feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9947362675202882
    Format: XI, 337 p. 128 illus., 114 illus. in color. , online resource.
    ISBN: 9789400768413
    Series Statement: Vertebrate Paleobiology and Paleoanthropology,
    Content: Non-mammalian synapsids were the dominant terrestrial vertebrates from the Late Carboniferous to the Middle Triassic and play a key role in understanding the origin and evolution of mammals. Despite these facts and the outstanding fossil record of the group, early synapsids remain obscure. This book showcases the full breadth of contemporary research on non-mammalian synapsids, ranging from taxonomy and phylogenetics to functional morphology, biogeography, paleoecology, and patterns of diversity. It also underscores the importance and potential of studying non-mammalian synapsid paleobiology in its own right, not just in the context of mammalian evolution.
    Note: Part I. “Pelycosaur”-grade Synapsids -- Part II. Anomodontia -- Part III. Theriodontia -- IV. Therapsid Diversity Patterns and the End-Permian Extinction.
    In: Springer eBooks
    Additional Edition: Printed edition: ISBN 9789400768406
    Language: English
    Subjects: Earth Sciences , Biology
    RVK:
    RVK:
    RVK:
    Keywords: Aufsatzsammlung ; Aufsatzsammlung
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edochu_18452_23134
    Format: 1 Online-Ressource (27 Seiten)
    Content: Therocephalia is one of the major therapsid clades and ranges from the middle Permian to Middle Triassic. The earliest therocephalians were large-bodied predators whose fossils are common in middle Permian rocks of South Africa, but have received little study. Here we present a redescription of the skull of the early therocephalian Lycosuchus based on a specimen from the middle Permian Tapinocephalus Assemblage Zone of the South African Karoo Basin. By using a computed tomographic (CT) reconstruction of this specimen, we describe for the first time several endocranial characters of this taxon including a highly ramified maxillary canal and the inner ear, which is characterized by a lengthened lateral semicircular canal, a feature previously only known from the anomodont Kawingasaurus among non-mammalian therapsids, and the presence of a cochlear recess, so far only known within Therocephalia from the highly specialized Triassic taxon Microgomphodon. We also provide new insights into patterns of tooth replacement in lycosuchids, which have proven controversial for this taxon. Craniodental characters generally support the placement of Lycosuchus as the most basal taxon in therocephalian phylogeny. The morphology of the maxillary canal and inner ear reveal a mosaic of features indicating a complex history of character acquisition and loss in Therocephalia, comparable to that of cynodonts.
    Content: Peer Reviewed
    In: Lausanne : Frontiers Media, 7
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    edochu_18452_27641
    Format: 1 Online-Ressource (40 Seiten)
    Content: Gorgonopsians are among the most recognizable groups of synapsids from the Permian period and have an extensive but mostly cranial fossil record. By contrast, relatively little is known about their postcranial anatomy. Here, we describe a nearly complete, semi-articulated skeleton of a gorgonopsian (identified as Gorgonops torvus) from the late Permian Endothiodon Assemblage Zone of the South African Karoo Basin and discuss its paleobiological implications. Known gorgonopsian postcrania indicate morphological conservatism in the group, but the skeletal anatomy of Gorgonops does differ from that of other gorgonopsians in some respects, such as in the triangular radiale and short terminal phalanges in the manus, and a weakly developed distinction between pubis and ischium in ventral aspect of the pelvic girdle. Similarities between the specimen described herein and a historically problematic specimen originally referred to “Scymnognathus cf. whaitsi” confirm referral of the latter specimen to Gorgonops. Since descriptions of gorgonopsian postcrania are rare, new interpretations of the lifestyle and ecology of Gorgonopsia can be drawn from our contribution. We conclude that gorgonopsians were likely ambush predators, able to chase their prey over short distances and pin them down with strong forelimbs before using their canines for the kill. This is evidenced by their different fore- and hindlimb morphology; the former stouter and more robust in comparison to the longer, more gracile, back legs. Furthermore, the completeness of the study specimen facilitates calculation of an estimated body mass of approximately 98 kg, similar to that of a modern lioness.
    Content: Peer Reviewed
    Note: The article processing charge was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 491192747 and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
    In: London [u.a.] : PeerJ, Inc., 2023, 11
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    edochu_18452_21444
    Format: 1 Online-Ressource (14 Seiten)
    Content: Studies of diversity, whether of species richness within regions (alpha diversity) or faunal turnover between regions (beta diversity), will depend heavily on the “bioregions” into which a study area is divided. However, such studies in the palaeontological literature have often been extremely arbitrary in their definition of bioregions and have employed a wide variety of spatial scales, from individual localities to formations/basins to entire continents. Such bioregions will not necessarily be separated by biologically meaningful boundaries, and results obtained at different spatial scales will not be directly comparable. In many neontological studies, however, bioregions are defined more rigorously, usually as areas of endemicity. Here a procedure is proposed whereby this principal may be applied to palaeontological datasets. In each time bin/assemblage localities are subjected to two hierarchical cluster analyses, the first grouping the localities by geographic distance, the second by taxonomic distance. Clusters shared between the two will represent geographically continuous areas of endemicity and so may be used as bioregions. When calculating alpha or beta diversity through time, the spatial scale at which the bioregions are defined needs to be standardized between each time bin. This is done by grouping clusters of localities below a predefined geographic cluster node height. This approach is used to assess changes in beta diversity of Palaeozoic tetrapods and resolve disagreements regarding changes in faunal provinciality across the Carboniferous/Permian boundary. When the bioregions are defined at a smaller spatial scale, splitting the globe into many small regions, beta diversity decreases substantially during the earliest Permian. However, when the bioregions are defined at larger spatial scales, representing areas roughly the size of continents, beta diversity remains high. This result indicates that local environmental barriers to dispersal were decreasing in importance, rejecting previous suggestions that the rainforest collapse caused an “island biogeography” effect. Instead, dispersal at this time is restricted by continental-scale barriers, with the increased orogenic uplift as a possible control.
    Content: Peer Reviewed
    In: Lausanne : Frontiers Media S.A., 6
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    edochu_18452_24191
    Format: 1 Online-Ressource (31 Seiten)
    Content: The origin of Reptilia and the biostratigraphic and palaeobiogeographic distribution of its early representatives are still poorly understood. An independent source of information may come from the extensive Carboniferous footprint record of reptiles, which is arguably richer and more complete than the skeletal record. Nevertheless, previous studies often failed to provide useful information because they were based on poorly preserved material and/or characters non-exclusive of reptile tracks. In fact, a large part of the supposed early reptile tracks can be assigned to the anamniote ichnotaxon Hylopus hardingi. Here, we revise the ichnotaxon Hylopus hardingi based on anatomy-consistent material, attribute it to anamniote reptiliomorphs, and distinguish it from Notalacerta missouriensis, the earliest ichnotaxon that can be attributed to reptiles, and the somewhat younger Varanopus microdactylus (attributed to parareptiles, such as bolosaurians) and Dromopus lacertoides (attributed to araeoscelid reptiles and non-varanodontine varanopids). These attributions are based on correlating morphofunctional features of tracks and skeletons. Multivariate analysis of trackway parameters indicates that the late Bashkirian Notalacerta missouriensis and Hylopus hardingi differ markedly in their trackway patterns from Late Mississippian Hylopus hardingi and Late Pennsylvanian reptile tracks, which appear to share a derived amniote-like type of gait. While the first occurrence/appearance of reptile tracks in the tetrapod footprint record during the late Bashkirian corresponds to the first occurrence/appearance of reptiles in the skeletal record, footprints significantly enlarge the paleobiogeographic distribution of the group, suggesting an earlier radiation of reptiles during the Bashkirian throughout North America and possibly North Africa. Dromopus appeared in the Kasimovian together with the diapsid group Araeoscelidia, but footprints from Western-European occurrences enlarge the paleobiogeographic distribution of diapsids and varanopids. Varanopus and bolosaurian parareptiles appear in the Gzhelian of North America. Older parareptiles are, however, known from the late Moscovian. In all, the footprint record of early reptiles supplements the skeletal record, suggesting possible future lines of research.
    Content: Peer Reviewed
    In: Lausanne : Frontiers Media, 9
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edochu_18452_24188
    Format: 1 Online-Ressource (13 Seiten)
    Content: The early Permian Richards Spur locality of Oklahoma has produced abundant material of numerous terrestrial fossil tetrapods, including various “microsaurs,” several of which are considered to belong to the clade Recumbirostra. We present a new partial skull of the recumbirostran “microsaur” Nannaroter mckinziei; through computed tomography (CT) analysis of both this new specimen and the holotype, we provide an updated description of the taxon. This new description provides novel information regarding several regions that could not be examined previously due to either being absent in the holotype or difficult to access. This includes missing and obscured aspects of the skull roof, braincase, lower jaw, and the palatal region. Furthermore, the new information obtained from this description was used to update phylogenetic character codings of Nannaroter, and a revised phylogenetic analysis was conducted. The results of this updated analysis are congruent with those of other recent phylogenetic analyses of recumbirostran “microsaurs.” This new information adds to the ever-growing body of early tetrapod CT data, which has been, and will continue to be, important in revealing details regarding early tetrapod anatomy, interrelationships, paleoecology, and evolution.
    Content: Peer Reviewed
    In: Lausanne : Frontiers Media, 9
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edochu_18452_22404
    Format: 1 Online-Ressource (14 Seiten)
    Content: Nonmammalian cynodonts represent a speciose and ecologically diverse group with a fossil record stretching from the late Permian until the Cretaceous. Because of their role as major components of Triassic terrestrial ecosystems and as the direct ancestors of mammals, cynodonts are an important group for understanding Mesozoic tetrapod diversity. We examine patterns of nonmammalian cynodont species richness and the quality of their fossil record. A supertree of cynodonts is constructed from recently published trees and time calibrated using a Bayesian approach. While this approach pushes the root of Cynodontia back to the earliest Guadalupian, the origins of Cynognathia and Probainognathia are close to their first appearance in the fossil record. Taxic, subsampled, and phylogenetic diversity estimates support a major cynodont radiation following the end-Permian mass extinction, but conflicting signals are observed at the end of the Triassic. The taxic diversity estimate shows high diversity in the Rhaetian and a drop across the Triassic/Jurassic boundary, while the phylogenetic diversity indicates an earlier extinction between the Norian and Rhaetian. The difference is attributed to the prevalence of taxa based solely on teeth in the Rhaetian, which are not included in the phylogenetic diversity estimate. Examining the completeness of cynodont specimens through geological time does not support a decrease in preservation potential; although the median completeness score decreases in the Late Triassic, the range of values remains consistent. Instead, the poor completeness scores are attributed to a shift in sampling and taxonomic practices: an increased prevalence in microvertebrate sampling and the naming of fragmentary material.
    Content: Peer Reviewed
    Note: This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.
    In: Cambridge : Cambridge Univ. Press, 45,1, Seiten 56-69
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    edochu_18452_28903
    Format: 1 Online-Ressource (9 Seiten)
    Content: The sternum is a stabilizing element in the axial skeleton of most tetrapods, closely linked with the function of the pectoral girdle of the appendicular skeleton. Modern mammals have a distinctive sternum characterized by multiple ossified segments, the origins of which are poorly understood. Although the evolution of the pectoral girdle has been extensively studied in early members of the mammalian total group (Synapsida), only limited data exist for the sternum. Ancestrally, synapsids exhibit a single sternal element and previously the earliest report of a segmental sternum in non-mammalian synapsids was in the Middle Triassic cynodont Diademodon tetragonus. Here, we describe the well-preserved sternum of a gorgonopsian, a group of sabre-toothed synapsids from the Permian. It represents an ossified, multipartite element resembling the mammalian condition. This discovery pulls back the origin of the distinctive “mammalian” sternum to the base of Theriodontia, significantly extending the temporal range of this morphology. Through a review of sternal morphology across Synapsida, we reconstruct the evolutionary history of this structure. Furthermore, we explore its role in the evolution of mammalian posture, gait, and ventilation through progressive regionalization of the postcranium as well as the posteriorization of musculature associated with mammalian breathing.
    Content: Peer Reviewed
    Note: The article processing charge was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 491192747 and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
    In: [London] : Macmillan Publishers Limited, part of Springer Nature, 2022, 12
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    edochu_18452_29185
    Format: 1 Online-Ressource (97 Seiten)
    ISSN: 1932-8486 , 1932-8486
    Content: The origin of cynodonts, the group ancestral to and including mammals, is one of the major outstanding problems in therapsid evolution. One of the most troubling aspects of the cynodont fossil record is the lengthy Permian ghost lineage between the latest possible divergence from its sister group Therocephalia and the first appearance of definitive cynodonts in the late Permian. The absence of cynodonts and dominance of therocephalians in middle Permian strata has led some workers to argue that cynodonts evolved from within therocephalians, rendering the latter paraphyletic, but more recent analyses support the reciprocal monophyly of Cynodontia and Therocephalia. Furthermore, although a fundamental dichotomy in the derived subclade Eucynodontia is well‐supported in cynodont phylogeny, the relationships of more stemward cynodonts from the late Permian and Early Triassic are unresolved. Here, we provide a re‐evaluation of the phylogeny of Eutheriodontia (Cynodontia + Therocephalia) and an assessment of character evolution within the group. Using computed tomographic data derived from extensive sampling of the earliest known (late Permian and Early Triassic) cynodonts and selected exemplars of therocephalians and later (Middle Triassic onwards) cynodonts, we describe novel aspects of the endocranial anatomy of these animals. These data were incorporated into a new phylogenetic data set including a comprehensive sample of early cynodonts. Our phylogenetic analyses support some results previously recovered by other authors, but recover therocephalians as paraphyletic with regards to cynodonts, with cynodonts and eutherocephalians forming a clade to the exclusion of the “basal therocephalian” families Lycosuchidae and Scylacosauridae. Though both conservatism and homoplasy mark the endocranial anatomy of early non‐mammalian cynodonts, we were able to identify several new endocranial synapomorphies for eutheriodont subclades and recovered generally better‐supported topologies than previous analyses using primarily external craniodental characters.
    Content: Peer Reviewed
    In: Hoboken, NJ : Wiley-Liss, 307,4, Seiten 1634-1730, 1932-8486
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    b3kat_BV039847676
    Format: 158 S. , Ill., graph. Darst.
    Series Statement: Journal of vertebrate paleontology 31,6, Suppl.
    Language: Undetermined
    Subjects: Earth Sciences
    RVK:
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages