feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Region
Access
  • 1
    UID:
    almahu_BV043502030
    Format: XIX, 255 Seiten : , Illustrationen, Karten, 1 Plan.
    ISBN: 978-90-429-3265-4 , 90-429-3265-1
    Series Statement: Colloquia Antiqua 17
    Language: English
    Subjects: History
    RVK:
    RVK:
    RVK:
    Keywords: Kultstätte ; Heiligtum ; Kulturkontakt ; Antike ; Aufsatzsammlung ; Aufsatzsammlung ; Aufsatzsammlung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing,
    UID:
    almafu_BV044207037
    Format: 1 Online-Ressource (XIII, 278 p. 93 illus., 63 illus. in color).
    ISBN: 978-3-319-47961-3
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9783319479606
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almahu_9949225722202882
    Format: 1 online resource (252 pages)
    ISBN: 0-323-88632-9
    Note: Front Cover -- Improvements in Bio-Based Building Blocks Production Through Process Intensification and Sustainability Concepts -- Copyright Page -- Contents -- Author biographies -- 1 Why are bio-based chemical building blocks needed? -- 1.1 Are bio-based chemical building blocks needed? -- 1.1.1 Drop-in bio-based chemicals -- 1.1.2 Novel bio-based chemicals -- 1.1.3 C6 and C6/C5 Sugar -- 1.1.3.1 Fermentation products -- 1.1.3.2 Chemical transformation products -- 1.1.4 Plant-based oil -- 1.1.5 Algae oil -- 1.1.6 Organic solutions -- 1.1.7 Lignin -- 1.1.8 Pyrolysis oil -- References -- 2 Process intensification and sustainability -- 2.1 Process intensification and sustainability in bioblocks -- References -- 3 Basic concepts on simulation of (bio)chemical processes -- 3.1 (Bio)chemical processes -- 3.2 Concept of simulation in bioprocesses (chemical) -- 3.2.1 Simulation categories for biochemical processes -- 3.2.1.1 Steady-state simulation -- 3.2.1.2 Dynamic simulation -- 3.2.2 Process simulation biochemical applications -- 3.2.2.1 Synthesis and process design biochemicals -- 3.2.2.2 Operation, control, and safety of processes biochemicals -- 3.3 Concept of modeling and tools in process biochemicals -- 3.4 The role of simulation and process modeling biochemicals -- 3.5 The role of process optimization biochemicals -- References -- 4 Bioethanol -- 4.1 Bioethanol -- 4.2 Petrochemical route of ethanol production -- 4.2.1 Process, raw material, and kinetics -- 4.2.2 Performance index in the production of ethanol through petrochemical -- 4.2.3 Disadvantages in the production of ethanol through petrochemical -- 4.3 Conventional bioethanol production process -- 4.3.1 Raw material for the production of bioethanol -- 4.3.2 Production of bioethanol from lignocellulosic biomass -- 4.3.2.1 Pretreatment -- 4.3.2.2 Enzymatic hydrolysis. , 4.3.2.3 Detoxification -- 4.3.2.4 Fermentation -- 4.3.2.5 Recovery and purification of bioethanol -- 4.3.3 Advantages and disadvantages of bioethanol production -- 4.4 Problems of the process for obtaining conventional bioethanol -- 4.5 Proposals to intensify the process for obtaining bioethanol -- 4.5.1 Synthesis -- 4.5.2 Design -- 4.5.3 Control -- 4.6 Conclusions -- References -- 5 Biobutanol -- 5.1 General characteristics, uses, and applications -- 5.2 Production of butanol from fossil sources -- 5.3 Butanol production by the biochemical route -- 5.3.1 Metabolic pathway of acetone-butanol-ethanol fermentation -- 5.3.2 Conventional raw material to produce butanol -- 5.3.2.1 First-generation biobutanol -- 5.3.2.2 Second-generation biobutanol -- 5.3.2.3 Third- and fourth-generation biobutanol -- 5.3.2.4 Problems associated with acetone-butanol-ethanol fermentation -- 5.3.3 Isopropanol-butanol-ethanol fermentation -- 5.4 Process intensification applied to butanol production -- 5.4.1 Process intensification in the reactive zone -- 5.4.1.1 Gas stripping -- 5.4.1.2 Vacuum fermentation -- 5.4.1.3 Pervaporation -- 5.4.1.4 Liquid-liquid extraction -- 5.4.1.5 Adsorption -- 5.4.2 Process intensification in the downstream process -- 5.5 Controllability studies applied to intensified alternatives for biobutanol purification -- 5.6 Conclusions -- References -- 6 Furfural -- 6.1 Introduction -- 6.2 Uses of furfural -- 6.3 Current furfural markets -- 6.4 Stoichiometric and kinetics models for furfural production -- 6.5 Current technologies for furfural production -- 6.6 New intensified proposes for furfural production -- 6.6.1 Advances in furfural purification -- 6.6.2 Objective functions -- 6.6.3 Optimization results -- 6.6.4 Advances in furfural purification using hybrid extractive distillation schemes -- 6.7 Conclusions -- References -- 7 Levulinic acid. , 7.1 Introduction -- 7.2 Current uses of levulinic acid -- 7.3 Current levulinic acid markets -- 7.4 Kinetics models for levulinic acid production -- 7.5 Current for levulinic acid production -- 7.6 New intensified proposals for levulinic acid production -- 7.7 Conclusions -- References -- 8 Ethyl levulinate -- 8.1 Introduction -- 8.2 Current applications and markets of ethyl levulinate -- 8.3 Kinetics models for ethyl levulinate production -- 8.4 Current technologies for ethyl levulinate production -- 8.5 Current advances in ethyl levulinate production -- 8.6 Conclusions -- References -- 9 2,3-Butanediol -- 9.1 Introduction -- 9.2 Production of 2,3-BD from fossil and renewable sources -- 9.2.1 Microorganisms useful in the production of 2,3-BD -- 9.3 Raw material for 2,3-BD production -- 9.3.1 Nonrenewable raw materials -- 9.3.2 Renewable raw materials -- 9.4 Process intensification (PI) in 2,3-BD production -- 9.5 PI in 2,3-BD recovery -- 9.6 Conclusions -- References -- 10 Methyl ethyl ketone -- 10.1 Introduction -- 10.2 MEK production -- 10.2.1 MEK production from nonrenewable sources -- 10.2.2 MEK production from renewable sources -- 10.2.2.1 Kinetic equations to methyl ethyl ketone production -- 10.2.3 Production ok methyl ethyl ketone through process intensified schemes -- 10.3 Purification of MEK through intensified process -- 10.4 Conclusion and future insights -- References -- 11 Lactic acid -- 11.1 Lactic acid -- 11.1.1 Uses of lactic acid -- 11.1.2 Market and demand for lactic acid -- 11.2 Chemical route of lactic acid production -- 11.2.1 Process, raw material, and reactions -- 11.2.2 Performance index in lactic acid production via petrochemical -- 11.2.3 Disadvantages in the production of lactic acid via petrochemical -- 11.3 Conventional process of production of lactic acid via fermentation of biomass. , 11.3.1 Raw material for the production of lactic acid via biomass -- 11.3.2 Lactic acid production via biomass -- 11.3.2.1 Fermentation route -- 11.3.2.2 Lactic acid recovery and purification processes -- 11.3.3 Advantages and disadvantages of lactic acid production via biomass -- 11.3.4 Problems in the production of lactic acid via biomass -- 11.4 Proposals for intensification of the process of obtaining lactic acid via biomass -- 11.4.1 Synthesis and design -- 11.4.2 Optimization -- 11.4.2.1 Performance indices -- 11.4.2.1.1 Economic index -- 11.4.2.1.2 Environmental index -- 11.4.2.1.3 Inherent safety index -- 11.4.2.2 Optimization results -- 11.5 Conclusions -- References -- 12 Future insights in bio-based chemical building blocks -- 12.1 Future insights in bio-based chemical building blocks -- References -- Index -- Back Cover.
    Additional Edition: ISBN 0-323-89870-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cambridge, Massachusetts :Woodhead Publishing is an imprint of Elsevier,
    UID:
    almahu_9949697876102882
    Format: 1 online resource (406 pages)
    ISBN: 0-323-99805-4
    Series Statement: Advances in pollution research
    Content: Advances and Developments in Biobutanol Production is a comprehensive reference on the production and purification of biobutanol, from the fundamentals to the latest advances. Focusing on selection of biomass, choice of pretreatments, biochemistry and design of fermentation, purification and biofuel application, the book also provides details on biorefinery design, lifecycle analysis, and offers perspectives on future developments. Through detailed analysis, chapters show readers how to overcome the challenges associated with the correct selection of raw material and adequate biomass pretreatment, the selection of microorganisms for fermenting biomass sugars, the purification of effluent coming from fermentation, and the high energy demands of production. Solutions are supported by step-by-step guidance on methodologies and processes, with lab and industry-scale case studies providing real-world examples of their implementation.
    Note: Front Cover -- ADVANCES ANDDEVELOPMENTS INBIOBUTANOLPRODUCTION -- ADVANCES ANDDEVELOPMENTS INBIOBUTANOLPRODUCTION -- Copyright -- Contents -- Contributors -- Preface -- 1 - Bio-butanol production: scope, significance, and applications -- 1.1 Introduction -- 1.2 History of butanol production -- 1.3 Microbial species and strains commonly used for butanol fermentation -- 1.3.1 Native butanol producing microorganisms -- 1.3.2 Metabolically modified native butanol-producing microorganisms -- 1.3.3 Metabolically modified nonnative butanol-producing microorganisms -- 1.4 Butanol production feedstock -- 1.4.1 First-generation feedstock -- 1.4.2 Second-generation feedstock -- 1.4.2.1 Pretreatment methods -- 1.4.3 Third-generation feedstock -- 1.4.3.1 Microalgae biomass -- 1.4.3.2 Syngas -- 1.5 Butanol fermentation -- 1.5.1 Batch fermentation processes -- 1.5.2 Continuous fermentation processes -- 1.5.2.1 Free cell continuous fermentation process -- 1.5.2.2 Immobilized cell continuous fermentation process -- 1.5.3 Technology innovations to advance butanol fermentation -- 1.5.3.1 Pervaporation -- 1.5.3.2 Gas stripping -- 1.5.3.3 Liquid-liquid extraction -- 1.5.3.4 Perstraction -- 1.6 Significance and applications of butanol and butanol derivatives -- 1.7 Conclusion -- References -- 2 - Developments in biobutanol industrial production -- 2.1 Introduction -- 2.2 Problem statement and case study -- 2.2.1 Purification alternatives -- 2.2.1.1 Pervaporation-distillation -- 2.2.1.2 Azeotropic distillation -- 2.2.1.3 Pressure-swing distillation -- 2.3 Analysis methodology in a sustainability framework -- 2.3.1 Economic analysis -- 2.3.2 Environmental impact -- 2.3.3 Inherent safety analysis -- 2.3.4 Control properties analysis -- 2.4 Objective function and optimization strategy -- 2.5 Results -- 2.5.1 Implementation and practical considerations -- 2.6 Conclusions. , References -- 3 - Biobutanol fermentation research and development: feedstock, process and biofuel production -- 3.1 Introduction -- 3.2 Historical significance of biobutanol -- 3.3 Feedstocks -- 3.3.1 Cheese whey -- 3.3.2 High sugar content beverages -- 3.3.3 Dedicated lignocellulosic biomass -- 3.3.4 Agricultural residues -- 3.3.5 Food wastes and food losses -- 3.3.6 Microalgae feedstocks for biobutanol production -- 3.3.7 Municipal solid waste feedstock for biobutanol production -- 3.4 Process integration and intensification -- 3.5 Properties of bio-butanol for use as fuels -- 3.6 Fermentation technologies -- 3.7 Biobutanol microorganisms -- 3.8 Optimization strategies and modeling -- 3.9 Upstream processing of biobutanol -- 3.10 Downstream processing of biobutanol -- 3.11 Conclusion and future perspectives -- References -- Further reading -- 4 - Novel approaches toward bio-butanol production from renewable feedstocks -- 4.1 Introduction -- 4.2 Second generation biofuels: lignocellulosic substrates -- 4.3 Recombinant microorganisms and biosynthetic pathways -- 4.4 Fermentations in stages and using consortiums -- 4.5 In situ product recovery (ISPR) and ex-situ product recovery (ExSPR) -- 4.5.1 Vacuum evaporation -- 4.5.2 Gas stripping -- 4.5.3 Liquid-liquid equilibrium (LLE) -- 4.5.4 Membrane extraction -- 4.5.5 Adsorption -- 4.5.6 Pervaporation -- 4.5.7 Product recovery -- 4.5.8 Recovery and purification of ABE -- 4.5.9 Recovery and purification of IBE -- 4.5.10 Heat-integrated distillation -- 4.6 Mathematical models and process design methods -- 4.6.1 Evolution of ABE fermentation models-kinetics -- 4.6.2 Energy intensity of an integrated recovery and fermentation system -- 4.6.3 The heat of evaporation of a recovery system -- 4.6.4 Sensible heating of an ISPR and ExSPR (adsorption and LLE) -- 4.6.5 Heating and recycling in ExSPR. , 4.6.6 Energy requirements of distillation -- 4.6.7 Effect of operating conditions on the energy requirements -- 4.6.7.1 Sensible heat with recycling -- 4.6.7.2 Adsorption and LLE -- 4.7 Concluding remarks -- References -- 5 - Biobutanol from agricultural residues: Technology and economics -- 5.1 Introduction -- 5.2 Overview of substrates/feedstock sources -- 5.2.1 Biomass and other sources -- 5.2.2 Composition of different feedstocks and their valorization -- 5.3 Biobutanol production technologies -- 5.4 Technological challenges in biobutanol production -- 5.4.1 Feedstocks challenges -- 5.4.2 Pretreatment and hydrolysis obstacles -- 5.4.3 Fermentation and downstream processing challenges -- 5.4.4 Sustainability evaluation -- 5.5 Approaches to overcome the technological barriers -- 5.5.1 Potential remedies for feedstock challenges -- 5.5.2 Way out to tackle pretreatment and hydrolysis challenges -- 5.5.3 Remedies to fermentation challenges -- 5.5.4 Potential remedies to downstream processing obstacles -- 5.6 Current economics of biobutanol production -- 5.7 Future outlooks and conclusions -- 5.7.1 Future outlooks -- 5.7.2 Conclusions -- References -- 6 - Biobutanol from agricultural and municipal solid wastes, techno-economic, and lifecycle analysis -- 6.1 Introduction -- 6.2 Biobutanol as an advanced biofuel -- 6.3 Biobutanol production and technologies -- 6.4 Biobutanol: new era of biofuels -- 6.5 ABE fermentation technology -- 6.6 Biobutanol feedstocks -- 6.6.1 Agricultural and other lignocellulosic biomasses -- 6.6.2 Municipal solid wastes -- 6.6.3 Substrates development for biobutanol -- 6.6.4 Butanol recovery techniques -- 6.7 Biofuel production -- 6.7.1 Bioethanol case studies -- 6.7.2 The economy of biobutanol production -- 6.8 Techno-economic assessment -- 6.9 Lifecycle analysis -- 6.10 Conclusion and future perspectives -- References. , 7 - The importance and impact of pretreatment on bio-butanol production -- 7.1 Introduction -- 7.2 Different types of pretreatment -- 7.2.1 Mechanical pretreatment -- 7.2.1.1 Mechanical comminution -- 7.2.1.2 Extrusion -- 7.2.1.3 Microwave treatment -- 7.2.1.4 Ultrasound treatment -- 7.2.2 Hydrothermal pretreatment -- 7.2.3 Chemical pretreatment -- 7.2.3.1 Weak acid hydrolysis -- 7.2.3.2 Strong acid hydrolysis -- 7.2.3.3 Alkaline hydrolysis -- 7.2.3.4 Organosolv -- 7.2.3.5 Oxidative delignification -- 7.2.3.6 Room temperature ionic liquids -- 7.2.3.7 Deep eutectic solvents -- 7.2.4 Biological pretreatment -- 7.2.4.1 Lignocellulolytic enzymes -- 7.2.4.2 Clostridia as producers of enzymes -- 7.2.4.3 Enzymatic action with fermentation strategies -- 7.3 Inhibitors in biobutanol production -- 7.3.1 Effect of inhibitors on microbial bio-butanol production -- 7.3.2 Detoxification strategies -- 7.4 Impact of pretreatment strategies in biobutanol production -- 7.5 Concluding remarks -- References -- 8 - Biobutanol production from food crops -- 8.1 Introduction -- 8.2 Fermentation process of butanol production -- 8.3 Ancient industrial process of biobutanol production -- 8.4 Food crops used for butanol production -- 8.5 Present status of biofuel (biobutanol) production from food grains -- 8.6 Future perspective of butanol production from food crops -- 8.7 Conclusions -- Acknowledgments -- References -- 9 - Lignocellulosic bio-butanol production: challenges and solution -- 9.1 Introduction -- 9.2 Conventional acetone-butanol-ethanol fermentation -- 9.2.1 Alternate noncellulosic substrates -- 9.3 Lignocellulosic biomass as a substrate in ABE fermentation for butanol production -- 9.4 Challenges associated with lignocellulosic biomass as substrate for butanol production. , 9.5 Solution to the existing challenges associated with lignocellulosic biomass as substrate for butanol production -- 9.6 Cost analysis of lignocellulosic butanol production -- 9.7 Conclusions -- References -- Further reading -- 10 - Methods for bio-butanol production and purification -- 10.1 Introduction -- 10.2 Generations of bio-butanol production -- 10.3 Fermentation techniques for bio-butanol production -- 10.4 Challenges in bio-butanol production -- 10.5 Strain development for bio-butanol production -- 10.6 Recovery processes for butanol purification -- 10.6.1 Adsorption -- 10.6.2 Liquid-liquid extraction -- 10.6.3 Pervaporation -- 10.6.4 Gas stripping -- 10.6.5 Perstraction -- 10.6.6 Reverse osmosis (RO) -- 10.7 Conclusion and future prospects -- Acknowledgment -- References -- 11 - Current status and perspective on algal biomass-based biobutanol production -- 11.1 Introduction -- 11.2 Biobutanol-a promising alternate fuel -- 11.3 Feedstock for biobutanol production -- 11.3.1 First generation feedstock -- 11.3.2 Second generation feedstock -- 11.4 Algae-a third-generation feedstock for biobutanol production -- 11.4.1 Microalgae -- 11.4.2 Macroalgae -- 11.5 Biobutanol production process -- 11.5.1 Pretreatment of algal biomass -- 11.5.1.1 Physical and mechanical methods -- 11.5.1.2 Acid treatment -- 11.5.1.3 Alkali treatment -- 11.5.1.4 Enzymatic pretreatment -- 11.5.1.5 Other pretreatments -- 11.5.1.6 Nanoparticles in pretreatment -- 11.6 Biobutanol fermentation processes -- 11.6.1 Batch fermentation -- 11.6.2 Immobilized bacterial cells in fermentation -- 11.7 Downstream processing of biobutanol -- 11.7.1 Liquid-liquid extraction -- 11.7.2 Pervaporation -- 11.7.3 Gas stripping -- 11.7.4 Super critical extraction -- 11.8 Challenges in algal biomass-based ABE fermentation -- 11.9 Conclusion -- References. , 12 - Insights into metabolic engineering approaches for enhanced biobutanol production.
    Additional Edition: Print version: Segovia-Hernandez, Juan Gabriel Advances and Developments in Biobutanol Production San Diego : Elsevier Science & Technology,c2022 ISBN 9780323911788
    Additional Edition: ISBN 9780323911788
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    gbv_374379408
    Format: 144 S , zahlr. Ill., Kt , 27 cm
    ISBN: 8493205192
    Note: Includes bibliographical references (p. 140-142)
    Language: Spanish
    Keywords: Mexiko ; Mudéjarstil ; Architektur ; Geschichte ; Aufsatzsammlung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    gbv_524793646
    Format: 267 S , zahlr. Ill., Kt , 30 cm
    ISBN: 9788496395282 , 8496395286
    Note: Bibliografía: p. 261-267
    Language: Spanish
    Keywords: Spanien ; Mexiko ; Architektur ; Mudéjarstil ; Geschichte 1600-1900 ; Aufsatzsammlung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    gbv_666009201
    Format: 280 S , zahlr. Ill , 24 cm
    ISBN: 9788433852144 , 9788496101982
    Note: Includes bibliographical references
    Language: Spanish
    Keywords: Andalusien ; Beziehung ; Lateinamerika ; Kunst ; Kulturaustausch ; Geschichte ; Aufsatzsammlung
    URL: Cover
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    b3kat_BV046180058
    Format: XV, 329 Seiten , Illustrationen, Diagramme , 24 cm x 17 cm
    ISBN: 3110596075 , 9783110596076
    Series Statement: De Gruyter STEM
    Additional Edition: Erscheint auch als Online-Ausgabe, EPUB ISBN 978-3-11-059279-5
    Additional Edition: Erscheint auch als Online-Ausgabe, PDF ISBN 978-3-11-059612-0
    Language: English
    Subjects: Chemistry/Pharmacy
    RVK:
    Keywords: Chemische Verfahrenstechnik ; Chemischer Prozess ; Chemische Verfahrenstechnik ; Petrochemie ; Prozessentwicklung ; Prozessoptimierung ; Effizienzsteigerung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Book
    Book
    Xalapa :Univ. Veracruzana,
    UID:
    almafu_BV041747833
    Format: 378 S. : , Ill.
    Edition: 1. ed
    ISBN: 978-607-502-184-3
    Series Statement: Biblioteca
    Language: Spanish
    Subjects: Psychology
    RVK:
    URL: Cover
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages