feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    b3kat_BV003007228
    Format: X, 468 S. , Ill.
    Language: English
    Subjects: Law , Psychology , Sociology
    RVK:
    RVK:
    RVK:
    Keywords: Kriminalpsychologie ; Kriminalität ; Prävention ; Psychologie ; Kriminalität ; Abweichendes Verhalten
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almafu_BV021867919
    Format: X, 468 S.
    ISBN: 0-12-785138-0 , 0-12-816950-8
    Language: English
    Subjects: Psychology
    RVK:
    Keywords: Abweichendes Verhalten ; Psychologie ; Kriminalität ; Kriminalität ; Prävention ; Kriminalpsychologie ; Elektrochemische Energietechnik
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    London, England :Academic Press,
    UID:
    edoccha_9960074303402883
    Format: 1 online resource (246 pages)
    ISBN: 0-12-816951-6 , 0-12-816950-8
    Note: Front Cover -- Hydrogen, Batteries and Fuel Cells -- Hydrogen, Batteries and Fuel Cells -- Contents -- Preface -- Nomenclature -- 1 - Introduction and background -- 1.1 Primary energy sources - fossil fuels -- 1.2 Renewable energy resources -- 1.3 Conclusion energy sources -- 1.4 Hydrogen -- 1.5 Electrochemical devices -- 1.6 Batteries -- 1.7 Fuel cells -- 1.8 Electrolyzers -- 1.9 Summary -- 1.10 Intention -- References -- 2 - Electrochemistry and thermodynamics -- 2.1 Introduction -- 2.2 The electrochemical cell -- 2.3 Thermodynamics -- 2.3.1 First law of thermodynamics -- 2.3.2 Enthalpy of formation hf0 -- 2.3.3 Electric work -- 2.3.4 Cell voltage -- 2.3.5 The Faraday's laws in electrochemistry -- 2.3.6 General reaction -- 2.3.7 The Nernst equation -- 2.3.7.1 Illustration of using Nernst equation -- 2.4 The electrical double layer and electrode kinetics -- 2.5 Polarization curve and overpotential -- 2.5.1 Activation losses -- 2.5.2 Ohmic losses -- 2.5.3 Mass transport loss or concentration loss -- 2.5.4 Internal current and crossover -- 2.5.5 Cell voltage under load -- 2.6 Heat generation -- 2.6.1 Modes of heat transfer -- 2.6.1.1 Reynolds number -- 2.6.1.2 Grashof number -- 2.6.1.3 Nusselt number -- 2.6.1.4 Prandtl number -- 2.6.1.5 Correlations -- 2.6.1.6 Thermal radiation -- 2.6.1.7 Surface to surface radiative heat transfer -- 2.6.1.8 Participating media -- 2.7 Mass transport -- 2.8 Porous media -- 2.8.1 Governing equations of transport in porous media -- References -- 3 - Hydrogen -- 3.1 Introduction -- 3.2 Properties of hydrogen -- 3.3 Production of hydrogen -- 3.3.1 Steam reforming -- 3.3.2 Gasification of coal and biomass -- 3.3.3 Electrolysis of water -- 3.3.4 Thermochemical water splitting and thermolysis -- 3.3.5 Photoelectrochemical water splitting -- 3.3.6 Thermocatalytic cracking -- 3.3.7 Roadmap for hydrogen production. , 3.4 Storage of hydrogen -- 3.4.1 Compressed gas -- 3.4.2 Cryogenic storage -- 3.4.3 Cryo-compressed storage -- 3.4.3.1 Compressed liquid hydrogen -- 3.4.3.2 Compressed cryogenic gas -- 3.4.4 Chemical storage -- 3.4.4.1 Ammonia (NH3) -- 3.4.4.2 Metal hydrides -- 3.4.4.3 Chemical hydrides -- 3.4.4.3.1 Storage of hydrogen in sodiumboron-hydrides-power balls -- 3.4.4.4 Liquid organic hydrogen carriers (LOHC) -- 3.4.4.5 Carbohydrates -- 3.4.4.6 Physisorption and carbon-based materials -- 3.5 Transportation of hydrogen -- 3.6 Pros and cons for hydrogen -- 3.6.1 Pros of hydrogen energy -- 3.6.2 Cons of hydrogen energy -- 3.7 Competitive fuels -- References -- 4 - Battery technologies -- 4.1 Introduction -- 4.2 Lead-acid batteries -- 4.3 Nickel-metal hydride batteries -- 4.4 Lithium batteries -- 4.4.1 Lithium metal batteries -- 4.4.2 Lithium-ion and lithium-ion polymer batteries -- 4.4.3 Lithium-oxygen batteries -- 4.4.4 Lithium-sulfur batteries -- 4.5 Nickel-zinc batteries -- 4.6 Zinc-carbon batteries -- 4.7 Zinc-air batteries -- 4.8 Other battery types -- 4.8.1 Redox flow batteries -- 4.9 Voltage characteristics -- 4.10 Standards and nomenclature -- 4.10.1 Cell designs -- 4.11 Ragone plot -- 4.12 Summary -- References -- 5 - Transport phenomena in batteries -- 5.1 Introduction -- 5.2 Electrolyte charge conservation -- 5.2.1 Boundary conditions -- 5.3 Electrolyte species conservation -- 5.3.1 Boundary conditions -- 5.4 Electrode charge conservation -- 5.4.1 Boundary conditions -- 5.5 Electrode species conservation -- 5.5.1 Initial and boundary conditions -- 5.5.2 Effective properties -- 5.5.2.1 Electrolyte phase -- 5.5.2.2 Electrode (solid) phase -- 5.6 Chemical kinetics -- 5.7 Thermal analysis -- 5.7.1 Heat generation mechanism -- 5.7.2 Heat conduction equation -- 5.7.2.1 Boundary condition -- 5.7.3 Case studies -- 5.8 Memory effect -- 5.9 Self-discharge. , References -- 6 - Thermal management of batteries -- 6.1 Introduction -- 6.1.1 State functions (SOF) -- 6.1.2 State of charge (SOC) -- 6.1.3 State of health (SOH) -- 6.2 Thermal runaway -- 6.3 Importance of temperature -- 6.4 Examples of thermal management systems -- 6.4.1 Air cooling -- 6.4.2 Liquid cooling -- 6.4.3 Cooling by phase change material (PCM) -- 6.4.3.1 Heat pipes with phase change -- 6.4.4 Drawbacks of thermal management systems -- 6.5 Mathematical modeling and experimental approaches -- 6.5.1 Simple energy balance of a battery -- 6.5.2 Energy balance of a non-isothermal battery -- 6.5.3 Governing equations for convective cooling of a battery pack -- 6.5.4 Heat generation -- 6.5.5 Multi-scale multi-dimensional modeling -- 6.6 Available softwares -- 6.7 Summary -- References -- 7 - Applications of batteries -- 7.1 Introduction -- 7.2 Electrical vehicles -- 7.3 Battery types for electric vehicles -- 7.3.1 Lead acid batteries and nickel metal hydride batteries (NiMH) -- 7.3.2 Lithium-ion batteries -- 7.3.2.1 Batteries for traction -- 7.3.3 Estimation of the weight of a long haulage truck -- 7.3.3.1 Catenary system -- 7.3.3.2 Hybrid systems -- 7.3.3.3 Battery electric goods vehicle -- 7.3.4 Batteries for commercial vehicles -- 7.4 Batteries for aviation -- 7.5 Batteries for aerospace -- 7.6 Batteries in shipping and marine applications -- 7.7 Stationary batteries -- 7.8 Grid storage batteries -- 7.9 Bottlenecks of batteries -- 7.10 Critical metals -- References -- 8 - Fuel cell types - overview -- 8.1 Introduction -- 8.1.1 Types of fuel cells -- 8.1.2 Proton exchange membrane fuel cells (PEMFC) or polymer electrolyte fuel cells (PEFC) -- 8.1.3 Alkaline fuel cells (AFC) -- 8.1.4 Phosforic acid fuel cells (PAFC) -- 8.1.5 Solid oxide fuel cells (SOFC) -- 8.1.6 Molten carbonate fuel cells (MCFC) -- 8.1.7 Direct methanol fuel cells (DMFC). , 8.1.8 Reversible fuel cells -- 8.1.9 Proton ceramic fuel cells -- 8.1.10 Overall summary of characteristics of some fuel cells -- 8.2 Complementary electrochemistry and thermodynamics for fuel cells -- 8.2.1 Influence of pressure on the electrochemistry of fuel cells -- 8.2.2 Effect of gas concentration, Nernst equation -- 8.2.3 Fuel cell reaction involving hydrogen and oxygen -- 8.2.4 Estimations of consumption of fuel and oxidant -- 8.2.4.1 Oxygen consumption -- 8.2.4.1.1 Oxygen consumption by using air -- 8.2.4.2 Hydrogen consumption -- 8.2.4.3 Water production rate -- 8.3 Solid oxide fuel cells - SOFC -- 8.3.1 Introduction -- 8.3.2 Planar SOFCs -- 8.3.3 Tubular SOFCs -- 8.3.4 Performance of SOFCs -- 8.3.5 Material issues -- 8.3.5.1 Conductivities or resistivities -- 8.3.6 Detailed structure of a unit cell -- 8.3.7 Challenges -- 8.4 Intermediate solid oxide fuel cells - ITSOFC -- 8.4.1 ITSOFC design options -- 8.4.1.1 Anode supported ITSOFCs -- 8.4.2 Performance of ITSOFC at reduced temperatures -- 8.4.3 Remarks -- 8.5 Proton exchange membrane fuel cells - PEMFC -- 8.5.1 Introduction -- 8.5.2 Electrolytes -- 8.5.3 Detailed structure of a PEMFC unit cell -- 8.5.4 Water management -- 8.5.5 Performance of a PEMFC -- 8.6 Aerospace applications -- References -- 9 - Transport phenomena in fuel cells -- 9.1 Introduction -- 9.1.1 Overall description of basic transport processes and operation of a fuel cell -- 9.1.2 Electrochemical kinetics -- 9.1.3 Heat and mass transfer -- 9.1.4 Charge and water transport -- 9.2 Heat transfer -- 9.2.1 Heat generation -- 9.2.2 Conservation of energy and the heat equation -- 9.2.2.1 Gas flow channels -- 9.2.2.2 Electrode-gas diffusion layers -- 9.2.2.3 Electrolyte membrane -- 9.2.2.4 Boundary conditions -- 9.2.2.4.1 Adiabatic or symmetric surfaces -- 9.2.2.4.2 Interfaces -- 9.2.2.4.3 Channels. , 9.2.3 One-dimensional thermal analysis of a fuel cell -- 9.2.3.1 Boundary conditions -- 9.2.3.2 Convective heat transfer coefficients -- 9.2.4 Thermal radiation -- 9.2.4.1 Surface to surface radiation in flow passages -- 9.2.4.2 Radiative heat transfer with participating media -- 9.3 Mass transfer -- 9.3.1 Diffusion mass transfer -- 9.3.2 Convection mass transfer -- 9.3.3 Mass transport of species in fuel cells -- 9.3.4 Convective mass transfer coefficients -- 9.4 Charge transport -- 9.4.1 Charge transport by diffusion -- 9.4.2 Charge transport by convection -- 9.4.3 Charge transport by electrical potential gradient -- 9.4.4 The Nernst-Planck equation -- 9.4.5 Charge transport equations -- 9.4.5.1 In the electrolyte -- 9.4.5.2 In the electrodes -- 9.4.6 Boundary conditions for the electrical potential -- 9.4.7 Voltage loss by charge transport -- 9.5 Water transport -- 9.5.1 Water transport in the electrolyte -- 9.5.2 Water transport in gas channels and in gas-diffusion layers -- 9.5.3 Flooding -- 9.6 Diffusion coefficients -- 9.6.1 Binary gas mixtures -- 9.6.2 Liquids -- 9.6.3 Diffusion in porous solids -- References -- 10 - Modeling approaches for fuel cells -- 10.1 Introduction -- 10.2 Zero-order models of analysis -- 10.3 One-dimensional models of analysis -- 10.4 Multi-dimensional models of analysis -- 10.4.1 Computational fluid dynamics (CFD) approaches -- 10.4.1.1 Governing equations -- 10.4.1.2 Numerical solution of the governing equations -- 10.4.1.3 The finite volume method (FVM) -- 10.4.1.4 Convection and diffusion fluxes -- 10.4.1.5 Source term -- 10.4.1.6 Solution of the discretized equations -- 10.4.1.7 Handling pressure in the momentum equations -- 10.4.1.8 Solution procedures for the momentum equations -- 10.4.1.9 Convergence -- 10.4.1.10 Number of grid points and control volumes -- 10.4.1.11 Complex geometries. , 10.4.1.12 The CFD approach.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    London, England :Academic Press,
    UID:
    almahu_9948212041402882
    Format: 1 online resource (246 pages)
    ISBN: 0-12-816951-6 , 0-12-816950-8
    Note: Front Cover -- Hydrogen, Batteries and Fuel Cells -- Hydrogen, Batteries and Fuel Cells -- Contents -- Preface -- Nomenclature -- 1 - Introduction and background -- 1.1 Primary energy sources - fossil fuels -- 1.2 Renewable energy resources -- 1.3 Conclusion energy sources -- 1.4 Hydrogen -- 1.5 Electrochemical devices -- 1.6 Batteries -- 1.7 Fuel cells -- 1.8 Electrolyzers -- 1.9 Summary -- 1.10 Intention -- References -- 2 - Electrochemistry and thermodynamics -- 2.1 Introduction -- 2.2 The electrochemical cell -- 2.3 Thermodynamics -- 2.3.1 First law of thermodynamics -- 2.3.2 Enthalpy of formation hf0 -- 2.3.3 Electric work -- 2.3.4 Cell voltage -- 2.3.5 The Faraday's laws in electrochemistry -- 2.3.6 General reaction -- 2.3.7 The Nernst equation -- 2.3.7.1 Illustration of using Nernst equation -- 2.4 The electrical double layer and electrode kinetics -- 2.5 Polarization curve and overpotential -- 2.5.1 Activation losses -- 2.5.2 Ohmic losses -- 2.5.3 Mass transport loss or concentration loss -- 2.5.4 Internal current and crossover -- 2.5.5 Cell voltage under load -- 2.6 Heat generation -- 2.6.1 Modes of heat transfer -- 2.6.1.1 Reynolds number -- 2.6.1.2 Grashof number -- 2.6.1.3 Nusselt number -- 2.6.1.4 Prandtl number -- 2.6.1.5 Correlations -- 2.6.1.6 Thermal radiation -- 2.6.1.7 Surface to surface radiative heat transfer -- 2.6.1.8 Participating media -- 2.7 Mass transport -- 2.8 Porous media -- 2.8.1 Governing equations of transport in porous media -- References -- 3 - Hydrogen -- 3.1 Introduction -- 3.2 Properties of hydrogen -- 3.3 Production of hydrogen -- 3.3.1 Steam reforming -- 3.3.2 Gasification of coal and biomass -- 3.3.3 Electrolysis of water -- 3.3.4 Thermochemical water splitting and thermolysis -- 3.3.5 Photoelectrochemical water splitting -- 3.3.6 Thermocatalytic cracking -- 3.3.7 Roadmap for hydrogen production. , 3.4 Storage of hydrogen -- 3.4.1 Compressed gas -- 3.4.2 Cryogenic storage -- 3.4.3 Cryo-compressed storage -- 3.4.3.1 Compressed liquid hydrogen -- 3.4.3.2 Compressed cryogenic gas -- 3.4.4 Chemical storage -- 3.4.4.1 Ammonia (NH3) -- 3.4.4.2 Metal hydrides -- 3.4.4.3 Chemical hydrides -- 3.4.4.3.1 Storage of hydrogen in sodiumboron-hydrides-power balls -- 3.4.4.4 Liquid organic hydrogen carriers (LOHC) -- 3.4.4.5 Carbohydrates -- 3.4.4.6 Physisorption and carbon-based materials -- 3.5 Transportation of hydrogen -- 3.6 Pros and cons for hydrogen -- 3.6.1 Pros of hydrogen energy -- 3.6.2 Cons of hydrogen energy -- 3.7 Competitive fuels -- References -- 4 - Battery technologies -- 4.1 Introduction -- 4.2 Lead-acid batteries -- 4.3 Nickel-metal hydride batteries -- 4.4 Lithium batteries -- 4.4.1 Lithium metal batteries -- 4.4.2 Lithium-ion and lithium-ion polymer batteries -- 4.4.3 Lithium-oxygen batteries -- 4.4.4 Lithium-sulfur batteries -- 4.5 Nickel-zinc batteries -- 4.6 Zinc-carbon batteries -- 4.7 Zinc-air batteries -- 4.8 Other battery types -- 4.8.1 Redox flow batteries -- 4.9 Voltage characteristics -- 4.10 Standards and nomenclature -- 4.10.1 Cell designs -- 4.11 Ragone plot -- 4.12 Summary -- References -- 5 - Transport phenomena in batteries -- 5.1 Introduction -- 5.2 Electrolyte charge conservation -- 5.2.1 Boundary conditions -- 5.3 Electrolyte species conservation -- 5.3.1 Boundary conditions -- 5.4 Electrode charge conservation -- 5.4.1 Boundary conditions -- 5.5 Electrode species conservation -- 5.5.1 Initial and boundary conditions -- 5.5.2 Effective properties -- 5.5.2.1 Electrolyte phase -- 5.5.2.2 Electrode (solid) phase -- 5.6 Chemical kinetics -- 5.7 Thermal analysis -- 5.7.1 Heat generation mechanism -- 5.7.2 Heat conduction equation -- 5.7.2.1 Boundary condition -- 5.7.3 Case studies -- 5.8 Memory effect -- 5.9 Self-discharge. , References -- 6 - Thermal management of batteries -- 6.1 Introduction -- 6.1.1 State functions (SOF) -- 6.1.2 State of charge (SOC) -- 6.1.3 State of health (SOH) -- 6.2 Thermal runaway -- 6.3 Importance of temperature -- 6.4 Examples of thermal management systems -- 6.4.1 Air cooling -- 6.4.2 Liquid cooling -- 6.4.3 Cooling by phase change material (PCM) -- 6.4.3.1 Heat pipes with phase change -- 6.4.4 Drawbacks of thermal management systems -- 6.5 Mathematical modeling and experimental approaches -- 6.5.1 Simple energy balance of a battery -- 6.5.2 Energy balance of a non-isothermal battery -- 6.5.3 Governing equations for convective cooling of a battery pack -- 6.5.4 Heat generation -- 6.5.5 Multi-scale multi-dimensional modeling -- 6.6 Available softwares -- 6.7 Summary -- References -- 7 - Applications of batteries -- 7.1 Introduction -- 7.2 Electrical vehicles -- 7.3 Battery types for electric vehicles -- 7.3.1 Lead acid batteries and nickel metal hydride batteries (NiMH) -- 7.3.2 Lithium-ion batteries -- 7.3.2.1 Batteries for traction -- 7.3.3 Estimation of the weight of a long haulage truck -- 7.3.3.1 Catenary system -- 7.3.3.2 Hybrid systems -- 7.3.3.3 Battery electric goods vehicle -- 7.3.4 Batteries for commercial vehicles -- 7.4 Batteries for aviation -- 7.5 Batteries for aerospace -- 7.6 Batteries in shipping and marine applications -- 7.7 Stationary batteries -- 7.8 Grid storage batteries -- 7.9 Bottlenecks of batteries -- 7.10 Critical metals -- References -- 8 - Fuel cell types - overview -- 8.1 Introduction -- 8.1.1 Types of fuel cells -- 8.1.2 Proton exchange membrane fuel cells (PEMFC) or polymer electrolyte fuel cells (PEFC) -- 8.1.3 Alkaline fuel cells (AFC) -- 8.1.4 Phosforic acid fuel cells (PAFC) -- 8.1.5 Solid oxide fuel cells (SOFC) -- 8.1.6 Molten carbonate fuel cells (MCFC) -- 8.1.7 Direct methanol fuel cells (DMFC). , 8.1.8 Reversible fuel cells -- 8.1.9 Proton ceramic fuel cells -- 8.1.10 Overall summary of characteristics of some fuel cells -- 8.2 Complementary electrochemistry and thermodynamics for fuel cells -- 8.2.1 Influence of pressure on the electrochemistry of fuel cells -- 8.2.2 Effect of gas concentration, Nernst equation -- 8.2.3 Fuel cell reaction involving hydrogen and oxygen -- 8.2.4 Estimations of consumption of fuel and oxidant -- 8.2.4.1 Oxygen consumption -- 8.2.4.1.1 Oxygen consumption by using air -- 8.2.4.2 Hydrogen consumption -- 8.2.4.3 Water production rate -- 8.3 Solid oxide fuel cells - SOFC -- 8.3.1 Introduction -- 8.3.2 Planar SOFCs -- 8.3.3 Tubular SOFCs -- 8.3.4 Performance of SOFCs -- 8.3.5 Material issues -- 8.3.5.1 Conductivities or resistivities -- 8.3.6 Detailed structure of a unit cell -- 8.3.7 Challenges -- 8.4 Intermediate solid oxide fuel cells - ITSOFC -- 8.4.1 ITSOFC design options -- 8.4.1.1 Anode supported ITSOFCs -- 8.4.2 Performance of ITSOFC at reduced temperatures -- 8.4.3 Remarks -- 8.5 Proton exchange membrane fuel cells - PEMFC -- 8.5.1 Introduction -- 8.5.2 Electrolytes -- 8.5.3 Detailed structure of a PEMFC unit cell -- 8.5.4 Water management -- 8.5.5 Performance of a PEMFC -- 8.6 Aerospace applications -- References -- 9 - Transport phenomena in fuel cells -- 9.1 Introduction -- 9.1.1 Overall description of basic transport processes and operation of a fuel cell -- 9.1.2 Electrochemical kinetics -- 9.1.3 Heat and mass transfer -- 9.1.4 Charge and water transport -- 9.2 Heat transfer -- 9.2.1 Heat generation -- 9.2.2 Conservation of energy and the heat equation -- 9.2.2.1 Gas flow channels -- 9.2.2.2 Electrode-gas diffusion layers -- 9.2.2.3 Electrolyte membrane -- 9.2.2.4 Boundary conditions -- 9.2.2.4.1 Adiabatic or symmetric surfaces -- 9.2.2.4.2 Interfaces -- 9.2.2.4.3 Channels. , 9.2.3 One-dimensional thermal analysis of a fuel cell -- 9.2.3.1 Boundary conditions -- 9.2.3.2 Convective heat transfer coefficients -- 9.2.4 Thermal radiation -- 9.2.4.1 Surface to surface radiation in flow passages -- 9.2.4.2 Radiative heat transfer with participating media -- 9.3 Mass transfer -- 9.3.1 Diffusion mass transfer -- 9.3.2 Convection mass transfer -- 9.3.3 Mass transport of species in fuel cells -- 9.3.4 Convective mass transfer coefficients -- 9.4 Charge transport -- 9.4.1 Charge transport by diffusion -- 9.4.2 Charge transport by convection -- 9.4.3 Charge transport by electrical potential gradient -- 9.4.4 The Nernst-Planck equation -- 9.4.5 Charge transport equations -- 9.4.5.1 In the electrolyte -- 9.4.5.2 In the electrodes -- 9.4.6 Boundary conditions for the electrical potential -- 9.4.7 Voltage loss by charge transport -- 9.5 Water transport -- 9.5.1 Water transport in the electrolyte -- 9.5.2 Water transport in gas channels and in gas-diffusion layers -- 9.5.3 Flooding -- 9.6 Diffusion coefficients -- 9.6.1 Binary gas mixtures -- 9.6.2 Liquids -- 9.6.3 Diffusion in porous solids -- References -- 10 - Modeling approaches for fuel cells -- 10.1 Introduction -- 10.2 Zero-order models of analysis -- 10.3 One-dimensional models of analysis -- 10.4 Multi-dimensional models of analysis -- 10.4.1 Computational fluid dynamics (CFD) approaches -- 10.4.1.1 Governing equations -- 10.4.1.2 Numerical solution of the governing equations -- 10.4.1.3 The finite volume method (FVM) -- 10.4.1.4 Convection and diffusion fluxes -- 10.4.1.5 Source term -- 10.4.1.6 Solution of the discretized equations -- 10.4.1.7 Handling pressure in the momentum equations -- 10.4.1.8 Solution procedures for the momentum equations -- 10.4.1.9 Convergence -- 10.4.1.10 Number of grid points and control volumes -- 10.4.1.11 Complex geometries. , 10.4.1.12 The CFD approach.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    London, England :Academic Press,
    UID:
    edocfu_9960074303402883
    Format: 1 online resource (246 pages)
    ISBN: 0-12-816951-6 , 0-12-816950-8
    Note: Front Cover -- Hydrogen, Batteries and Fuel Cells -- Hydrogen, Batteries and Fuel Cells -- Contents -- Preface -- Nomenclature -- 1 - Introduction and background -- 1.1 Primary energy sources - fossil fuels -- 1.2 Renewable energy resources -- 1.3 Conclusion energy sources -- 1.4 Hydrogen -- 1.5 Electrochemical devices -- 1.6 Batteries -- 1.7 Fuel cells -- 1.8 Electrolyzers -- 1.9 Summary -- 1.10 Intention -- References -- 2 - Electrochemistry and thermodynamics -- 2.1 Introduction -- 2.2 The electrochemical cell -- 2.3 Thermodynamics -- 2.3.1 First law of thermodynamics -- 2.3.2 Enthalpy of formation hf0 -- 2.3.3 Electric work -- 2.3.4 Cell voltage -- 2.3.5 The Faraday's laws in electrochemistry -- 2.3.6 General reaction -- 2.3.7 The Nernst equation -- 2.3.7.1 Illustration of using Nernst equation -- 2.4 The electrical double layer and electrode kinetics -- 2.5 Polarization curve and overpotential -- 2.5.1 Activation losses -- 2.5.2 Ohmic losses -- 2.5.3 Mass transport loss or concentration loss -- 2.5.4 Internal current and crossover -- 2.5.5 Cell voltage under load -- 2.6 Heat generation -- 2.6.1 Modes of heat transfer -- 2.6.1.1 Reynolds number -- 2.6.1.2 Grashof number -- 2.6.1.3 Nusselt number -- 2.6.1.4 Prandtl number -- 2.6.1.5 Correlations -- 2.6.1.6 Thermal radiation -- 2.6.1.7 Surface to surface radiative heat transfer -- 2.6.1.8 Participating media -- 2.7 Mass transport -- 2.8 Porous media -- 2.8.1 Governing equations of transport in porous media -- References -- 3 - Hydrogen -- 3.1 Introduction -- 3.2 Properties of hydrogen -- 3.3 Production of hydrogen -- 3.3.1 Steam reforming -- 3.3.2 Gasification of coal and biomass -- 3.3.3 Electrolysis of water -- 3.3.4 Thermochemical water splitting and thermolysis -- 3.3.5 Photoelectrochemical water splitting -- 3.3.6 Thermocatalytic cracking -- 3.3.7 Roadmap for hydrogen production. , 3.4 Storage of hydrogen -- 3.4.1 Compressed gas -- 3.4.2 Cryogenic storage -- 3.4.3 Cryo-compressed storage -- 3.4.3.1 Compressed liquid hydrogen -- 3.4.3.2 Compressed cryogenic gas -- 3.4.4 Chemical storage -- 3.4.4.1 Ammonia (NH3) -- 3.4.4.2 Metal hydrides -- 3.4.4.3 Chemical hydrides -- 3.4.4.3.1 Storage of hydrogen in sodiumboron-hydrides-power balls -- 3.4.4.4 Liquid organic hydrogen carriers (LOHC) -- 3.4.4.5 Carbohydrates -- 3.4.4.6 Physisorption and carbon-based materials -- 3.5 Transportation of hydrogen -- 3.6 Pros and cons for hydrogen -- 3.6.1 Pros of hydrogen energy -- 3.6.2 Cons of hydrogen energy -- 3.7 Competitive fuels -- References -- 4 - Battery technologies -- 4.1 Introduction -- 4.2 Lead-acid batteries -- 4.3 Nickel-metal hydride batteries -- 4.4 Lithium batteries -- 4.4.1 Lithium metal batteries -- 4.4.2 Lithium-ion and lithium-ion polymer batteries -- 4.4.3 Lithium-oxygen batteries -- 4.4.4 Lithium-sulfur batteries -- 4.5 Nickel-zinc batteries -- 4.6 Zinc-carbon batteries -- 4.7 Zinc-air batteries -- 4.8 Other battery types -- 4.8.1 Redox flow batteries -- 4.9 Voltage characteristics -- 4.10 Standards and nomenclature -- 4.10.1 Cell designs -- 4.11 Ragone plot -- 4.12 Summary -- References -- 5 - Transport phenomena in batteries -- 5.1 Introduction -- 5.2 Electrolyte charge conservation -- 5.2.1 Boundary conditions -- 5.3 Electrolyte species conservation -- 5.3.1 Boundary conditions -- 5.4 Electrode charge conservation -- 5.4.1 Boundary conditions -- 5.5 Electrode species conservation -- 5.5.1 Initial and boundary conditions -- 5.5.2 Effective properties -- 5.5.2.1 Electrolyte phase -- 5.5.2.2 Electrode (solid) phase -- 5.6 Chemical kinetics -- 5.7 Thermal analysis -- 5.7.1 Heat generation mechanism -- 5.7.2 Heat conduction equation -- 5.7.2.1 Boundary condition -- 5.7.3 Case studies -- 5.8 Memory effect -- 5.9 Self-discharge. , References -- 6 - Thermal management of batteries -- 6.1 Introduction -- 6.1.1 State functions (SOF) -- 6.1.2 State of charge (SOC) -- 6.1.3 State of health (SOH) -- 6.2 Thermal runaway -- 6.3 Importance of temperature -- 6.4 Examples of thermal management systems -- 6.4.1 Air cooling -- 6.4.2 Liquid cooling -- 6.4.3 Cooling by phase change material (PCM) -- 6.4.3.1 Heat pipes with phase change -- 6.4.4 Drawbacks of thermal management systems -- 6.5 Mathematical modeling and experimental approaches -- 6.5.1 Simple energy balance of a battery -- 6.5.2 Energy balance of a non-isothermal battery -- 6.5.3 Governing equations for convective cooling of a battery pack -- 6.5.4 Heat generation -- 6.5.5 Multi-scale multi-dimensional modeling -- 6.6 Available softwares -- 6.7 Summary -- References -- 7 - Applications of batteries -- 7.1 Introduction -- 7.2 Electrical vehicles -- 7.3 Battery types for electric vehicles -- 7.3.1 Lead acid batteries and nickel metal hydride batteries (NiMH) -- 7.3.2 Lithium-ion batteries -- 7.3.2.1 Batteries for traction -- 7.3.3 Estimation of the weight of a long haulage truck -- 7.3.3.1 Catenary system -- 7.3.3.2 Hybrid systems -- 7.3.3.3 Battery electric goods vehicle -- 7.3.4 Batteries for commercial vehicles -- 7.4 Batteries for aviation -- 7.5 Batteries for aerospace -- 7.6 Batteries in shipping and marine applications -- 7.7 Stationary batteries -- 7.8 Grid storage batteries -- 7.9 Bottlenecks of batteries -- 7.10 Critical metals -- References -- 8 - Fuel cell types - overview -- 8.1 Introduction -- 8.1.1 Types of fuel cells -- 8.1.2 Proton exchange membrane fuel cells (PEMFC) or polymer electrolyte fuel cells (PEFC) -- 8.1.3 Alkaline fuel cells (AFC) -- 8.1.4 Phosforic acid fuel cells (PAFC) -- 8.1.5 Solid oxide fuel cells (SOFC) -- 8.1.6 Molten carbonate fuel cells (MCFC) -- 8.1.7 Direct methanol fuel cells (DMFC). , 8.1.8 Reversible fuel cells -- 8.1.9 Proton ceramic fuel cells -- 8.1.10 Overall summary of characteristics of some fuel cells -- 8.2 Complementary electrochemistry and thermodynamics for fuel cells -- 8.2.1 Influence of pressure on the electrochemistry of fuel cells -- 8.2.2 Effect of gas concentration, Nernst equation -- 8.2.3 Fuel cell reaction involving hydrogen and oxygen -- 8.2.4 Estimations of consumption of fuel and oxidant -- 8.2.4.1 Oxygen consumption -- 8.2.4.1.1 Oxygen consumption by using air -- 8.2.4.2 Hydrogen consumption -- 8.2.4.3 Water production rate -- 8.3 Solid oxide fuel cells - SOFC -- 8.3.1 Introduction -- 8.3.2 Planar SOFCs -- 8.3.3 Tubular SOFCs -- 8.3.4 Performance of SOFCs -- 8.3.5 Material issues -- 8.3.5.1 Conductivities or resistivities -- 8.3.6 Detailed structure of a unit cell -- 8.3.7 Challenges -- 8.4 Intermediate solid oxide fuel cells - ITSOFC -- 8.4.1 ITSOFC design options -- 8.4.1.1 Anode supported ITSOFCs -- 8.4.2 Performance of ITSOFC at reduced temperatures -- 8.4.3 Remarks -- 8.5 Proton exchange membrane fuel cells - PEMFC -- 8.5.1 Introduction -- 8.5.2 Electrolytes -- 8.5.3 Detailed structure of a PEMFC unit cell -- 8.5.4 Water management -- 8.5.5 Performance of a PEMFC -- 8.6 Aerospace applications -- References -- 9 - Transport phenomena in fuel cells -- 9.1 Introduction -- 9.1.1 Overall description of basic transport processes and operation of a fuel cell -- 9.1.2 Electrochemical kinetics -- 9.1.3 Heat and mass transfer -- 9.1.4 Charge and water transport -- 9.2 Heat transfer -- 9.2.1 Heat generation -- 9.2.2 Conservation of energy and the heat equation -- 9.2.2.1 Gas flow channels -- 9.2.2.2 Electrode-gas diffusion layers -- 9.2.2.3 Electrolyte membrane -- 9.2.2.4 Boundary conditions -- 9.2.2.4.1 Adiabatic or symmetric surfaces -- 9.2.2.4.2 Interfaces -- 9.2.2.4.3 Channels. , 9.2.3 One-dimensional thermal analysis of a fuel cell -- 9.2.3.1 Boundary conditions -- 9.2.3.2 Convective heat transfer coefficients -- 9.2.4 Thermal radiation -- 9.2.4.1 Surface to surface radiation in flow passages -- 9.2.4.2 Radiative heat transfer with participating media -- 9.3 Mass transfer -- 9.3.1 Diffusion mass transfer -- 9.3.2 Convection mass transfer -- 9.3.3 Mass transport of species in fuel cells -- 9.3.4 Convective mass transfer coefficients -- 9.4 Charge transport -- 9.4.1 Charge transport by diffusion -- 9.4.2 Charge transport by convection -- 9.4.3 Charge transport by electrical potential gradient -- 9.4.4 The Nernst-Planck equation -- 9.4.5 Charge transport equations -- 9.4.5.1 In the electrolyte -- 9.4.5.2 In the electrodes -- 9.4.6 Boundary conditions for the electrical potential -- 9.4.7 Voltage loss by charge transport -- 9.5 Water transport -- 9.5.1 Water transport in the electrolyte -- 9.5.2 Water transport in gas channels and in gas-diffusion layers -- 9.5.3 Flooding -- 9.6 Diffusion coefficients -- 9.6.1 Binary gas mixtures -- 9.6.2 Liquids -- 9.6.3 Diffusion in porous solids -- References -- 10 - Modeling approaches for fuel cells -- 10.1 Introduction -- 10.2 Zero-order models of analysis -- 10.3 One-dimensional models of analysis -- 10.4 Multi-dimensional models of analysis -- 10.4.1 Computational fluid dynamics (CFD) approaches -- 10.4.1.1 Governing equations -- 10.4.1.2 Numerical solution of the governing equations -- 10.4.1.3 The finite volume method (FVM) -- 10.4.1.4 Convection and diffusion fluxes -- 10.4.1.5 Source term -- 10.4.1.6 Solution of the discretized equations -- 10.4.1.7 Handling pressure in the momentum equations -- 10.4.1.8 Solution procedures for the momentum equations -- 10.4.1.9 Convergence -- 10.4.1.10 Number of grid points and control volumes -- 10.4.1.11 Complex geometries. , 10.4.1.12 The CFD approach.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages