feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
Subjects(RVK)
Access
  • 1
    Online Resource
    Online Resource
    London, England :Academic Press,
    UID:
    almahu_9948026213402882
    Format: 1 online resource (311 pages) : , color illustrations, photographs
    ISBN: 0-12-812310-9
    Note: Front Cover -- Tethered Space Robot: Dynamics, Measurement, and Control -- Copyright -- Contents -- Chapter 1: Introduction -- 1.1. Background -- 1.1.1. Brief History of the Space Tentacles -- 1.1.2. Brief History of the Space Manipulator -- 1.1.3. Brief History of the Space Tether -- 1.1.3.1. Single Space Tether -- Artificial Gravity -- Orbital Transfer -- Attitude Stabilization -- 1.1.3.2. Multi-Space Tethers -- Dynamics and Control -- Attitude Control -- Structure and Configuration -- 1.1.4. Brief History of the TSR -- 1.1.4.1. Releasing/Retrieving Phase -- 1.1.4.2. Capture and Post-Capture Phase -- 1.1.4.3. Deorbiting Phase -- 1.2. System and Mission Design of TSR -- 1.2.1. System Architecture -- 1.2.2. Mission Scenarios -- References -- Further Reading -- Chapter 2: Dynamics Modeling of the Space Tether -- 2.1. Dynamics Modeling and Solving Based on the Bead Model -- 2.2. Dynamics Modeling and solving Based on Ritz method -- 2.3. Dynamics Modeling and Solving Based on Hybrid Unit Method -- 2.4. Dynamics Modeling and Solving Based on Newton-Euler Method -- 2.5. Dynamics Modeling and Solving Based on Hamiltonian -- References -- Further Reading -- Chapter : Pose Measurement Based on Vision Perception -- 3.1. Measurement System Scheme -- 3.2. Target Contour Tracking -- 3.2.1. Related Works -- 3.2.2. Feature Extraction -- 3.2.2.1. Simulation Comparisons -- 3.2.2.2. Description of SURF -- 3.2.2.3. Improved SURF -- 3.2.3. Feature Matching Algorithm -- 3.2.3.1. Improved P-KLT Algorithm -- 3.2.3.2. Rejecting the Outliers -- 3.2.4. Precise Location and Adaptive Strategy -- 3.2.4.1. Precise Location of Object -- Discrete Point Filter -- Adaptive Features Updating Strategy -- 3.2.5. Results, Limitations and Future Works -- 3.2.5.1. Experiments Condition -- 3.2.5.2. Results -- Quantitative Comparisons -- Qualitative Analysis -- 3.3. Detection of ROI. , 3.3.1. Arc Support Region -- 3.3.2. Estimation of Circle Parameters -- 3.4. Visual Servoing and Pose Measurement -- 3.4.1. Theory of Calculating Azimuth Angles -- 3.4.2. Improved Template Matching -- 3.4.3. Least Square Integrated Predictor -- 3.4.4. Updating Strategy of Dynamic Template -- 3.4.5. Visual Servoing Controller -- 3.4.6. Experimental Validation -- 3.4.6.1. Experimental Set-up -- 3.4.6.2. Design of Experiments -- 3.4.6.3. Results and Discussions -- Qualitative Analysis -- Quantitative Comparisons -- References -- Chapter 4: Optimal Trajectory Tracking in Approaching -- 4.1. Trajectory Modeling in Approaching -- 4.2. Coordinated Control Method -- 4.2.1. Optimization and Distribution of the Orbit Control Force -- 4.2.2. Tether Reeling Model and Tethers Tension Force Controller -- 4.2.3. Fuzzy PD Controller for Tracking Optimal Trajectory -- 4.3. Attitude Stability Strategy -- 4.3.1. Design of the Attitude Controller -- 4.3.2. Stability Proof of the Attitude Controller -- 4.4. Numerical Simulation -- References -- Chapter 5: Approaching Control Based on a Distributed Tether Model -- 5.1. Dynamics Modeling of TSR -- 5.1.1. Dynamics Modeling Based on the Hamiltonian Theory -- 5.1.2. Mathematical Discretization -- 5.2. Optimal Coordinated Controller -- 5.2.1. Minimum-Fuel Problem -- 5.2.2. Hp-Adaptive Pseudospectral Method -- 5.2.3. Closed-Loop Controller -- 5.3. Numerical Simulation -- References -- Chapter 6: Approaching Control Based on a Movable Platform -- 6.1. Approach Dynamic Model -- 6.1.1. The Attitude Model -- 6.1.2. The Trajectory Model -- 6.2. Approach Control Strategy -- 6.2.1. Open-Loop Trajectory Optimization -- 6.2.2. Feedback Trajectory Control -- 6.2.3. Feedback Attitude Control -- 6.3. Numerical Simulation -- References -- Chapter 7: Approaching Control Based on a Tether Releasing Mechanism -- 7.1. Coupling Dynamic Models. , 7.1.1. Releasing Dynamic Model -- 7.1.2. Attitude Dynamic Model -- 7.1.3. Model of Tether Releasing Mechanism -- 7.1.4. Entire Coupled Dynamics Model -- 7.2. Coordinated Coupling Control Strategy -- 7.2.1. The Optimal Trajectory Planning -- 7.2.2. Coupled Coordinated Control Method -- 7.2.2.1. Thrusters Layout of Operation Robot -- 7.2.2.2. Coupled Coordinated Controller Design -- 7.3. Numerical Simulation -- References -- Chapter 8: Approaching Control Based on Mobile Tether Attachment Points -- 8.1. Orbit and Attitude Dynamic Model -- 8.1.1. Design of the Mechanism -- 8.1.2. Attitude Dynamics Model -- 8.1.3. Orbit Dynamic Model -- 8.1.4. Task Description of Attitude Control -- 8.2. Strategy Design of the Coordinated Controller -- 8.2.1. Attitude Coordinated Controller Design -- 8.2.1. Coordinated Tracking Controller Design -- 8.3. Numerical Simulation -- 8.3.1. Trajectory Planning with Constant Tether Tension -- 8.3.2. Simulation Results of the Coordinated Control -- References -- Chapter 9: Impact Dynamic Modeling and Adaptive Target Capture Control -- 9.1. Dynamic Modeling of Tethered Space Robots for Target Capture -- 9.1.1. Dynamic Modeling of the TSR -- 9.1.2. Dynamic Modeling of the Target -- 9.1.3. Impact Dynamic Models for the TSR Capturing a Target -- 9.2. Stabilization Controller Design for Target Capture by TSR -- 9.2.1. Impedance Control -- 9.2.2. Adaptive Robust Target Capture Control -- 9.3. Numerical Simulation -- References -- Chapter 10: Postcapture Attitude Control for a TSR-Target Combination System -- 10.1. Dynamics Model -- 10.1.1. Attitude Dynamics Model -- 10.1.2. Orbit Dynamic Model -- 10.1.3. Dynamic Analysis -- 10.2. Coordinated Control Strategies -- 10.2.1. Parameter Identification -- 10.2.2. Coordinated Controller of Tether and Thrusters -- 10.2.3. Thruster Controller Design. , 10.2.4. Switching Conditions and Parameter Optimization -- 10.3. Numerical Simulation -- References -- Conclusions -- Index -- Back Cover.
    Additional Edition: ISBN 0-12-812309-5
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    b3kat_BV046283284
    Format: 1 Online-Ressource (XII, 281 Seiten) , Illustrationen
    ISBN: 9789811503870
    Series Statement: Springer Tracts in Mechanical Engineering
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-150-386-3
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-150-388-7
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-150-389-4
    Language: English
    Subjects: Engineering
    RVK:
    Keywords: Raumfahrttechnik ; Fesselsatellit
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier Inc.,
    UID:
    almahu_9949865066802882
    Format: 1 online resource (473 pages)
    Edition: First edition.
    ISBN: 0-443-24745-5
    Note: Front Cover -- Attitude Takeover Control of Failed Spacecraft -- Copyright -- Contents -- List of figures -- List of tables -- Biographies -- Panfeng Huang -- Fan Zhang -- Yingbo Lu -- Haitao Chang -- Yizhai Zhang -- Preface -- 1 Introduction -- 1.1 Background of takeover control -- 1.2 Manners of takeover control -- 1.2.1 Rigid connection capturing -- 1.2.2 Flexible connection capturing -- 1.2.3 Cellular space robot capturing -- 1.3 Research contents and chapter arrangement -- References -- 1 Space manipulator takeover control -- 2 Trajectory prediction of space robot for capturing non-cooperative target -- 2.1 Introduction -- 2.2 Dynamic model -- 2.3 EFIR/DFT filter design -- 2.3.1 EFIR filter design -- 2.3.2 DFT filter design -- 2.4 Experiment realization and discussion -- References -- 3 Combined spacecraft stabilization control after multiple impacts during space robot capture of a tumbling target -- 3.1 Introduction -- 3.2 Attitude dynamics of the combined spacecraft and contact dynamics -- 3.2.1 Problem description -- 3.2.2 Attitude dynamics and kinematics -- 3.2.3 Contact detection algorithm and contact dynamics model -- 3.3 Stability control system design for combined spacecraft -- 3.3.1 Conventional sliding mode controller design -- 3.3.2 Improved sliding mode controller design -- 3.3.3 Control redistribution based on pseudo-inverse -- 3.4 Numerical simulations and experiments -- References -- 4 Attitude takeover control of a failed spacecraft without parameter uncertainties -- 4.1 Introduction -- 4.2 Attitude stability takeover control of target spacecraft based on reconstruction of a reaction wheel control system -- 4.2.1 Attitude error dynamics of the combined spacecraft -- 4.2.1.1 Problem description -- 4.2.1.2 Attitude dynamics of the combined spacecraft -- 4.2.1.3 Attitude error dynamics of the combined spacecraft. , 4.2.2 Reconfigurable control system design for the combined spacecraft -- 4.2.2.1 Classic SDRE optimal controller design -- 4.2.2.2 Modified SDRE optimal controller design based α stability -- 4.2.2.3 Suboptimal control solving technique -- 4.2.3 Control re-allocation based on dynamic control allocation -- 4.2.3.1 Reconfiguration of reaction wheels -- 4.2.3.2 Control re-allocation based on dynamic control allocation method -- 4.2.4 Numerical simulations -- 4.3 Attitude coordinated control for docked spacecraft based on the estimated coupling torque of the space manipulator -- 4.3.1 Attitude error dynamics of docked spacecraft -- 4.3.1.1 Problem description -- 4.3.1.2 Kinematics of space manipulator -- 4.3.1.3 Attitude dynamics of a docked spacecraft -- 4.3.1.4 Attitude error dynamics of a docked spacecraft -- 4.3.2 Coordinated planning of a docked spacecraft attitude and a space manipulator -- 4.3.2.1 Constraints -- 4.3.2.2 Objective function -- 4.3.2.3 Parameterization -- 4.3.2.4 CPSO algorithm -- 4.3.3 Coordinated control of a docked spacecraft attitude and a space manipulator -- 4.3.3.1 Trajectory tracking control of a space manipulator -- 4.3.3.2 Coordinated control based on an estimated coupling torque -- 4.3.4 Numerical simulations -- References -- 5 Reconfigurable spacecraft attitude takeover control in post-capture of a target by space manipulators -- 5.1 Introduction -- 5.2 Model of the combined spacecraft -- 5.2.1 Problem description -- 5.2.2 Kinematics of a space manipulator -- 5.2.3 Kinematics of the combined spacecraft -- 5.2.4 Dynamics of the combined spacecraft -- 5.3 Reconfigurable control of the combined spacecraft -- 5.3.1 Adaptive dynamic inverse control of the combined spacecraft -- 5.3.2 Modified adaptive dynamic inverse control of the combined spacecraft -- 5.4 Control reallocation of the combined spacecraft. , 5.4.1 Reconfiguration of a thruster -- 5.4.2 Control reallocation based on null-space intersections -- 5.5 Numerical simulation -- References -- 6 Attitude takeover control of a failed spacecraft with parameter uncertainties -- 6.1 Introduction -- 6.2 Model of the combined spacecraft -- 6.2.1 Dynamics model of the combined spacecraft -- 6.2.2 Dynamics model of the combined spacecraft with parameter uncertainties -- 6.3 Command filtering adaptive back-stepping reconfigurable control -- 6.3.1 Command filter -- 6.3.2 Command filtering adaptive back-stepping control -- 6.3.2.1 Step 1 -- 6.3.2.2 Step 2 -- 6.3.2.3 Step 3 -- 6.3.3 Projection operator -- 6.4 Control allocation of the combined spacecraft -- 6.5 Numerical simulations -- References -- 2 Tethered space robot takeover control -- 7 Adaptive control for space debris removal with uncertain kinematics, dynamics, and states -- 7.1 Introduction -- 7.2 Kinematics and dynamics -- 7.2.1 System design and mission scenario -- 7.2.1.1 System design -- 7.2.1.2 Mission scenario -- 7.2.2 Mathematical model description -- 7.2.2.1 System configuration -- 7.2.2.2 Dynamics derivation -- 7.2.3 Kinematics and dynamics -- 7.3 Adaptive control scheme -- 7.3.1 Formulation of the problem -- 7.3.2 Adaptive controller -- 7.3.3 Modification of the adaptive controller -- 7.3.4 Discussion -- 7.3.4.1 Implementation aspects -- 7.3.4.2 Controller performances -- 7.4 Numerical simulations -- 7.4.1 Simplification of the dynamics -- 7.4.2 Simulation results -- References -- 8 Adaptive neural network dynamic surface control of the post-capture tethered system with full state constraints -- 8.1 Mathematical model and problem formulation -- 8.2 Controller design -- 8.2.1 Adaptive neural network dynamic surface controller design -- 8.2.2 Stability analysis -- 8.3 Numerical simulations -- References. , 9 Adaptive prescribed performance control for the post-capture tethered combination via the dynamic surface technique -- 9.1 Dynamic modeling -- 9.1.1 Dynamics of the post-capture tethered combination considering modeling uncertainty -- 9.1.2 Dynamics of the post-capture tethered combination considering modeling and measurement uncertainty -- 9.2 Control system design and stability analysis -- 9.2.1 Desired state analysis -- 9.2.2 Controller design -- 9.2.2.1 Step 1 -- 9.2.2.2 Step 2 -- 9.2.2.3 Step 3 -- 9.2.3 Stability analysis -- 9.3 Numerical simulations -- References -- 10 An energy-based saturated controller for the post-capture underactuated tethered system -- 10.1 Introduction -- 10.2 Dynamic model of the post-capture underactuated tethered system -- 10.3 Controller design and stability analysis -- 10.3.1 Equilibrium point analysis -- 10.3.2 Energy-based controller design and stability analysis -- 10.3.2.1 Control law design -- 10.3.2.2 Stability analysis -- 10.3.3 Energy-based saturated controller design and stability analysis -- 10.3.3.1 Control law design -- 10.3.3.2 Stability analysis -- 10.4 Numerical simulations -- References -- 11 Capture dynamics and net closing control for a tethered space net robot -- 11.1 Introduction -- 11.2 Dynamics model -- 11.3 Contact dynamic model -- 11.3.1 Contact detection -- 11.3.2 Normal contact force -- 11.4 Capture simulation and analysis -- 11.4.1 Capture simulation results -- 11.4.2 Criteria of a successful net capture -- 11.4.3 Capture analysis -- 11.5 Net closing control scheme -- 11.5.1 Statement of problem -- 11.5.2 Sliding mode control law -- 11.5.3 Non-homogeneous disturbance observer design -- 11.5.4 Numerical simulations -- References -- 12 Impulsive super-twisting sliding mode control for space debris capturing via a tethered space net robot -- 12.1 Introduction -- 12.2 System description. , 12.3 Preliminaries -- 12.3.1 Impulsive control -- 12.3.2 Adaptive super-twisting SMC -- 12.4 Design of control scheme -- 12.4.1 Problem statement -- 12.4.2 Control scheme design -- 12.4.3 Control scheme with approximation of the delta function -- 12.4.4 IASTW control scheme design for the TSNR -- 12.5 Numerical simulations -- 12.5.1 Natural capturing case -- 12.5.2 Controlled capture case -- References -- 3 Cellular space robot takeover control -- 13 A self-reconfiguration planning strategy for cellular satellites -- 13.1 System description -- 13.2 Design of assembling cell -- 13.3 Design of self-reconfiguration planning algorithm -- 13.3.1 Overall algorithm description -- 13.3.2 Task planning -- 13.3.3 Path planning -- 13.3.4 Joint planning -- 13.4 Numerical simulations -- References -- 14 Reinforcement-learning-based task planning for self-reconfiguration of a cellular space robot -- 14.1 System description -- 14.2 Mathematical preparation -- 14.2.1 Configuration description of the self-reconfiguration for a cellular space robot -- 14.2.2 Similarity evaluation of two configurations -- 14.2.3 Legal action set for cell move -- 14.2.4 Complexity analysis of legal action set -- 14.3 Proposed reinforcement learning-based task planning -- 14.3.1 Overall diagram of the proposed task planning -- 14.3.2 Monte Carlo tree search -- 14.4 Validations and discussions -- References -- 15 Interactive inertial parameters identification for spacecraft takeover control using a cellular space robot -- 15.1 Modeling and formulation -- 15.1.1 Dynamic model -- 15.1.2 Formulation for mass identification -- 15.1.3 Formulation for inertial tensor identification -- 15.2 Interactive model identification method -- 15.3 Numerical simulation -- 15.3.1 Simulation results -- 15.3.2 Analysis and discussion -- References. , 16 Spacecraft attitude takeover control via a cellular space robot with distributed control allocation.
    Additional Edition: ISBN 0-443-24744-7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    London, England :Academic Press,
    UID:
    edoccha_9961089665502883
    Format: 1 online resource (311 pages) : , color illustrations, photographs
    ISBN: 0-12-812310-9
    Note: Front Cover -- Tethered Space Robot: Dynamics, Measurement, and Control -- Copyright -- Contents -- Chapter 1: Introduction -- 1.1. Background -- 1.1.1. Brief History of the Space Tentacles -- 1.1.2. Brief History of the Space Manipulator -- 1.1.3. Brief History of the Space Tether -- 1.1.3.1. Single Space Tether -- Artificial Gravity -- Orbital Transfer -- Attitude Stabilization -- 1.1.3.2. Multi-Space Tethers -- Dynamics and Control -- Attitude Control -- Structure and Configuration -- 1.1.4. Brief History of the TSR -- 1.1.4.1. Releasing/Retrieving Phase -- 1.1.4.2. Capture and Post-Capture Phase -- 1.1.4.3. Deorbiting Phase -- 1.2. System and Mission Design of TSR -- 1.2.1. System Architecture -- 1.2.2. Mission Scenarios -- References -- Further Reading -- Chapter 2: Dynamics Modeling of the Space Tether -- 2.1. Dynamics Modeling and Solving Based on the Bead Model -- 2.2. Dynamics Modeling and solving Based on Ritz method -- 2.3. Dynamics Modeling and Solving Based on Hybrid Unit Method -- 2.4. Dynamics Modeling and Solving Based on Newton-Euler Method -- 2.5. Dynamics Modeling and Solving Based on Hamiltonian -- References -- Further Reading -- Chapter : Pose Measurement Based on Vision Perception -- 3.1. Measurement System Scheme -- 3.2. Target Contour Tracking -- 3.2.1. Related Works -- 3.2.2. Feature Extraction -- 3.2.2.1. Simulation Comparisons -- 3.2.2.2. Description of SURF -- 3.2.2.3. Improved SURF -- 3.2.3. Feature Matching Algorithm -- 3.2.3.1. Improved P-KLT Algorithm -- 3.2.3.2. Rejecting the Outliers -- 3.2.4. Precise Location and Adaptive Strategy -- 3.2.4.1. Precise Location of Object -- Discrete Point Filter -- Adaptive Features Updating Strategy -- 3.2.5. Results, Limitations and Future Works -- 3.2.5.1. Experiments Condition -- 3.2.5.2. Results -- Quantitative Comparisons -- Qualitative Analysis -- 3.3. Detection of ROI. , 3.3.1. Arc Support Region -- 3.3.2. Estimation of Circle Parameters -- 3.4. Visual Servoing and Pose Measurement -- 3.4.1. Theory of Calculating Azimuth Angles -- 3.4.2. Improved Template Matching -- 3.4.3. Least Square Integrated Predictor -- 3.4.4. Updating Strategy of Dynamic Template -- 3.4.5. Visual Servoing Controller -- 3.4.6. Experimental Validation -- 3.4.6.1. Experimental Set-up -- 3.4.6.2. Design of Experiments -- 3.4.6.3. Results and Discussions -- Qualitative Analysis -- Quantitative Comparisons -- References -- Chapter 4: Optimal Trajectory Tracking in Approaching -- 4.1. Trajectory Modeling in Approaching -- 4.2. Coordinated Control Method -- 4.2.1. Optimization and Distribution of the Orbit Control Force -- 4.2.2. Tether Reeling Model and Tethers Tension Force Controller -- 4.2.3. Fuzzy PD Controller for Tracking Optimal Trajectory -- 4.3. Attitude Stability Strategy -- 4.3.1. Design of the Attitude Controller -- 4.3.2. Stability Proof of the Attitude Controller -- 4.4. Numerical Simulation -- References -- Chapter 5: Approaching Control Based on a Distributed Tether Model -- 5.1. Dynamics Modeling of TSR -- 5.1.1. Dynamics Modeling Based on the Hamiltonian Theory -- 5.1.2. Mathematical Discretization -- 5.2. Optimal Coordinated Controller -- 5.2.1. Minimum-Fuel Problem -- 5.2.2. Hp-Adaptive Pseudospectral Method -- 5.2.3. Closed-Loop Controller -- 5.3. Numerical Simulation -- References -- Chapter 6: Approaching Control Based on a Movable Platform -- 6.1. Approach Dynamic Model -- 6.1.1. The Attitude Model -- 6.1.2. The Trajectory Model -- 6.2. Approach Control Strategy -- 6.2.1. Open-Loop Trajectory Optimization -- 6.2.2. Feedback Trajectory Control -- 6.2.3. Feedback Attitude Control -- 6.3. Numerical Simulation -- References -- Chapter 7: Approaching Control Based on a Tether Releasing Mechanism -- 7.1. Coupling Dynamic Models. , 7.1.1. Releasing Dynamic Model -- 7.1.2. Attitude Dynamic Model -- 7.1.3. Model of Tether Releasing Mechanism -- 7.1.4. Entire Coupled Dynamics Model -- 7.2. Coordinated Coupling Control Strategy -- 7.2.1. The Optimal Trajectory Planning -- 7.2.2. Coupled Coordinated Control Method -- 7.2.2.1. Thrusters Layout of Operation Robot -- 7.2.2.2. Coupled Coordinated Controller Design -- 7.3. Numerical Simulation -- References -- Chapter 8: Approaching Control Based on Mobile Tether Attachment Points -- 8.1. Orbit and Attitude Dynamic Model -- 8.1.1. Design of the Mechanism -- 8.1.2. Attitude Dynamics Model -- 8.1.3. Orbit Dynamic Model -- 8.1.4. Task Description of Attitude Control -- 8.2. Strategy Design of the Coordinated Controller -- 8.2.1. Attitude Coordinated Controller Design -- 8.2.1. Coordinated Tracking Controller Design -- 8.3. Numerical Simulation -- 8.3.1. Trajectory Planning with Constant Tether Tension -- 8.3.2. Simulation Results of the Coordinated Control -- References -- Chapter 9: Impact Dynamic Modeling and Adaptive Target Capture Control -- 9.1. Dynamic Modeling of Tethered Space Robots for Target Capture -- 9.1.1. Dynamic Modeling of the TSR -- 9.1.2. Dynamic Modeling of the Target -- 9.1.3. Impact Dynamic Models for the TSR Capturing a Target -- 9.2. Stabilization Controller Design for Target Capture by TSR -- 9.2.1. Impedance Control -- 9.2.2. Adaptive Robust Target Capture Control -- 9.3. Numerical Simulation -- References -- Chapter 10: Postcapture Attitude Control for a TSR-Target Combination System -- 10.1. Dynamics Model -- 10.1.1. Attitude Dynamics Model -- 10.1.2. Orbit Dynamic Model -- 10.1.3. Dynamic Analysis -- 10.2. Coordinated Control Strategies -- 10.2.1. Parameter Identification -- 10.2.2. Coordinated Controller of Tether and Thrusters -- 10.2.3. Thruster Controller Design. , 10.2.4. Switching Conditions and Parameter Optimization -- 10.3. Numerical Simulation -- References -- Conclusions -- Index -- Back Cover.
    Additional Edition: ISBN 0-12-812309-5
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    London, England :Academic Press,
    UID:
    edocfu_9961089665502883
    Format: 1 online resource (311 pages) : , color illustrations, photographs
    ISBN: 0-12-812310-9
    Note: Front Cover -- Tethered Space Robot: Dynamics, Measurement, and Control -- Copyright -- Contents -- Chapter 1: Introduction -- 1.1. Background -- 1.1.1. Brief History of the Space Tentacles -- 1.1.2. Brief History of the Space Manipulator -- 1.1.3. Brief History of the Space Tether -- 1.1.3.1. Single Space Tether -- Artificial Gravity -- Orbital Transfer -- Attitude Stabilization -- 1.1.3.2. Multi-Space Tethers -- Dynamics and Control -- Attitude Control -- Structure and Configuration -- 1.1.4. Brief History of the TSR -- 1.1.4.1. Releasing/Retrieving Phase -- 1.1.4.2. Capture and Post-Capture Phase -- 1.1.4.3. Deorbiting Phase -- 1.2. System and Mission Design of TSR -- 1.2.1. System Architecture -- 1.2.2. Mission Scenarios -- References -- Further Reading -- Chapter 2: Dynamics Modeling of the Space Tether -- 2.1. Dynamics Modeling and Solving Based on the Bead Model -- 2.2. Dynamics Modeling and solving Based on Ritz method -- 2.3. Dynamics Modeling and Solving Based on Hybrid Unit Method -- 2.4. Dynamics Modeling and Solving Based on Newton-Euler Method -- 2.5. Dynamics Modeling and Solving Based on Hamiltonian -- References -- Further Reading -- Chapter : Pose Measurement Based on Vision Perception -- 3.1. Measurement System Scheme -- 3.2. Target Contour Tracking -- 3.2.1. Related Works -- 3.2.2. Feature Extraction -- 3.2.2.1. Simulation Comparisons -- 3.2.2.2. Description of SURF -- 3.2.2.3. Improved SURF -- 3.2.3. Feature Matching Algorithm -- 3.2.3.1. Improved P-KLT Algorithm -- 3.2.3.2. Rejecting the Outliers -- 3.2.4. Precise Location and Adaptive Strategy -- 3.2.4.1. Precise Location of Object -- Discrete Point Filter -- Adaptive Features Updating Strategy -- 3.2.5. Results, Limitations and Future Works -- 3.2.5.1. Experiments Condition -- 3.2.5.2. Results -- Quantitative Comparisons -- Qualitative Analysis -- 3.3. Detection of ROI. , 3.3.1. Arc Support Region -- 3.3.2. Estimation of Circle Parameters -- 3.4. Visual Servoing and Pose Measurement -- 3.4.1. Theory of Calculating Azimuth Angles -- 3.4.2. Improved Template Matching -- 3.4.3. Least Square Integrated Predictor -- 3.4.4. Updating Strategy of Dynamic Template -- 3.4.5. Visual Servoing Controller -- 3.4.6. Experimental Validation -- 3.4.6.1. Experimental Set-up -- 3.4.6.2. Design of Experiments -- 3.4.6.3. Results and Discussions -- Qualitative Analysis -- Quantitative Comparisons -- References -- Chapter 4: Optimal Trajectory Tracking in Approaching -- 4.1. Trajectory Modeling in Approaching -- 4.2. Coordinated Control Method -- 4.2.1. Optimization and Distribution of the Orbit Control Force -- 4.2.2. Tether Reeling Model and Tethers Tension Force Controller -- 4.2.3. Fuzzy PD Controller for Tracking Optimal Trajectory -- 4.3. Attitude Stability Strategy -- 4.3.1. Design of the Attitude Controller -- 4.3.2. Stability Proof of the Attitude Controller -- 4.4. Numerical Simulation -- References -- Chapter 5: Approaching Control Based on a Distributed Tether Model -- 5.1. Dynamics Modeling of TSR -- 5.1.1. Dynamics Modeling Based on the Hamiltonian Theory -- 5.1.2. Mathematical Discretization -- 5.2. Optimal Coordinated Controller -- 5.2.1. Minimum-Fuel Problem -- 5.2.2. Hp-Adaptive Pseudospectral Method -- 5.2.3. Closed-Loop Controller -- 5.3. Numerical Simulation -- References -- Chapter 6: Approaching Control Based on a Movable Platform -- 6.1. Approach Dynamic Model -- 6.1.1. The Attitude Model -- 6.1.2. The Trajectory Model -- 6.2. Approach Control Strategy -- 6.2.1. Open-Loop Trajectory Optimization -- 6.2.2. Feedback Trajectory Control -- 6.2.3. Feedback Attitude Control -- 6.3. Numerical Simulation -- References -- Chapter 7: Approaching Control Based on a Tether Releasing Mechanism -- 7.1. Coupling Dynamic Models. , 7.1.1. Releasing Dynamic Model -- 7.1.2. Attitude Dynamic Model -- 7.1.3. Model of Tether Releasing Mechanism -- 7.1.4. Entire Coupled Dynamics Model -- 7.2. Coordinated Coupling Control Strategy -- 7.2.1. The Optimal Trajectory Planning -- 7.2.2. Coupled Coordinated Control Method -- 7.2.2.1. Thrusters Layout of Operation Robot -- 7.2.2.2. Coupled Coordinated Controller Design -- 7.3. Numerical Simulation -- References -- Chapter 8: Approaching Control Based on Mobile Tether Attachment Points -- 8.1. Orbit and Attitude Dynamic Model -- 8.1.1. Design of the Mechanism -- 8.1.2. Attitude Dynamics Model -- 8.1.3. Orbit Dynamic Model -- 8.1.4. Task Description of Attitude Control -- 8.2. Strategy Design of the Coordinated Controller -- 8.2.1. Attitude Coordinated Controller Design -- 8.2.1. Coordinated Tracking Controller Design -- 8.3. Numerical Simulation -- 8.3.1. Trajectory Planning with Constant Tether Tension -- 8.3.2. Simulation Results of the Coordinated Control -- References -- Chapter 9: Impact Dynamic Modeling and Adaptive Target Capture Control -- 9.1. Dynamic Modeling of Tethered Space Robots for Target Capture -- 9.1.1. Dynamic Modeling of the TSR -- 9.1.2. Dynamic Modeling of the Target -- 9.1.3. Impact Dynamic Models for the TSR Capturing a Target -- 9.2. Stabilization Controller Design for Target Capture by TSR -- 9.2.1. Impedance Control -- 9.2.2. Adaptive Robust Target Capture Control -- 9.3. Numerical Simulation -- References -- Chapter 10: Postcapture Attitude Control for a TSR-Target Combination System -- 10.1. Dynamics Model -- 10.1.1. Attitude Dynamics Model -- 10.1.2. Orbit Dynamic Model -- 10.1.3. Dynamic Analysis -- 10.2. Coordinated Control Strategies -- 10.2.1. Parameter Identification -- 10.2.2. Coordinated Controller of Tether and Thrusters -- 10.2.3. Thruster Controller Design. , 10.2.4. Switching Conditions and Parameter Optimization -- 10.3. Numerical Simulation -- References -- Conclusions -- Index -- Back Cover.
    Additional Edition: ISBN 0-12-812309-5
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    b3kat_BV044918558
    Format: 1 Online-Ressource , Illustrationen
    ISBN: 9780128123102
    Note: Includes bibliographical references and index
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-812309-6
    Language: English
    Subjects: Engineering
    RVK:
    Keywords: Weltraum ; Roboter ; Seil
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages