feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Access
  • 1
    Online Resource
    Online Resource
    Berlin : Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät
    UID:
    edochu_18452_4519
    Format: 1 Online-Ressource (33 Seiten)
    ISSN: 1860-5664
    Series Statement: 2005,1
    Content: In this paper we propose the GHADA risk management model that is based on the generalized hyperbolic (GH) distribution and on a nonparametric adaptive methodology. Compared to the normal distribution, the GH distribution possesses semi-heavy tails and represents the financial risk factors more appropriately. The nonparametric adaptive methodology has the desirable property of estimating homogeneous volatility in a short time interval. For DEM/USD exchange rate data and a German bank portfolio data the proposed GHADA model provides more accurate value at risk calculation than the traditional model based on the normal distribution. All calculations and simulations are done with XploRe.
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Berlin : Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät
    UID:
    edochu_18452_4531
    Format: 1 Online-Ressource (18 Seiten)
    ISSN: 1860-5664
    Series Statement: 2005,13
    Content: How can we measure and compare the relative performance of production units? If input and output variables are one dimensional, then the simplest way is to compute efficiency by calculating and comparing the ratio of output and input for each production unit. This idea is inappropriate though, when multiple inputs or multiple outputs are observed. Consider a bank, for example, with three branches A, B, and C. The branches take the number of staff as the input, and measures outputs such as the number of transactions on personal and business accounts. Assume that the following statistics are observed: Branch A: 60000 personal transactions, 50000 business transactions, 25 people on staff, Branch B: 50000 personal transactions, 25000 business transactions, 15 people on staff, Branch C: 45000 personal transactions, 15000 business transactions, 10 people on staff. We observe that Branch C performed best in terms of personal transactions per staff, whereas Branch A has the highest ratio of business transactions per staff. By contrast Branch B performed better than Branch A in terms of personal transactions per staff, and better than Branch C in terms of business transactions per staff. How can we compare these business units in a fair way? Moreover, can we possibly create a virtual branch that reflects the input/output mechanism and thus creates a scale for the real branches? Productivity analysis provides a systematic approach to these problems. We review the basic concepts of productivity analysis and two popular methods DEA and FDH, which are given in Sections 12.1 and 12.2, respectively. Sections 12.3 and 12.4 contain illustrative examples with real data.
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almahu_BV025522013
    Format: 1 Online-Ressource (33 S.) : , graph. Darst.
    Series Statement: SFB 649 discussion paper 2005,1
    Language: German
    Author information: Härdle, Wolfgang, 1953-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages