 Far-field proxies 7.3 Antarctic Sedimentary Archives 7.3.1 Land-based outcrops 7.3.1.1 Antarctic Peninsula Region 7.3.1.2 King George (25 de Mayo) Island, South Shetland Islands 7.3.1.3 The Ross Sea Region 7.3.2 Sedimentary archives from drilling on the Antarctic Margin 7.3.2.1 Drill cores in the western Ross Sea 7.3.2.2 The Prydz Bay Region 7.3.2.3 Weddell Sea 7.3.2.4 Wilkes Land 7.4 Summary of climate signals from Antarctic sedimentary archives 7.4.1 Longer-term changes 7.4.2 The climate of the Eocene-Oligocene transition 7.5 The global context of Earth and climate system changes across the EOT 7.5.1 Climate modelling 7.5.2 Relative sea-level change around Antarctica 7.6 Summary 7.6.1 Early-middle Eocene polar warmth 7.6.2 Late Eocene cooling 7.6.3 Eocene-Oligocene transition Acknowledgements References 8 Antarctic Ice Sheet dynamics during the Late Oligocene and Early Miocene: climatic conundrums revisited 8.1 Introduction 8.2 Oligocene-Miocene Transition in Antarctic geological records and its climatic significance 8.3 Conundrums revisited 8.3.1 What caused major transient glaciation of Antarctica across the OMT? 8.3.2 Apparent decoupling of Late Oligocene climate and ice volume? 8.4 Concluding remarks Acknowledgements References 9 Antarctic environmental change and ice sheet evolution through the Miocene to Pliocene - a perspective from the Ross Sea and George V to Wilkes Land Coasts 9.1 Introduction 9.1.1 Overview and relevance 9.1.2 Far-field records of climate and ice sheet variability 9.1.2.1 The Early Miocene 9.1.2.2 The mid-Miocene 9.1.2.3 The Late Miocene 9.1.2.4 The Pliocene 9.1.3 Southern Ocean Paleogeography and Paleoceanography 9.1.4 Land elevation change and influences on Antarctic Ice Sheet evolution 9.2 Records of Miocene to Pliocene climate and ice sheet variability from the Antarctic margin 9.2.1 Introduction to stratigraphic records 9.2.2 George V Land to Wilkes Land Margin 9.2.2.1 Geological setting 9.2.2.2 Oceanography of the Adelie coast 9.2.2.3 Seismic stratigraphy off the George V Land to Wilkes Land Margin 9.2.2.4 Drill core records from the George V Land to Wilkes Land Margin 9.2.2.5 Neogene history of the George V Land to Wilkes Land margin 9.2.3 The Ross Sea Embayment and Southern Victoria Land 9.2.3.1 Geological setting 9.2.3.2 Oceanography and climate in the Ross Sea Region 9.2.3.3 Seismic stratigraphic records in the Ross Sea 9.2.3.4 Stratigraphic records from drill cores in the Ross Sea 9.2.3.5 Terrestrial records from Southern Victoria Land 9.2.3.6 Neogene history in the Ross Sea Region 9.3 Numerical modelling 9.3.1 Miocene
    Language: English
    Keywords: Electronic books ; Aufsatzsammlung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    [Erscheinungsort nicht ermittelbar] : Frontiers Media SA
    UID:
    b3kat_BV044468829
    Format: 1 Online-Ressource (86 Seiten) , Illustrationen, Diagramme, Karten
    ISBN: 9782889451708
    Note: Published in: Frontiers in earth science
    Language: English
    Keywords: Aufsatzsammlung
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Amsterdam [u.a.] :Elsevier,
    UID:
    edocfu_BV042306889
    Format: 1 Online-Ressource (XII, 593 S.) : , Ill., graph. Darst., Kt.
    Edition: 1. ed.
    ISBN: 978-0-08-093161-6 , 0-08-093161-8
    Series Statement: Developments in earth & environmental sciences 8
    Note: This is the first book dedicated to the developing knowledge on how the world's largest ice sheet formed and changed over its 34 million years history. In explaining the story of Antartica, information on terrestrial and marine geology, sedimentology, glacier geophysics (including airborne reconnaissance), shipborne geophysics, and numerical ice sheet and climate modelling, will be interwoven within eleven chapters, each deling with an important historical theme. The approach will be to first 'set the scene', involving chapters dedicated to how ice sheets and their glacial history can be measured. This opening section will provide information necessary to comprehend the latter section of the book, in which five chapters will related the glacial and climate evolution of Antartica during the most important time-frames in which changes have occurred. - Includes bibliographical references and index , Text in English
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-0-444-52847-6
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 0-444-52847-4
    Language: English
    Subjects: Geography
    RVK:
    Keywords: Känozoikum ; Klimaänderung ; Aufsatzsammlung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    edoccha_9960074281402883
    Format: 1 online resource (806 pages)
    Edition: Second edition.
    ISBN: 0-12-819110-4
    Note: Front Cover -- Antarctic Climate Evolution -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Antarctic Climate Evolution - second edition -- 1.1 Introduction -- 1.2 Structure and content of the book -- Acknowledgements -- References -- 2 Sixty years of coordination and support for Antarctic science - the role of SCAR -- 2.1 Introduction -- 2.2 Scientific value of research in Antarctica and the Southern Ocean -- 2.3 The international framework in which SCAR operates -- 2.4 The organisation of SCAR -- 2.5 Sixty years of significant Antarctic science discoveries -- 2.6 Scientific Horizon Scan -- 2.7 Summary -- References -- Appendix -- 3 Cenozoic history of Antarctic glaciation and climate from onshore and offshore studies -- 3.1 Introduction -- 3.2 Long-term tectonic drivers and ice sheet evolution -- 3.3 Global climate variability and direct evidence for Antarctic ice sheet variability in the Cenozoic -- 3.3.1 Late Cretaceous to early Oligocene evidence of Antarctic ice sheets and climate variability -- 3.3.2 The Eocene-Oligocene transition and continental-scale glaciation of Antarctica -- 3.3.3 Transient glaciations of the Oligocene and Miocene -- 3.3.4 Pliocene to Pleistocene -- 3.4 Regional seismic stratigraphies and drill core correlations, and future priorities to reconstruct Antarctica's Cenozoic... -- 3.4.1 Ross Sea -- 3.4.2 Amundsen Sea -- 3.4.3 Bellingshausen Sea and Pacific coastline of Antarctic Peninsula -- 3.4.4 The Northern Antarctic Peninsula and South Shetland Islands -- 3.4.5 The Eastern Margin of the Antarctic Peninsula -- 3.4.6 The South Orkney Microcontinent and adjacent deep-water basins -- 3.4.7 East Antarctic Margin -- 3.4.7.1 Weddell Sea -- 3.4.7.1.1 Gondwana break-up, Weddell Sea opening and pre-ice-sheet depositional environment. , 3.4.7.1.2 The Eocene-Oligocene transition and paleoenvironment during increasing glacial conditions -- 3.4.7.1.3 Recent geophysical survey beneath the Ekström Ice Shelf and future directions for drilling -- 3.4.7.2 Prydz Bay -- 3.4.7.2.1 Early Cenozoic greenhouse and earliest glacial phase in late Eocene -- 3.4.7.2.2 Oligocene-Miocene ice-sheet development -- 3.4.7.2.3 The Polar Ice Sheet (late Miocene(?)-Pleistocene) -- 3.4.7.3 East Antarctic Margin - Sabrina Coast -- 3.4.7.4 Wilkes Land margin and Georges V Land -- 3.5 Summary, future directions and challenges -- Acknowledgements -- References -- 4 Water masses, circulation and change in the modern Southern Ocean -- 4.1 Introduction -- 4.1.1 Defining the Southern Ocean -- 4.2 Water masses - characteristics and distribution -- 4.2.1 Upper ocean -- 4.2.2 Intermediate depth waters -- 4.2.3 Deep water -- 4.2.4 Bottom water -- 4.3 Southern Ocean circulation -- 4.3.1 Antarctic Circumpolar Current (ACC) -- 4.3.2 Southern Ocean meridional overturning circulation (SOMOC) -- 4.3.3 Deep western boundary currents -- 4.3.3.1 Pacific deep western boundary current -- 4.3.3.2 Indian deep western boundary currents -- 4.3.3.3 Atlantic deep western boundary current -- 4.3.4 Subpolar circulation - gyres, slope and coastal currents -- 4.3.4.1 Gyres -- 4.3.4.2 Antarctic slope and coastal currents -- 4.4 Modern Southern Ocean change -- 4.4.1 Climate change -- 4.4.2 Ocean change -- 4.4.3 Change in dynamics and circulation -- 4.5 Concluding remarks -- References -- 5 Advances in numerical modelling of the Antarctic ice sheet -- 5.1 Introduction and aims -- 5.2 Advances in ice sheet modelling -- 5.2.1 Grounding line physics -- 5.2.2 Adaptive grids -- 5.2.3 Parallel ice sheet model - PISM -- 5.2.4 Coupled models -- 5.3 Model input - bed data -- 5.4 Advances in knowledge of bed processes -- 5.5 Model intercomparison. , 5.6 Brief case studies -- 5.7 Future work -- References -- 6 The Antarctic Continent in Gondwana: a perspective from the Ross Embayment and Potential Research Targets for Future Inve... -- 6.1 Introduction -- 6.2 The Antarctic plate and the present-day geological setting of the Ross Embayment -- 6.3 East Antarctica -- 6.3.1 The Main Geological Units during the Paleoproterozoic-Early Neoproterozoic Rodinia Assemblage -- 6.3.2 From Rodinia breakup to Gondwana (c. 800-650Ma) -- 6.3.3 The 'Ross Orogen' in the Transantarctic Mountains during the late Precambrian-early Paleozoic evolution of the paleo-... -- 6.4 West Antarctic Accretionary System -- 6.4.1 West Antarctica in the Precambrian to Mesozoic (c. 180Ma) evolution of Gondwana until the middle Jurassic breakup -- 6.4.1.1 Precambrian to Cambrian metamorphic basement -- 6.4.1.2 Devono-Carboniferous arc magmatism ('Borchgrevink Event') (c. 370-350Ma) -- 6.4.1.3 Beacon Supergroup (Devonian-Permo-Triassic-earliest Jurassic) -- 6.4.1.4 The Ellsworth-Whitmore Mountains Terrane and the Permo-Triassic arc magmatism -- 6.4.1.5 Ferrar Supergroup and the Gondwana breakup (c. 180Ma) -- 6.4.1.6 The Antarctic Andean Orogen -- 6.5 Mesozoic to Cenozoic Tectonic Evolution of the Transantarctic Mountains -- 6.6 Tectonic evolution in the Ross Sea Sector during the Cenozoic -- 6.7 Concluding remarks, open problems and potential research themes for future geoscience investigations in Antarctica -- 6.7.1 Persistent challenges for onshore geoscience investigations -- 6.7.2 Antarctica and the Ross Orogen in the Transantarctic Mountains -- 6.7.3 Antarctica after Gondwana fragmentation -- Acknowledgements -- References -- 7 The Eocene-Oligocene boundary climate transition: an Antarctic perspective -- 7.1 Introduction -- 7.2 Background -- 7.2.1 Plate tectonic setting -- 7.2.2 Antarctic paleotopography. , 7.2.3 Paleoceanographic setting -- 7.2.4 Global average and regional sea level response -- 7.2.5 Proxies to reconstruct past Antarctic climatic and environmental evolution -- 7.2.6 Far-field proxies -- 7.3 Antarctic Sedimentary Archives -- 7.3.1 Land-based outcrops -- 7.3.1.1 Antarctic Peninsula Region -- 7.3.1.2 King George (25 de Mayo) Island, South Shetland Islands -- 7.3.1.3 The Ross Sea Region -- 7.3.2 Sedimentary archives from drilling on the Antarctic Margin -- 7.3.2.1 Drill cores in the western Ross Sea -- 7.3.2.2 The Prydz Bay Region -- 7.3.2.3 Weddell Sea -- 7.3.2.4 Wilkes Land -- 7.4 Summary of climate signals from Antarctic sedimentary archives -- 7.4.1 Longer-term changes -- 7.4.2 The climate of the Eocene-Oligocene transition -- 7.5 The global context of Earth and climate system changes across the EOT -- 7.5.1 Climate modelling -- 7.5.2 Relative sea-level change around Antarctica -- 7.6 Summary -- 7.6.1 Early-middle Eocene polar warmth -- 7.6.2 Late Eocene cooling -- 7.6.3 Eocene-Oligocene transition -- Acknowledgements -- References -- 8 Antarctic Ice Sheet dynamics during the Late Oligocene and Early Miocene: climatic conundrums revisited -- 8.1 Introduction -- 8.2 Oligocene-Miocene Transition in Antarctic geological records and its climatic significance -- 8.3 Conundrums revisited -- 8.3.1 What caused major transient glaciation of Antarctica across the OMT? -- 8.3.2 Apparent decoupling of Late Oligocene climate and ice volume? -- 8.4 Concluding remarks -- Acknowledgements -- References -- 9 Antarctic environmental change and ice sheet evolution through the Miocene to Pliocene - a perspective from the Ross Sea ... -- 9.1 Introduction -- 9.1.1 Overview and relevance -- 9.1.2 Far-field records of climate and ice sheet variability -- 9.1.2.1 The Early Miocene -- 9.1.2.2 The mid-Miocene -- 9.1.2.3 The Late Miocene -- 9.1.2.4 The Pliocene. , 9.1.3 Southern Ocean Paleogeography and Paleoceanography -- 9.1.4 Land elevation change and influences on Antarctic Ice Sheet evolution -- 9.2 Records of Miocene to Pliocene climate and ice sheet variability from the Antarctic margin -- 9.2.1 Introduction to stratigraphic records -- 9.2.2 George V Land to Wilkes Land Margin -- 9.2.2.1 Geological setting -- 9.2.2.2 Oceanography of the Adélie coast -- 9.2.2.3 Seismic stratigraphy off the George V Land to Wilkes Land Margin -- 9.2.2.4 Drill core records from the George V Land to Wilkes Land Margin -- 9.2.2.5 Neogene history of the George V Land to Wilkes Land margin -- 9.2.3 The Ross Sea Embayment and Southern Victoria Land -- 9.2.3.1 Geological setting -- 9.2.3.2 Oceanography and climate in the Ross Sea Region -- 9.2.3.3 Seismic stratigraphic records in the Ross Sea -- 9.2.3.4 Stratigraphic records from drill cores in the Ross Sea -- 9.2.3.5 Terrestrial records from Southern Victoria Land -- 9.2.3.6 Neogene history in the Ross Sea Region -- 9.3 Numerical modelling -- 9.3.1 Miocene -- 9.3.2 Pliocene -- 9.4 Synthesis/summary of key climate episodes and transitions in Antarctica through the Miocene and Pliocene -- 9.4.1 Early to mid-Miocene -- 9.4.2 Miocene Climate Optimum -- 9.4.3 Miocene Climate Transition -- 9.4.4 Late Miocene -- 9.4.5 Pliocene -- 9.5 Next steps -- Acknowledgements -- References -- 10 Pleistocene Antarctic climate variability: ice sheet, ocean and climate interactions -- 10.1 Background and motivation -- 10.1.1 Introduction -- 10.1.2 Orbital cyclicity and climate -- 10.1.3 Antarctic feedbacks in the global climate system -- 10.1.4 Strengths of Pleistocene research on Antarctica -- 10.2 Archives of Pleistocene Antarctic climate and climate-relevant processes -- 10.2.1 Polar ice cores -- 10.2.1.1 Background and characteristics of ice core records -- 10.2.1.2 Ice core climate proxies. , 10.2.1.3 Recent advances in ice core proxies and attempts to obtain ice older than one million years.
    Additional Edition: ISBN 0-12-819109-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    edocfu_9960074281402883
    Format: 1 online resource (806 pages)
    Edition: Second edition.
    ISBN: 0-12-819110-4
    Note: Front Cover -- Antarctic Climate Evolution -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Antarctic Climate Evolution - second edition -- 1.1 Introduction -- 1.2 Structure and content of the book -- Acknowledgements -- References -- 2 Sixty years of coordination and support for Antarctic science - the role of SCAR -- 2.1 Introduction -- 2.2 Scientific value of research in Antarctica and the Southern Ocean -- 2.3 The international framework in which SCAR operates -- 2.4 The organisation of SCAR -- 2.5 Sixty years of significant Antarctic science discoveries -- 2.6 Scientific Horizon Scan -- 2.7 Summary -- References -- Appendix -- 3 Cenozoic history of Antarctic glaciation and climate from onshore and offshore studies -- 3.1 Introduction -- 3.2 Long-term tectonic drivers and ice sheet evolution -- 3.3 Global climate variability and direct evidence for Antarctic ice sheet variability in the Cenozoic -- 3.3.1 Late Cretaceous to early Oligocene evidence of Antarctic ice sheets and climate variability -- 3.3.2 The Eocene-Oligocene transition and continental-scale glaciation of Antarctica -- 3.3.3 Transient glaciations of the Oligocene and Miocene -- 3.3.4 Pliocene to Pleistocene -- 3.4 Regional seismic stratigraphies and drill core correlations, and future priorities to reconstruct Antarctica's Cenozoic... -- 3.4.1 Ross Sea -- 3.4.2 Amundsen Sea -- 3.4.3 Bellingshausen Sea and Pacific coastline of Antarctic Peninsula -- 3.4.4 The Northern Antarctic Peninsula and South Shetland Islands -- 3.4.5 The Eastern Margin of the Antarctic Peninsula -- 3.4.6 The South Orkney Microcontinent and adjacent deep-water basins -- 3.4.7 East Antarctic Margin -- 3.4.7.1 Weddell Sea -- 3.4.7.1.1 Gondwana break-up, Weddell Sea opening and pre-ice-sheet depositional environment. , 3.4.7.1.2 The Eocene-Oligocene transition and paleoenvironment during increasing glacial conditions -- 3.4.7.1.3 Recent geophysical survey beneath the Ekström Ice Shelf and future directions for drilling -- 3.4.7.2 Prydz Bay -- 3.4.7.2.1 Early Cenozoic greenhouse and earliest glacial phase in late Eocene -- 3.4.7.2.2 Oligocene-Miocene ice-sheet development -- 3.4.7.2.3 The Polar Ice Sheet (late Miocene(?)-Pleistocene) -- 3.4.7.3 East Antarctic Margin - Sabrina Coast -- 3.4.7.4 Wilkes Land margin and Georges V Land -- 3.5 Summary, future directions and challenges -- Acknowledgements -- References -- 4 Water masses, circulation and change in the modern Southern Ocean -- 4.1 Introduction -- 4.1.1 Defining the Southern Ocean -- 4.2 Water masses - characteristics and distribution -- 4.2.1 Upper ocean -- 4.2.2 Intermediate depth waters -- 4.2.3 Deep water -- 4.2.4 Bottom water -- 4.3 Southern Ocean circulation -- 4.3.1 Antarctic Circumpolar Current (ACC) -- 4.3.2 Southern Ocean meridional overturning circulation (SOMOC) -- 4.3.3 Deep western boundary currents -- 4.3.3.1 Pacific deep western boundary current -- 4.3.3.2 Indian deep western boundary currents -- 4.3.3.3 Atlantic deep western boundary current -- 4.3.4 Subpolar circulation - gyres, slope and coastal currents -- 4.3.4.1 Gyres -- 4.3.4.2 Antarctic slope and coastal currents -- 4.4 Modern Southern Ocean change -- 4.4.1 Climate change -- 4.4.2 Ocean change -- 4.4.3 Change in dynamics and circulation -- 4.5 Concluding remarks -- References -- 5 Advances in numerical modelling of the Antarctic ice sheet -- 5.1 Introduction and aims -- 5.2 Advances in ice sheet modelling -- 5.2.1 Grounding line physics -- 5.2.2 Adaptive grids -- 5.2.3 Parallel ice sheet model - PISM -- 5.2.4 Coupled models -- 5.3 Model input - bed data -- 5.4 Advances in knowledge of bed processes -- 5.5 Model intercomparison. , 5.6 Brief case studies -- 5.7 Future work -- References -- 6 The Antarctic Continent in Gondwana: a perspective from the Ross Embayment and Potential Research Targets for Future Inve... -- 6.1 Introduction -- 6.2 The Antarctic plate and the present-day geological setting of the Ross Embayment -- 6.3 East Antarctica -- 6.3.1 The Main Geological Units during the Paleoproterozoic-Early Neoproterozoic Rodinia Assemblage -- 6.3.2 From Rodinia breakup to Gondwana (c. 800-650Ma) -- 6.3.3 The 'Ross Orogen' in the Transantarctic Mountains during the late Precambrian-early Paleozoic evolution of the paleo-... -- 6.4 West Antarctic Accretionary System -- 6.4.1 West Antarctica in the Precambrian to Mesozoic (c. 180Ma) evolution of Gondwana until the middle Jurassic breakup -- 6.4.1.1 Precambrian to Cambrian metamorphic basement -- 6.4.1.2 Devono-Carboniferous arc magmatism ('Borchgrevink Event') (c. 370-350Ma) -- 6.4.1.3 Beacon Supergroup (Devonian-Permo-Triassic-earliest Jurassic) -- 6.4.1.4 The Ellsworth-Whitmore Mountains Terrane and the Permo-Triassic arc magmatism -- 6.4.1.5 Ferrar Supergroup and the Gondwana breakup (c. 180Ma) -- 6.4.1.6 The Antarctic Andean Orogen -- 6.5 Mesozoic to Cenozoic Tectonic Evolution of the Transantarctic Mountains -- 6.6 Tectonic evolution in the Ross Sea Sector during the Cenozoic -- 6.7 Concluding remarks, open problems and potential research themes for future geoscience investigations in Antarctica -- 6.7.1 Persistent challenges for onshore geoscience investigations -- 6.7.2 Antarctica and the Ross Orogen in the Transantarctic Mountains -- 6.7.3 Antarctica after Gondwana fragmentation -- Acknowledgements -- References -- 7 The Eocene-Oligocene boundary climate transition: an Antarctic perspective -- 7.1 Introduction -- 7.2 Background -- 7.2.1 Plate tectonic setting -- 7.2.2 Antarctic paleotopography. , 7.2.3 Paleoceanographic setting -- 7.2.4 Global average and regional sea level response -- 7.2.5 Proxies to reconstruct past Antarctic climatic and environmental evolution -- 7.2.6 Far-field proxies -- 7.3 Antarctic Sedimentary Archives -- 7.3.1 Land-based outcrops -- 7.3.1.1 Antarctic Peninsula Region -- 7.3.1.2 King George (25 de Mayo) Island, South Shetland Islands -- 7.3.1.3 The Ross Sea Region -- 7.3.2 Sedimentary archives from drilling on the Antarctic Margin -- 7.3.2.1 Drill cores in the western Ross Sea -- 7.3.2.2 The Prydz Bay Region -- 7.3.2.3 Weddell Sea -- 7.3.2.4 Wilkes Land -- 7.4 Summary of climate signals from Antarctic sedimentary archives -- 7.4.1 Longer-term changes -- 7.4.2 The climate of the Eocene-Oligocene transition -- 7.5 The global context of Earth and climate system changes across the EOT -- 7.5.1 Climate modelling -- 7.5.2 Relative sea-level change around Antarctica -- 7.6 Summary -- 7.6.1 Early-middle Eocene polar warmth -- 7.6.2 Late Eocene cooling -- 7.6.3 Eocene-Oligocene transition -- Acknowledgements -- References -- 8 Antarctic Ice Sheet dynamics during the Late Oligocene and Early Miocene: climatic conundrums revisited -- 8.1 Introduction -- 8.2 Oligocene-Miocene Transition in Antarctic geological records and its climatic significance -- 8.3 Conundrums revisited -- 8.3.1 What caused major transient glaciation of Antarctica across the OMT? -- 8.3.2 Apparent decoupling of Late Oligocene climate and ice volume? -- 8.4 Concluding remarks -- Acknowledgements -- References -- 9 Antarctic environmental change and ice sheet evolution through the Miocene to Pliocene - a perspective from the Ross Sea ... -- 9.1 Introduction -- 9.1.1 Overview and relevance -- 9.1.2 Far-field records of climate and ice sheet variability -- 9.1.2.1 The Early Miocene -- 9.1.2.2 The mid-Miocene -- 9.1.2.3 The Late Miocene -- 9.1.2.4 The Pliocene. , 9.1.3 Southern Ocean Paleogeography and Paleoceanography -- 9.1.4 Land elevation change and influences on Antarctic Ice Sheet evolution -- 9.2 Records of Miocene to Pliocene climate and ice sheet variability from the Antarctic margin -- 9.2.1 Introduction to stratigraphic records -- 9.2.2 George V Land to Wilkes Land Margin -- 9.2.2.1 Geological setting -- 9.2.2.2 Oceanography of the Adélie coast -- 9.2.2.3 Seismic stratigraphy off the George V Land to Wilkes Land Margin -- 9.2.2.4 Drill core records from the George V Land to Wilkes Land Margin -- 9.2.2.5 Neogene history of the George V Land to Wilkes Land margin -- 9.2.3 The Ross Sea Embayment and Southern Victoria Land -- 9.2.3.1 Geological setting -- 9.2.3.2 Oceanography and climate in the Ross Sea Region -- 9.2.3.3 Seismic stratigraphic records in the Ross Sea -- 9.2.3.4 Stratigraphic records from drill cores in the Ross Sea -- 9.2.3.5 Terrestrial records from Southern Victoria Land -- 9.2.3.6 Neogene history in the Ross Sea Region -- 9.3 Numerical modelling -- 9.3.1 Miocene -- 9.3.2 Pliocene -- 9.4 Synthesis/summary of key climate episodes and transitions in Antarctica through the Miocene and Pliocene -- 9.4.1 Early to mid-Miocene -- 9.4.2 Miocene Climate Optimum -- 9.4.3 Miocene Climate Transition -- 9.4.4 Late Miocene -- 9.4.5 Pliocene -- 9.5 Next steps -- Acknowledgements -- References -- 10 Pleistocene Antarctic climate variability: ice sheet, ocean and climate interactions -- 10.1 Background and motivation -- 10.1.1 Introduction -- 10.1.2 Orbital cyclicity and climate -- 10.1.3 Antarctic feedbacks in the global climate system -- 10.1.4 Strengths of Pleistocene research on Antarctica -- 10.2 Archives of Pleistocene Antarctic climate and climate-relevant processes -- 10.2.1 Polar ice cores -- 10.2.1.1 Background and characteristics of ice core records -- 10.2.1.2 Ice core climate proxies. , 10.2.1.3 Recent advances in ice core proxies and attempts to obtain ice older than one million years.
    Additional Edition: ISBN 0-12-819109-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    almahu_9949225683902882
    Format: 1 online resource (806 pages)
    Edition: Second edition.
    ISBN: 0-12-819110-4
    Note: Front Cover -- Antarctic Climate Evolution -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Antarctic Climate Evolution - second edition -- 1.1 Introduction -- 1.2 Structure and content of the book -- Acknowledgements -- References -- 2 Sixty years of coordination and support for Antarctic science - the role of SCAR -- 2.1 Introduction -- 2.2 Scientific value of research in Antarctica and the Southern Ocean -- 2.3 The international framework in which SCAR operates -- 2.4 The organisation of SCAR -- 2.5 Sixty years of significant Antarctic science discoveries -- 2.6 Scientific Horizon Scan -- 2.7 Summary -- References -- Appendix -- 3 Cenozoic history of Antarctic glaciation and climate from onshore and offshore studies -- 3.1 Introduction -- 3.2 Long-term tectonic drivers and ice sheet evolution -- 3.3 Global climate variability and direct evidence for Antarctic ice sheet variability in the Cenozoic -- 3.3.1 Late Cretaceous to early Oligocene evidence of Antarctic ice sheets and climate variability -- 3.3.2 The Eocene-Oligocene transition and continental-scale glaciation of Antarctica -- 3.3.3 Transient glaciations of the Oligocene and Miocene -- 3.3.4 Pliocene to Pleistocene -- 3.4 Regional seismic stratigraphies and drill core correlations, and future priorities to reconstruct Antarctica's Cenozoic... -- 3.4.1 Ross Sea -- 3.4.2 Amundsen Sea -- 3.4.3 Bellingshausen Sea and Pacific coastline of Antarctic Peninsula -- 3.4.4 The Northern Antarctic Peninsula and South Shetland Islands -- 3.4.5 The Eastern Margin of the Antarctic Peninsula -- 3.4.6 The South Orkney Microcontinent and adjacent deep-water basins -- 3.4.7 East Antarctic Margin -- 3.4.7.1 Weddell Sea -- 3.4.7.1.1 Gondwana break-up, Weddell Sea opening and pre-ice-sheet depositional environment. , 3.4.7.1.2 The Eocene-Oligocene transition and paleoenvironment during increasing glacial conditions -- 3.4.7.1.3 Recent geophysical survey beneath the Ekström Ice Shelf and future directions for drilling -- 3.4.7.2 Prydz Bay -- 3.4.7.2.1 Early Cenozoic greenhouse and earliest glacial phase in late Eocene -- 3.4.7.2.2 Oligocene-Miocene ice-sheet development -- 3.4.7.2.3 The Polar Ice Sheet (late Miocene(?)-Pleistocene) -- 3.4.7.3 East Antarctic Margin - Sabrina Coast -- 3.4.7.4 Wilkes Land margin and Georges V Land -- 3.5 Summary, future directions and challenges -- Acknowledgements -- References -- 4 Water masses, circulation and change in the modern Southern Ocean -- 4.1 Introduction -- 4.1.1 Defining the Southern Ocean -- 4.2 Water masses - characteristics and distribution -- 4.2.1 Upper ocean -- 4.2.2 Intermediate depth waters -- 4.2.3 Deep water -- 4.2.4 Bottom water -- 4.3 Southern Ocean circulation -- 4.3.1 Antarctic Circumpolar Current (ACC) -- 4.3.2 Southern Ocean meridional overturning circulation (SOMOC) -- 4.3.3 Deep western boundary currents -- 4.3.3.1 Pacific deep western boundary current -- 4.3.3.2 Indian deep western boundary currents -- 4.3.3.3 Atlantic deep western boundary current -- 4.3.4 Subpolar circulation - gyres, slope and coastal currents -- 4.3.4.1 Gyres -- 4.3.4.2 Antarctic slope and coastal currents -- 4.4 Modern Southern Ocean change -- 4.4.1 Climate change -- 4.4.2 Ocean change -- 4.4.3 Change in dynamics and circulation -- 4.5 Concluding remarks -- References -- 5 Advances in numerical modelling of the Antarctic ice sheet -- 5.1 Introduction and aims -- 5.2 Advances in ice sheet modelling -- 5.2.1 Grounding line physics -- 5.2.2 Adaptive grids -- 5.2.3 Parallel ice sheet model - PISM -- 5.2.4 Coupled models -- 5.3 Model input - bed data -- 5.4 Advances in knowledge of bed processes -- 5.5 Model intercomparison. , 5.6 Brief case studies -- 5.7 Future work -- References -- 6 The Antarctic Continent in Gondwana: a perspective from the Ross Embayment and Potential Research Targets for Future Inve... -- 6.1 Introduction -- 6.2 The Antarctic plate and the present-day geological setting of the Ross Embayment -- 6.3 East Antarctica -- 6.3.1 The Main Geological Units during the Paleoproterozoic-Early Neoproterozoic Rodinia Assemblage -- 6.3.2 From Rodinia breakup to Gondwana (c. 800-650Ma) -- 6.3.3 The 'Ross Orogen' in the Transantarctic Mountains during the late Precambrian-early Paleozoic evolution of the paleo-... -- 6.4 West Antarctic Accretionary System -- 6.4.1 West Antarctica in the Precambrian to Mesozoic (c. 180Ma) evolution of Gondwana until the middle Jurassic breakup -- 6.4.1.1 Precambrian to Cambrian metamorphic basement -- 6.4.1.2 Devono-Carboniferous arc magmatism ('Borchgrevink Event') (c. 370-350Ma) -- 6.4.1.3 Beacon Supergroup (Devonian-Permo-Triassic-earliest Jurassic) -- 6.4.1.4 The Ellsworth-Whitmore Mountains Terrane and the Permo-Triassic arc magmatism -- 6.4.1.5 Ferrar Supergroup and the Gondwana breakup (c. 180Ma) -- 6.4.1.6 The Antarctic Andean Orogen -- 6.5 Mesozoic to Cenozoic Tectonic Evolution of the Transantarctic Mountains -- 6.6 Tectonic evolution in the Ross Sea Sector during the Cenozoic -- 6.7 Concluding remarks, open problems and potential research themes for future geoscience investigations in Antarctica -- 6.7.1 Persistent challenges for onshore geoscience investigations -- 6.7.2 Antarctica and the Ross Orogen in the Transantarctic Mountains -- 6.7.3 Antarctica after Gondwana fragmentation -- Acknowledgements -- References -- 7 The Eocene-Oligocene boundary climate transition: an Antarctic perspective -- 7.1 Introduction -- 7.2 Background -- 7.2.1 Plate tectonic setting -- 7.2.2 Antarctic paleotopography. , 7.2.3 Paleoceanographic setting -- 7.2.4 Global average and regional sea level response -- 7.2.5 Proxies to reconstruct past Antarctic climatic and environmental evolution -- 7.2.6 Far-field proxies -- 7.3 Antarctic Sedimentary Archives -- 7.3.1 Land-based outcrops -- 7.3.1.1 Antarctic Peninsula Region -- 7.3.1.2 King George (25 de Mayo) Island, South Shetland Islands -- 7.3.1.3 The Ross Sea Region -- 7.3.2 Sedimentary archives from drilling on the Antarctic Margin -- 7.3.2.1 Drill cores in the western Ross Sea -- 7.3.2.2 The Prydz Bay Region -- 7.3.2.3 Weddell Sea -- 7.3.2.4 Wilkes Land -- 7.4 Summary of climate signals from Antarctic sedimentary archives -- 7.4.1 Longer-term changes -- 7.4.2 The climate of the Eocene-Oligocene transition -- 7.5 The global context of Earth and climate system changes across the EOT -- 7.5.1 Climate modelling -- 7.5.2 Relative sea-level change around Antarctica -- 7.6 Summary -- 7.6.1 Early-middle Eocene polar warmth -- 7.6.2 Late Eocene cooling -- 7.6.3 Eocene-Oligocene transition -- Acknowledgements -- References -- 8 Antarctic Ice Sheet dynamics during the Late Oligocene and Early Miocene: climatic conundrums revisited -- 8.1 Introduction -- 8.2 Oligocene-Miocene Transition in Antarctic geological records and its climatic significance -- 8.3 Conundrums revisited -- 8.3.1 What caused major transient glaciation of Antarctica across the OMT? -- 8.3.2 Apparent decoupling of Late Oligocene climate and ice volume? -- 8.4 Concluding remarks -- Acknowledgements -- References -- 9 Antarctic environmental change and ice sheet evolution through the Miocene to Pliocene - a perspective from the Ross Sea ... -- 9.1 Introduction -- 9.1.1 Overview and relevance -- 9.1.2 Far-field records of climate and ice sheet variability -- 9.1.2.1 The Early Miocene -- 9.1.2.2 The mid-Miocene -- 9.1.2.3 The Late Miocene -- 9.1.2.4 The Pliocene. , 9.1.3 Southern Ocean Paleogeography and Paleoceanography -- 9.1.4 Land elevation change and influences on Antarctic Ice Sheet evolution -- 9.2 Records of Miocene to Pliocene climate and ice sheet variability from the Antarctic margin -- 9.2.1 Introduction to stratigraphic records -- 9.2.2 George V Land to Wilkes Land Margin -- 9.2.2.1 Geological setting -- 9.2.2.2 Oceanography of the Adélie coast -- 9.2.2.3 Seismic stratigraphy off the George V Land to Wilkes Land Margin -- 9.2.2.4 Drill core records from the George V Land to Wilkes Land Margin -- 9.2.2.5 Neogene history of the George V Land to Wilkes Land margin -- 9.2.3 The Ross Sea Embayment and Southern Victoria Land -- 9.2.3.1 Geological setting -- 9.2.3.2 Oceanography and climate in the Ross Sea Region -- 9.2.3.3 Seismic stratigraphic records in the Ross Sea -- 9.2.3.4 Stratigraphic records from drill cores in the Ross Sea -- 9.2.3.5 Terrestrial records from Southern Victoria Land -- 9.2.3.6 Neogene history in the Ross Sea Region -- 9.3 Numerical modelling -- 9.3.1 Miocene -- 9.3.2 Pliocene -- 9.4 Synthesis/summary of key climate episodes and transitions in Antarctica through the Miocene and Pliocene -- 9.4.1 Early to mid-Miocene -- 9.4.2 Miocene Climate Optimum -- 9.4.3 Miocene Climate Transition -- 9.4.4 Late Miocene -- 9.4.5 Pliocene -- 9.5 Next steps -- Acknowledgements -- References -- 10 Pleistocene Antarctic climate variability: ice sheet, ocean and climate interactions -- 10.1 Background and motivation -- 10.1.1 Introduction -- 10.1.2 Orbital cyclicity and climate -- 10.1.3 Antarctic feedbacks in the global climate system -- 10.1.4 Strengths of Pleistocene research on Antarctica -- 10.2 Archives of Pleistocene Antarctic climate and climate-relevant processes -- 10.2.1 Polar ice cores -- 10.2.1.1 Background and characteristics of ice core records -- 10.2.1.2 Ice core climate proxies. , 10.2.1.3 Recent advances in ice core proxies and attempts to obtain ice older than one million years.
    Additional Edition: ISBN 0-12-819109-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Book
    Book
    Amsterdam [u.a.] : Elsevier
    UID:
    b3kat_BV023274541
    Format: XII, 593 S. , Ill., graph. Darst., Kt.
    Edition: 1. ed.
    ISBN: 9780444528476
    Series Statement: Developments in earth & environmental sciences 8
    Language: English
    Subjects: Geography
    RVK:
    Keywords: Antarktis ; Känozoikum ; Klimaänderung ; Aufsatzsammlung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Book
    Book
    Amsterdam [u.a.] :Elsevier,
    UID:
    almahu_BV023274541
    Format: XII, 593 S. : , Ill., graph. Darst., Kt.
    Edition: 1. ed.
    ISBN: 978-0-444-52847-6
    Series Statement: Developments in earth & environmental sciences 8
    Language: English
    Subjects: Geography
    RVK:
    Keywords: Känozoikum ; Klimaänderung ; Aufsatzsammlung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages