feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    London, United Kingdom : IntechOpen
    UID:
    b3kat_BV049822065
    Format: 1 Online-Ressource , Illustrationen, Diagramme
    ISBN: 9780854660421 , 9780854660407
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-0-85466-041-4
    Language: English
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9949576422402882
    Format: 1 online resource (xiii, 388 pages) : , illustrations
    ISBN: 0-323-91415-2 , 9780323914154 , 0323914152
    Content: Molecular Pharmaceutics and Nano Drug Delivery: Fundamentals and Challenges provides a thorough resource for both beginners and established scientists, bringing fundamental knowledge about key challenges of these carriers down to the molecular level. The book satisfies the need of availability of literature at single platform with the detailed knowledge to understand crucial aspects, such as regulatory, clinical, toxicological and the formulation requirements of these carriers. This is a valuable resource for graduates, pharmaceutical researchers and anyone working on aspects of pharmaceutics, molecular pharmaceutics and nano-drug/gene delivery. So called ‘novel drug delivery systems’ are numerous, with each having different approaches to their production, characterization and evaluation. The proper understanding of these dosage forms, as well as their critical attributes such as toxicity and regulatory requirements are aspects which researchers should know before they begin working on these carriers. This book provides this critical information.
    Note: Front Cover -- Molecular Pharmaceutics and Nano Drug Delivery -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Protein and enzyme-based nanoformulations -- 1.1 Introduction -- 1.2 Challenges associated with protein and enzymes delivery -- 1.3 Nanocarrier system for protein and enzyme delivery -- 1.3.1 Polymeric nanocarrier system -- 1.3.2 Lipidic nanocarrier system -- 1.3.3 Inorganic nanocarrier systems -- 1.4 Conclusion -- References -- 2 Vaccines and sera -- 2.1 Introduction -- 2.1.1 Vaccines -- 2.1.2 Revolution of vaccines development -- 2.1.2.1 18th century -- 2.1.2.2 19th century -- 2.2 Vaccine types and generations -- 2.2.1 Live attenuated vaccines -- 2.2.2 Subunit vaccine -- 2.2.3 Recombinant vaccine -- 2.2.4 Polysaccharide vaccine -- 2.2.5 Conjugate vaccines -- 2.2.6 Inactivated vaccines -- 2.2.7 Toxoid vaccines -- 2.3 Immunization -- 2.4 Immunology of vaccines -- 2.4.1 Immune system -- 2.4.2 General immune response mechanism -- 2.4.2.1 Activation of immunity -- 2.4.2.1.1 Immune response of live vaccine -- 2.4.2.1.2 Immune response of nonlive vaccine -- 2.5 Side effects and safety of vaccines -- 2.5.1 Adverse event following immunization detection: to strengthen vaccine safety monitoring in all countries -- 2.6 Vaccine preparation -- 2.6.1 Examples of vaccine preparations -- 2.6.1.1 Measles vaccine -- 2.6.1.2 Diphtheria vaccine -- 2.6.1.3 Tetanus vaccine -- 2.6.1.4 Influenza vaccine -- 2.6.1.5 Hepatitis vaccine -- 2.6.1.6 Haemophilus influenzae type B -- 2.6.1.7 BCG vaccine -- 2.6.1.8 Smallpox vaccine -- 2.6.1.9 Rabies vaccine -- 2.7 Vaccines evaluation and standardization -- 2.7.1 Evaluation of vaccines -- 2.7.2 Standardization of vaccines -- 2.8 Regulatory consideration of vaccines -- 2.9 Licensed vaccines -- 2.10 Sera -- 2.11 Revolutions in serum therapy -- 2.12 General method of preparation of sera. , 2.12.1 Antibacterial sera -- 2.12.2 Antiviral sera -- 2.13 Evaluation of sera -- 2.14 Standardization of sera -- 2.15 Regulatory consideration of sera -- 2.16 Marketed products of vaccines and sera -- 2.17 Challenges to vaccine and sera success -- 2.18 New approaches for vaccines and sera -- 2.18.1 Nucleic acid -- 2.18.1.1 mRNA vaccine -- 2.18.1.2 DNA vaccine -- 2.18.2 Viral vectors -- 2.18.3 Recombinant viral vector -- 2.18.4 Virus-like particles -- 2.18.5 Tuberculosis vaccine -- 2.18.6 Cancer vaccine -- 2.18.6.1 Neoantigen vaccines -- 2.18.6.2 RNA-based vaccines -- 2.18.6.3 Peptide-based vaccines -- 2.18.6.4 Dendritic cell-based vaccines -- 2.18.7 HIV vaccine -- 2.18.8 Malaria vaccines -- 2.18.9 Dengue vaccines -- 2.18.9.1 Nanoparticle-based vaccines -- 2.18.9.2 Tetravalent dengue vaccine -- 2.18.9.3 Nonstructural protein targets -- 2.18.9.4 Vaccines with additives -- 2.18.9.5 RNA-based vaccines -- 2.19 Conclusion -- References -- 3 Aptamers and antisense oligonucleotide-based delivery -- 3.1 What is the aptamer? -- 3.2 Aptamer design -- 3.2.1 Systematic evolution of ligands by exponential enrichment -- 3.2.2 In silico systematic evolution of ligands by exponential enrichment -- 3.2.3 Machine learning-based methods -- 3.2.3.1 Data preparation -- 3.2.3.2 Feature extraction -- 3.2.3.2.1 Sequence-based features -- 3.2.3.2.2 Structure-based features -- 3.2.3.2.3 Energy-based features -- 3.2.3.3 Feature selection -- 3.2.3.3.1 Prediction models of aptamer-target interaction -- 3.2.3.4 Model evaluation -- 3.2.3.4.1 Accuracy: fraction of correctly classified samples -- 3.2.3.4.2 Sensitivity -- 3.2.3.4.3 Specificity -- 3.3 Drug delivery by aptamers -- 3.4 Binding to different molecules -- 3.4.1 Aptamers and liposomes -- 3.4.2 Aptamers and chitosan -- 3.4.3 Aptamers and graphene -- 3.4.4 Aptamers and magnetic manoparticles -- References. , 4 Monoclonal antibodies: recent development in drug delivery -- 4.1 Introduction -- 4.2 The molecular mechanisms of therapeutic antibody -- 4.3 Advantages and disadvantages of mAbs -- 4.4 Pharmacokinetics versus tumor targeting -- 4.5 Approaches for developing targeted monoclonal antibodies -- 4.5.1 XenoMouse hybridoma technology -- 4.5.2 Phage display for the production of human mAbs -- 4.5.3 Transgenic mice that produce human monoclonal antibodies -- 4.5.4 Antibody technique based on single B cells -- 4.5.5 Humanization of mAbs -- 4.5.6 Generation of humanized mAbs -- 4.5.7 Human and humanized mAbs -- 4.5.8 Stereospecific monoclonal antibodies -- 4.6 Novel drug delivery systems for mAbs -- 4.6.1 Nanoparticles -- 4.6.2 Microspheres -- 4.6.3 Hydrogels -- 4.6.4 Other delivery systems -- 4.7 Formulation challenges of mAbs -- 4.8 Future trends of mAbs -- 4.9 Conclusion -- References -- 5 Hormonal delivery systems -- 5.1 Introduction -- 5.2 Hormones as pharmacotherapeutics -- 5.2.1 Insulin -- 5.2.1.1 Diabetes mellitus -- 5.2.1.2 Diabetic ketoacidosis -- 5.2.1.3 Hyperglycemic hyperosmolar state -- 5.2.1.4 Cystic fibrosis-related diabetes -- 5.2.1.5 Insulinoma -- 5.2.1.6 Growth hormone deficiency -- 5.2.1.7 Hyperkalemia -- 5.2.1.8 Diabetic gastroparesis -- 5.2.1.9 Hypertriglyceridemia -- 5.2.1.10 Lipodystrophy -- 5.2.1.11 Other conditions -- 5.2.2 Glucagon -- 5.2.3 Thyroid hormones -- 5.2.4 Corticosteroids -- 5.2.4.1 Inflammatory conditions -- 5.2.4.2 Autoimmune disorders -- 5.2.4.3 Allergic reactions -- 5.2.4.4 Cancer -- 5.2.4.5 Adrenal insufficiency -- 5.2.5 Growth hormone -- 5.2.6 Estrogen hormone -- 5.2.6.1 Hormone replacement therapy -- 5.2.6.2 Selective estrogen receptor modulators -- 5.2.6.3 Aromatase inhibitors -- 5.2.7 Progesterone hormone -- 5.2.7.1 Menstrual irregularities -- 5.2.7.2 Infertility -- 5.2.7.3 Miscarriage. , 5.2.7.4 Endometrial cancer -- 5.2.8 Testosterone hormone -- 5.2.9 Follicle stimulating hormone -- 5.2.10 Luteinizing hormone-releasing hormone -- 5.2.11 Human chorionic gonadotropin hormone -- 5.3 Novel drug delivery systems for hormones -- 5.3.1 Microparticles -- 5.3.2 Liposomes -- 5.3.3 Polymeric nanoparticles -- 5.3.4 Lipid nanoparticles -- 5.3.5 Nanoemulsion -- 5.3.6 Self-emulsifying drug delivery systems -- 5.3.7 Nanogels -- 5.3.8 Dendrimers -- 5.3.9 Inorganic nanoparticles -- 5.3.10 Transferosomes -- 5.4 Conclusion and future perspectives -- References -- 6 Vesicular drug delivery systems: a novel approach in current nanomedicine -- 6.1 Introduction -- 6.2 Type of vesicles -- 6.2.1 Liposomes -- 6.2.2 Niosomes -- 6.2.3 Polymersomes -- 6.3 Engineered vesicles for therapeutic purposes -- 6.3.1 Transformable drug delivery vesicles -- 6.3.2 Actively targeted vesicles -- 6.3.3 Multifunctional vesicles -- 6.4 Pharmaceutical application of vesicles -- 6.4.1 Cancer therapy -- 6.4.2 Diagnostic -- 6.4.3 Gene delivery -- 6.4.4 Immunotherapy and vaccines -- 6.5 Conclusions and outlooks -- References -- 7 Polymeric micelles in drug delivery and targeting -- Abbreviations -- 7.1 Introduction -- 7.2 Polymeric micelles -- 7.2.1 Polymer-drug conjugates -- 7.2.2 Drug-encapsulated polymeric micelles -- 7.2.3 Polyion complex micelles -- 7.3 Characterization and evaluation of polymeric micelles -- 7.3.1 Particle size, size distribution, and zeta potential -- 7.3.2 Morphology and shape -- 7.3.3 Critical micelle concentration -- 7.3.4 Stability -- 7.3.5 In vitro drug release studies -- 7.4 Application of polymeric micelles in drug delivery -- 7.4.1 Solubility enhancement -- 7.4.2 Passive targeting -- 7.4.3 Active targeting -- 7.4.3.1 Aptamer-coupled polymeric micelles -- 7.4.3.2 Folic acid-coupled polymeric micelles. , 7.4.3.3 Hyaluronic acid-coupled polymeric micelles -- 7.4.3.4 Transferrin-coupled polymeric micelles -- 7.4.4 Stimuli-responsive polymeric micelles -- 7.4.4.1 pH-responsive polymeric micelles -- 7.4.4.2 Redox-sensitive polymeric micelles -- 7.4.4.3 Enzyme-responsive polymeric micelles -- 7.4.4.4 Thermoresponsive polymeric micelles -- 7.5 Challenges associated with clinical translation -- 7.6 Conclusion -- Conflict of interest -- References -- 8 Physicochemical characterization of drug delivery systems based on nanomaterials -- 8.1 Introduction -- 8.2 Nanomaterial shape/morphology -- 8.3 Size average, distribution, and nanomaterial concentration -- 8.4 Nanomaterial surface properties -- 8.5 Nanomaterial-active pharmaceutical ingredient structure, composition, and crystal form -- 8.6 Active pharmaceutical ingredient content -- 8.7 Active pharmaceutical ingredient degradation products, other impurities, and stability assessment -- 8.8 Active pharmaceutical ingredient release assay -- References -- 9 Inorganic and metal-based nanoparticles -- 9.1 Introduction -- 9.2 Enhanced permeability and retention effect -- 9.3 Blood-brain barrier -- 9.3.1 History of blood-brain barrier -- 9.3.2 Cells of the blood-brain barrier -- 9.3.2.1 Endothelial cells -- 9.3.2.2 Pericytes -- 9.3.2.3 Astrocytes -- 9.3.2.4 Tight junctions -- 9.3.2.5 Mural cells -- 9.3.3 Regulation of the blood-brain barrier -- 9.3.4 Disturbance of the blood-brain barrier in the central nervous system disorder -- 9.3.4.1 Paracellular pathway -- 9.3.4.2 Transcellular pathway -- 9..3.4.3 Passive diffusion -- 9.3.4.4 Active efflux -- 9.3.4.5 Receptor-mediated transcytosis -- 9.3.4.6 Carrier-mediated transport -- 9.3.4.7 Charged compound interaction -- 9.4 Neurological disease -- 9.4.1 Alzheimer's disease -- 9.4.1.1 Iron oxide nanoparticles -- 9.4.1.2 Gadolinium nanoparticles. , 9.4.2 Parkinson's disease.
    Additional Edition: ISBN 9780323919241
    Additional Edition: Print version: Molecular pharmaceutics and nano drug delivery ISBN 9780323919241
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Boston[u.a.] : Kluwer Acad. Publ.
    UID:
    b3kat_BV023109833
    Format: 1 Online-Ressource
    ISBN: 1402081170 , 1402081189 , 9780387258393 , 9781402081170
    Language: English
    Keywords: Hochtemperatursupraleiter
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almafu_BV026945143
    Format: 17, [13] S. : , graph. Darst.
    Series Statement: Working paper series / National Bureau of Economic Research 8788
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    b3kat_BV023591173
    Format: 48 S. , graph. Darst.
    Series Statement: National Bureau of Economic Research 〈Cambridge, Mass.〉: NBER working paper series 10934
    Additional Edition: Erscheint auch als Online-Ausgabe
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Book
    Book
    Cambridge, Mass. : National Bureau of Economic Research
    UID:
    b3kat_BV023590846
    Format: 51 S. , graph. Darst.
    Series Statement: National Bureau of Economic Research 〈Cambridge, Mass.〉: NBER working paper series 10483
    Additional Edition: Erscheint auch als Online-Ausgabe
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edoccha_9961276951202883
    Format: 1 online resource (xiii, 388 pages) : , illustrations
    ISBN: 0-323-91415-2 , 9780323914154 , 0323914152
    Content: Molecular Pharmaceutics and Nano Drug Delivery: Fundamentals and Challenges provides a thorough resource for both beginners and established scientists, bringing fundamental knowledge about key challenges of these carriers down to the molecular level. The book satisfies the need of availability of literature at single platform with the detailed knowledge to understand crucial aspects, such as regulatory, clinical, toxicological and the formulation requirements of these carriers. This is a valuable resource for graduates, pharmaceutical researchers and anyone working on aspects of pharmaceutics, molecular pharmaceutics and nano-drug/gene delivery. So called ‘novel drug delivery systems’ are numerous, with each having different approaches to their production, characterization and evaluation. The proper understanding of these dosage forms, as well as their critical attributes such as toxicity and regulatory requirements are aspects which researchers should know before they begin working on these carriers. This book provides this critical information.
    Note: Front Cover -- Molecular Pharmaceutics and Nano Drug Delivery -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Protein and enzyme-based nanoformulations -- 1.1 Introduction -- 1.2 Challenges associated with protein and enzymes delivery -- 1.3 Nanocarrier system for protein and enzyme delivery -- 1.3.1 Polymeric nanocarrier system -- 1.3.2 Lipidic nanocarrier system -- 1.3.3 Inorganic nanocarrier systems -- 1.4 Conclusion -- References -- 2 Vaccines and sera -- 2.1 Introduction -- 2.1.1 Vaccines -- 2.1.2 Revolution of vaccines development -- 2.1.2.1 18th century -- 2.1.2.2 19th century -- 2.2 Vaccine types and generations -- 2.2.1 Live attenuated vaccines -- 2.2.2 Subunit vaccine -- 2.2.3 Recombinant vaccine -- 2.2.4 Polysaccharide vaccine -- 2.2.5 Conjugate vaccines -- 2.2.6 Inactivated vaccines -- 2.2.7 Toxoid vaccines -- 2.3 Immunization -- 2.4 Immunology of vaccines -- 2.4.1 Immune system -- 2.4.2 General immune response mechanism -- 2.4.2.1 Activation of immunity -- 2.4.2.1.1 Immune response of live vaccine -- 2.4.2.1.2 Immune response of nonlive vaccine -- 2.5 Side effects and safety of vaccines -- 2.5.1 Adverse event following immunization detection: to strengthen vaccine safety monitoring in all countries -- 2.6 Vaccine preparation -- 2.6.1 Examples of vaccine preparations -- 2.6.1.1 Measles vaccine -- 2.6.1.2 Diphtheria vaccine -- 2.6.1.3 Tetanus vaccine -- 2.6.1.4 Influenza vaccine -- 2.6.1.5 Hepatitis vaccine -- 2.6.1.6 Haemophilus influenzae type B -- 2.6.1.7 BCG vaccine -- 2.6.1.8 Smallpox vaccine -- 2.6.1.9 Rabies vaccine -- 2.7 Vaccines evaluation and standardization -- 2.7.1 Evaluation of vaccines -- 2.7.2 Standardization of vaccines -- 2.8 Regulatory consideration of vaccines -- 2.9 Licensed vaccines -- 2.10 Sera -- 2.11 Revolutions in serum therapy -- 2.12 General method of preparation of sera. , 2.12.1 Antibacterial sera -- 2.12.2 Antiviral sera -- 2.13 Evaluation of sera -- 2.14 Standardization of sera -- 2.15 Regulatory consideration of sera -- 2.16 Marketed products of vaccines and sera -- 2.17 Challenges to vaccine and sera success -- 2.18 New approaches for vaccines and sera -- 2.18.1 Nucleic acid -- 2.18.1.1 mRNA vaccine -- 2.18.1.2 DNA vaccine -- 2.18.2 Viral vectors -- 2.18.3 Recombinant viral vector -- 2.18.4 Virus-like particles -- 2.18.5 Tuberculosis vaccine -- 2.18.6 Cancer vaccine -- 2.18.6.1 Neoantigen vaccines -- 2.18.6.2 RNA-based vaccines -- 2.18.6.3 Peptide-based vaccines -- 2.18.6.4 Dendritic cell-based vaccines -- 2.18.7 HIV vaccine -- 2.18.8 Malaria vaccines -- 2.18.9 Dengue vaccines -- 2.18.9.1 Nanoparticle-based vaccines -- 2.18.9.2 Tetravalent dengue vaccine -- 2.18.9.3 Nonstructural protein targets -- 2.18.9.4 Vaccines with additives -- 2.18.9.5 RNA-based vaccines -- 2.19 Conclusion -- References -- 3 Aptamers and antisense oligonucleotide-based delivery -- 3.1 What is the aptamer? -- 3.2 Aptamer design -- 3.2.1 Systematic evolution of ligands by exponential enrichment -- 3.2.2 In silico systematic evolution of ligands by exponential enrichment -- 3.2.3 Machine learning-based methods -- 3.2.3.1 Data preparation -- 3.2.3.2 Feature extraction -- 3.2.3.2.1 Sequence-based features -- 3.2.3.2.2 Structure-based features -- 3.2.3.2.3 Energy-based features -- 3.2.3.3 Feature selection -- 3.2.3.3.1 Prediction models of aptamer-target interaction -- 3.2.3.4 Model evaluation -- 3.2.3.4.1 Accuracy: fraction of correctly classified samples -- 3.2.3.4.2 Sensitivity -- 3.2.3.4.3 Specificity -- 3.3 Drug delivery by aptamers -- 3.4 Binding to different molecules -- 3.4.1 Aptamers and liposomes -- 3.4.2 Aptamers and chitosan -- 3.4.3 Aptamers and graphene -- 3.4.4 Aptamers and magnetic manoparticles -- References. , 4 Monoclonal antibodies: recent development in drug delivery -- 4.1 Introduction -- 4.2 The molecular mechanisms of therapeutic antibody -- 4.3 Advantages and disadvantages of mAbs -- 4.4 Pharmacokinetics versus tumor targeting -- 4.5 Approaches for developing targeted monoclonal antibodies -- 4.5.1 XenoMouse hybridoma technology -- 4.5.2 Phage display for the production of human mAbs -- 4.5.3 Transgenic mice that produce human monoclonal antibodies -- 4.5.4 Antibody technique based on single B cells -- 4.5.5 Humanization of mAbs -- 4.5.6 Generation of humanized mAbs -- 4.5.7 Human and humanized mAbs -- 4.5.8 Stereospecific monoclonal antibodies -- 4.6 Novel drug delivery systems for mAbs -- 4.6.1 Nanoparticles -- 4.6.2 Microspheres -- 4.6.3 Hydrogels -- 4.6.4 Other delivery systems -- 4.7 Formulation challenges of mAbs -- 4.8 Future trends of mAbs -- 4.9 Conclusion -- References -- 5 Hormonal delivery systems -- 5.1 Introduction -- 5.2 Hormones as pharmacotherapeutics -- 5.2.1 Insulin -- 5.2.1.1 Diabetes mellitus -- 5.2.1.2 Diabetic ketoacidosis -- 5.2.1.3 Hyperglycemic hyperosmolar state -- 5.2.1.4 Cystic fibrosis-related diabetes -- 5.2.1.5 Insulinoma -- 5.2.1.6 Growth hormone deficiency -- 5.2.1.7 Hyperkalemia -- 5.2.1.8 Diabetic gastroparesis -- 5.2.1.9 Hypertriglyceridemia -- 5.2.1.10 Lipodystrophy -- 5.2.1.11 Other conditions -- 5.2.2 Glucagon -- 5.2.3 Thyroid hormones -- 5.2.4 Corticosteroids -- 5.2.4.1 Inflammatory conditions -- 5.2.4.2 Autoimmune disorders -- 5.2.4.3 Allergic reactions -- 5.2.4.4 Cancer -- 5.2.4.5 Adrenal insufficiency -- 5.2.5 Growth hormone -- 5.2.6 Estrogen hormone -- 5.2.6.1 Hormone replacement therapy -- 5.2.6.2 Selective estrogen receptor modulators -- 5.2.6.3 Aromatase inhibitors -- 5.2.7 Progesterone hormone -- 5.2.7.1 Menstrual irregularities -- 5.2.7.2 Infertility -- 5.2.7.3 Miscarriage. , 5.2.7.4 Endometrial cancer -- 5.2.8 Testosterone hormone -- 5.2.9 Follicle stimulating hormone -- 5.2.10 Luteinizing hormone-releasing hormone -- 5.2.11 Human chorionic gonadotropin hormone -- 5.3 Novel drug delivery systems for hormones -- 5.3.1 Microparticles -- 5.3.2 Liposomes -- 5.3.3 Polymeric nanoparticles -- 5.3.4 Lipid nanoparticles -- 5.3.5 Nanoemulsion -- 5.3.6 Self-emulsifying drug delivery systems -- 5.3.7 Nanogels -- 5.3.8 Dendrimers -- 5.3.9 Inorganic nanoparticles -- 5.3.10 Transferosomes -- 5.4 Conclusion and future perspectives -- References -- 6 Vesicular drug delivery systems: a novel approach in current nanomedicine -- 6.1 Introduction -- 6.2 Type of vesicles -- 6.2.1 Liposomes -- 6.2.2 Niosomes -- 6.2.3 Polymersomes -- 6.3 Engineered vesicles for therapeutic purposes -- 6.3.1 Transformable drug delivery vesicles -- 6.3.2 Actively targeted vesicles -- 6.3.3 Multifunctional vesicles -- 6.4 Pharmaceutical application of vesicles -- 6.4.1 Cancer therapy -- 6.4.2 Diagnostic -- 6.4.3 Gene delivery -- 6.4.4 Immunotherapy and vaccines -- 6.5 Conclusions and outlooks -- References -- 7 Polymeric micelles in drug delivery and targeting -- Abbreviations -- 7.1 Introduction -- 7.2 Polymeric micelles -- 7.2.1 Polymer-drug conjugates -- 7.2.2 Drug-encapsulated polymeric micelles -- 7.2.3 Polyion complex micelles -- 7.3 Characterization and evaluation of polymeric micelles -- 7.3.1 Particle size, size distribution, and zeta potential -- 7.3.2 Morphology and shape -- 7.3.3 Critical micelle concentration -- 7.3.4 Stability -- 7.3.5 In vitro drug release studies -- 7.4 Application of polymeric micelles in drug delivery -- 7.4.1 Solubility enhancement -- 7.4.2 Passive targeting -- 7.4.3 Active targeting -- 7.4.3.1 Aptamer-coupled polymeric micelles -- 7.4.3.2 Folic acid-coupled polymeric micelles. , 7.4.3.3 Hyaluronic acid-coupled polymeric micelles -- 7.4.3.4 Transferrin-coupled polymeric micelles -- 7.4.4 Stimuli-responsive polymeric micelles -- 7.4.4.1 pH-responsive polymeric micelles -- 7.4.4.2 Redox-sensitive polymeric micelles -- 7.4.4.3 Enzyme-responsive polymeric micelles -- 7.4.4.4 Thermoresponsive polymeric micelles -- 7.5 Challenges associated with clinical translation -- 7.6 Conclusion -- Conflict of interest -- References -- 8 Physicochemical characterization of drug delivery systems based on nanomaterials -- 8.1 Introduction -- 8.2 Nanomaterial shape/morphology -- 8.3 Size average, distribution, and nanomaterial concentration -- 8.4 Nanomaterial surface properties -- 8.5 Nanomaterial-active pharmaceutical ingredient structure, composition, and crystal form -- 8.6 Active pharmaceutical ingredient content -- 8.7 Active pharmaceutical ingredient degradation products, other impurities, and stability assessment -- 8.8 Active pharmaceutical ingredient release assay -- References -- 9 Inorganic and metal-based nanoparticles -- 9.1 Introduction -- 9.2 Enhanced permeability and retention effect -- 9.3 Blood-brain barrier -- 9.3.1 History of blood-brain barrier -- 9.3.2 Cells of the blood-brain barrier -- 9.3.2.1 Endothelial cells -- 9.3.2.2 Pericytes -- 9.3.2.3 Astrocytes -- 9.3.2.4 Tight junctions -- 9.3.2.5 Mural cells -- 9.3.3 Regulation of the blood-brain barrier -- 9.3.4 Disturbance of the blood-brain barrier in the central nervous system disorder -- 9.3.4.1 Paracellular pathway -- 9.3.4.2 Transcellular pathway -- 9..3.4.3 Passive diffusion -- 9.3.4.4 Active efflux -- 9.3.4.5 Receptor-mediated transcytosis -- 9.3.4.6 Carrier-mediated transport -- 9.3.4.7 Charged compound interaction -- 9.4 Neurological disease -- 9.4.1 Alzheimer's disease -- 9.4.1.1 Iron oxide nanoparticles -- 9.4.1.2 Gadolinium nanoparticles. , 9.4.2 Parkinson's disease.
    Additional Edition: ISBN 9780323919241
    Additional Edition: Print version: Molecular pharmaceutics and nano drug delivery ISBN 9780323919241
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    edocfu_9961276951202883
    Format: 1 online resource (xiii, 388 pages) : , illustrations
    ISBN: 0-323-91415-2 , 9780323914154 , 0323914152
    Content: Molecular Pharmaceutics and Nano Drug Delivery: Fundamentals and Challenges provides a thorough resource for both beginners and established scientists, bringing fundamental knowledge about key challenges of these carriers down to the molecular level. The book satisfies the need of availability of literature at single platform with the detailed knowledge to understand crucial aspects, such as regulatory, clinical, toxicological and the formulation requirements of these carriers. This is a valuable resource for graduates, pharmaceutical researchers and anyone working on aspects of pharmaceutics, molecular pharmaceutics and nano-drug/gene delivery. So called ‘novel drug delivery systems’ are numerous, with each having different approaches to their production, characterization and evaluation. The proper understanding of these dosage forms, as well as their critical attributes such as toxicity and regulatory requirements are aspects which researchers should know before they begin working on these carriers. This book provides this critical information.
    Note: Front Cover -- Molecular Pharmaceutics and Nano Drug Delivery -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Protein and enzyme-based nanoformulations -- 1.1 Introduction -- 1.2 Challenges associated with protein and enzymes delivery -- 1.3 Nanocarrier system for protein and enzyme delivery -- 1.3.1 Polymeric nanocarrier system -- 1.3.2 Lipidic nanocarrier system -- 1.3.3 Inorganic nanocarrier systems -- 1.4 Conclusion -- References -- 2 Vaccines and sera -- 2.1 Introduction -- 2.1.1 Vaccines -- 2.1.2 Revolution of vaccines development -- 2.1.2.1 18th century -- 2.1.2.2 19th century -- 2.2 Vaccine types and generations -- 2.2.1 Live attenuated vaccines -- 2.2.2 Subunit vaccine -- 2.2.3 Recombinant vaccine -- 2.2.4 Polysaccharide vaccine -- 2.2.5 Conjugate vaccines -- 2.2.6 Inactivated vaccines -- 2.2.7 Toxoid vaccines -- 2.3 Immunization -- 2.4 Immunology of vaccines -- 2.4.1 Immune system -- 2.4.2 General immune response mechanism -- 2.4.2.1 Activation of immunity -- 2.4.2.1.1 Immune response of live vaccine -- 2.4.2.1.2 Immune response of nonlive vaccine -- 2.5 Side effects and safety of vaccines -- 2.5.1 Adverse event following immunization detection: to strengthen vaccine safety monitoring in all countries -- 2.6 Vaccine preparation -- 2.6.1 Examples of vaccine preparations -- 2.6.1.1 Measles vaccine -- 2.6.1.2 Diphtheria vaccine -- 2.6.1.3 Tetanus vaccine -- 2.6.1.4 Influenza vaccine -- 2.6.1.5 Hepatitis vaccine -- 2.6.1.6 Haemophilus influenzae type B -- 2.6.1.7 BCG vaccine -- 2.6.1.8 Smallpox vaccine -- 2.6.1.9 Rabies vaccine -- 2.7 Vaccines evaluation and standardization -- 2.7.1 Evaluation of vaccines -- 2.7.2 Standardization of vaccines -- 2.8 Regulatory consideration of vaccines -- 2.9 Licensed vaccines -- 2.10 Sera -- 2.11 Revolutions in serum therapy -- 2.12 General method of preparation of sera. , 2.12.1 Antibacterial sera -- 2.12.2 Antiviral sera -- 2.13 Evaluation of sera -- 2.14 Standardization of sera -- 2.15 Regulatory consideration of sera -- 2.16 Marketed products of vaccines and sera -- 2.17 Challenges to vaccine and sera success -- 2.18 New approaches for vaccines and sera -- 2.18.1 Nucleic acid -- 2.18.1.1 mRNA vaccine -- 2.18.1.2 DNA vaccine -- 2.18.2 Viral vectors -- 2.18.3 Recombinant viral vector -- 2.18.4 Virus-like particles -- 2.18.5 Tuberculosis vaccine -- 2.18.6 Cancer vaccine -- 2.18.6.1 Neoantigen vaccines -- 2.18.6.2 RNA-based vaccines -- 2.18.6.3 Peptide-based vaccines -- 2.18.6.4 Dendritic cell-based vaccines -- 2.18.7 HIV vaccine -- 2.18.8 Malaria vaccines -- 2.18.9 Dengue vaccines -- 2.18.9.1 Nanoparticle-based vaccines -- 2.18.9.2 Tetravalent dengue vaccine -- 2.18.9.3 Nonstructural protein targets -- 2.18.9.4 Vaccines with additives -- 2.18.9.5 RNA-based vaccines -- 2.19 Conclusion -- References -- 3 Aptamers and antisense oligonucleotide-based delivery -- 3.1 What is the aptamer? -- 3.2 Aptamer design -- 3.2.1 Systematic evolution of ligands by exponential enrichment -- 3.2.2 In silico systematic evolution of ligands by exponential enrichment -- 3.2.3 Machine learning-based methods -- 3.2.3.1 Data preparation -- 3.2.3.2 Feature extraction -- 3.2.3.2.1 Sequence-based features -- 3.2.3.2.2 Structure-based features -- 3.2.3.2.3 Energy-based features -- 3.2.3.3 Feature selection -- 3.2.3.3.1 Prediction models of aptamer-target interaction -- 3.2.3.4 Model evaluation -- 3.2.3.4.1 Accuracy: fraction of correctly classified samples -- 3.2.3.4.2 Sensitivity -- 3.2.3.4.3 Specificity -- 3.3 Drug delivery by aptamers -- 3.4 Binding to different molecules -- 3.4.1 Aptamers and liposomes -- 3.4.2 Aptamers and chitosan -- 3.4.3 Aptamers and graphene -- 3.4.4 Aptamers and magnetic manoparticles -- References. , 4 Monoclonal antibodies: recent development in drug delivery -- 4.1 Introduction -- 4.2 The molecular mechanisms of therapeutic antibody -- 4.3 Advantages and disadvantages of mAbs -- 4.4 Pharmacokinetics versus tumor targeting -- 4.5 Approaches for developing targeted monoclonal antibodies -- 4.5.1 XenoMouse hybridoma technology -- 4.5.2 Phage display for the production of human mAbs -- 4.5.3 Transgenic mice that produce human monoclonal antibodies -- 4.5.4 Antibody technique based on single B cells -- 4.5.5 Humanization of mAbs -- 4.5.6 Generation of humanized mAbs -- 4.5.7 Human and humanized mAbs -- 4.5.8 Stereospecific monoclonal antibodies -- 4.6 Novel drug delivery systems for mAbs -- 4.6.1 Nanoparticles -- 4.6.2 Microspheres -- 4.6.3 Hydrogels -- 4.6.4 Other delivery systems -- 4.7 Formulation challenges of mAbs -- 4.8 Future trends of mAbs -- 4.9 Conclusion -- References -- 5 Hormonal delivery systems -- 5.1 Introduction -- 5.2 Hormones as pharmacotherapeutics -- 5.2.1 Insulin -- 5.2.1.1 Diabetes mellitus -- 5.2.1.2 Diabetic ketoacidosis -- 5.2.1.3 Hyperglycemic hyperosmolar state -- 5.2.1.4 Cystic fibrosis-related diabetes -- 5.2.1.5 Insulinoma -- 5.2.1.6 Growth hormone deficiency -- 5.2.1.7 Hyperkalemia -- 5.2.1.8 Diabetic gastroparesis -- 5.2.1.9 Hypertriglyceridemia -- 5.2.1.10 Lipodystrophy -- 5.2.1.11 Other conditions -- 5.2.2 Glucagon -- 5.2.3 Thyroid hormones -- 5.2.4 Corticosteroids -- 5.2.4.1 Inflammatory conditions -- 5.2.4.2 Autoimmune disorders -- 5.2.4.3 Allergic reactions -- 5.2.4.4 Cancer -- 5.2.4.5 Adrenal insufficiency -- 5.2.5 Growth hormone -- 5.2.6 Estrogen hormone -- 5.2.6.1 Hormone replacement therapy -- 5.2.6.2 Selective estrogen receptor modulators -- 5.2.6.3 Aromatase inhibitors -- 5.2.7 Progesterone hormone -- 5.2.7.1 Menstrual irregularities -- 5.2.7.2 Infertility -- 5.2.7.3 Miscarriage. , 5.2.7.4 Endometrial cancer -- 5.2.8 Testosterone hormone -- 5.2.9 Follicle stimulating hormone -- 5.2.10 Luteinizing hormone-releasing hormone -- 5.2.11 Human chorionic gonadotropin hormone -- 5.3 Novel drug delivery systems for hormones -- 5.3.1 Microparticles -- 5.3.2 Liposomes -- 5.3.3 Polymeric nanoparticles -- 5.3.4 Lipid nanoparticles -- 5.3.5 Nanoemulsion -- 5.3.6 Self-emulsifying drug delivery systems -- 5.3.7 Nanogels -- 5.3.8 Dendrimers -- 5.3.9 Inorganic nanoparticles -- 5.3.10 Transferosomes -- 5.4 Conclusion and future perspectives -- References -- 6 Vesicular drug delivery systems: a novel approach in current nanomedicine -- 6.1 Introduction -- 6.2 Type of vesicles -- 6.2.1 Liposomes -- 6.2.2 Niosomes -- 6.2.3 Polymersomes -- 6.3 Engineered vesicles for therapeutic purposes -- 6.3.1 Transformable drug delivery vesicles -- 6.3.2 Actively targeted vesicles -- 6.3.3 Multifunctional vesicles -- 6.4 Pharmaceutical application of vesicles -- 6.4.1 Cancer therapy -- 6.4.2 Diagnostic -- 6.4.3 Gene delivery -- 6.4.4 Immunotherapy and vaccines -- 6.5 Conclusions and outlooks -- References -- 7 Polymeric micelles in drug delivery and targeting -- Abbreviations -- 7.1 Introduction -- 7.2 Polymeric micelles -- 7.2.1 Polymer-drug conjugates -- 7.2.2 Drug-encapsulated polymeric micelles -- 7.2.3 Polyion complex micelles -- 7.3 Characterization and evaluation of polymeric micelles -- 7.3.1 Particle size, size distribution, and zeta potential -- 7.3.2 Morphology and shape -- 7.3.3 Critical micelle concentration -- 7.3.4 Stability -- 7.3.5 In vitro drug release studies -- 7.4 Application of polymeric micelles in drug delivery -- 7.4.1 Solubility enhancement -- 7.4.2 Passive targeting -- 7.4.3 Active targeting -- 7.4.3.1 Aptamer-coupled polymeric micelles -- 7.4.3.2 Folic acid-coupled polymeric micelles. , 7.4.3.3 Hyaluronic acid-coupled polymeric micelles -- 7.4.3.4 Transferrin-coupled polymeric micelles -- 7.4.4 Stimuli-responsive polymeric micelles -- 7.4.4.1 pH-responsive polymeric micelles -- 7.4.4.2 Redox-sensitive polymeric micelles -- 7.4.4.3 Enzyme-responsive polymeric micelles -- 7.4.4.4 Thermoresponsive polymeric micelles -- 7.5 Challenges associated with clinical translation -- 7.6 Conclusion -- Conflict of interest -- References -- 8 Physicochemical characterization of drug delivery systems based on nanomaterials -- 8.1 Introduction -- 8.2 Nanomaterial shape/morphology -- 8.3 Size average, distribution, and nanomaterial concentration -- 8.4 Nanomaterial surface properties -- 8.5 Nanomaterial-active pharmaceutical ingredient structure, composition, and crystal form -- 8.6 Active pharmaceutical ingredient content -- 8.7 Active pharmaceutical ingredient degradation products, other impurities, and stability assessment -- 8.8 Active pharmaceutical ingredient release assay -- References -- 9 Inorganic and metal-based nanoparticles -- 9.1 Introduction -- 9.2 Enhanced permeability and retention effect -- 9.3 Blood-brain barrier -- 9.3.1 History of blood-brain barrier -- 9.3.2 Cells of the blood-brain barrier -- 9.3.2.1 Endothelial cells -- 9.3.2.2 Pericytes -- 9.3.2.3 Astrocytes -- 9.3.2.4 Tight junctions -- 9.3.2.5 Mural cells -- 9.3.3 Regulation of the blood-brain barrier -- 9.3.4 Disturbance of the blood-brain barrier in the central nervous system disorder -- 9.3.4.1 Paracellular pathway -- 9.3.4.2 Transcellular pathway -- 9..3.4.3 Passive diffusion -- 9.3.4.4 Active efflux -- 9.3.4.5 Receptor-mediated transcytosis -- 9.3.4.6 Carrier-mediated transport -- 9.3.4.7 Charged compound interaction -- 9.4 Neurological disease -- 9.4.1 Alzheimer's disease -- 9.4.1.1 Iron oxide nanoparticles -- 9.4.1.2 Gadolinium nanoparticles. , 9.4.2 Parkinson's disease.
    Additional Edition: ISBN 9780323919241
    Additional Edition: Print version: Molecular pharmaceutics and nano drug delivery ISBN 9780323919241
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Cambridge, Mass. : National Bureau of Economic Research
    UID:
    almafu_9958068260602883
    Format: 1 online resource: , illustrations (black and white);
    Series Statement: NBER working paper series no. w8788
    Content: Our paper reexamines the forecasting regressions which predict annual aggregate stock market returns net of the risk-free rate with lagged aggregate dividend-yield ratios and dividend-price ratios. Prior to 1990, the conditional dividend yield could reliably outperform the historical equity premium mean in predicting future equity premia *in-sample*. But our paper shows that the dividend ratios could not outperform the prevailing unconditional mean *out-of-sample*, plus any residual power was directly related to only two years, 1974 and 1975. As of 2000, even this in-sample predictive ability has disappeared. Our paper also documents changes in the time-series processes of the dividends themselves and shows that an increasing persistence of dividend-price ratio is largely responsible for weak stock return predictability.
    Note: February 2002.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    almafu_9958090782602883
    Format: 1 online resource: , illustrations (black and white);
    Series Statement: NBER working paper series no. w10934
    Content: We present a simulation-based method for solving discrete-time portfolio choice problems involving non-standard preferences, a large number of assets with arbitrary return distribution, and, most importantly, a large number of state variables with potentially path-dependent or non-stationary dynamics. The method is flexible enough to accommodate intermediate consumption, portfolio constraints, parameter and model uncertainty, and learning. We first establish the properties of the method for the portfolio choice between a stock index and cash when the stock returns are either iid or predictable by the dividend yield. We then explore the problem of an investor who takes into account the predictability of returns but is uncertain about the parameters of the data generating process. The investor chooses the portfolio anticipating that future data realizations will contain useful information to learn about the true parameter values.
    Note: November 2004.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages