feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    almahu_9948026530002882
    Format: 1 online resource (477 pages).
    ISBN: 0-12-813354-6 , 0-12-813353-8
    Series Statement: Micro & nano technologies
    Content: "Nanoelectronics: Devices, Circuits and Systems explores current and emerging trends in the field of nanoelectronics, from both a devices-to-circuits and circuits-to-systems perspective. It covers a wide spectrum and detailed discussion on the field of nanoelectronic devices, circuits and systems. This book presents an in-depth analysis and description of electron transport phenomenon at nanoscale dimensions. Both qualitative and analytical approaches are taken to explore the devices, circuit functionalities and their system applications at deep submicron and nanoscale levels. Recent devices, including FinFET, Tunnel FET, and emerging materials, including graphene, and its applications are discussed. In addition, a chapter on advanced VLSI interconnects gives clear insight to the importance of these nano-transmission lines in determining the overall IC performance. The importance of integration of optics with electronics is elucidated in the optoelectronics and photonic integrated circuit sections of this book. This book provides valuable resource materials for scientists and electrical engineers who want to learn more about nanoscale electronic materials and how they are used."--
    Note: Front Cover -- Nanoelectronics -- Copyright Page -- Dedication -- Contents -- List of Contributors -- About the Author -- Preface -- Acknowledgments -- I. Device Modeling and Applications -- 1 Tunnel FET: Devices and Circuits -- 1.1 CMOS Power Trends -- 1.2 Tunneling Phenomena -- 1.2.1 Kane's Formulation -- 1.2.2 WKB Approximation -- 1.3 Tunneling Field-Effect Transistors -- 1.3.1 Current-Voltage Characteristics -- 1.3.2 Capacitance-Voltage Characteristics -- 1.4 Challenges for TFETs -- 1.4.1 ON Current Performance Boosters -- 1.4.1.1 High-k gate dielectric -- 1.4.1.2 Area scaled devices -- 1.4.1.3 III-V HTFETs -- 1.4.2 Ambipolarity -- 1.5 TFET Characteristics and Impact on the Circuit Design -- 1.5.1 Unidirectional Conduction -- 1.5.2 Enhanced ON-State Miller Capacitance -- 1.6 Tunnel FET SRAM Design -- 1.6.1 6T TFET SRAM Cell -- 1.6.2 8T TFET SRAM Cell -- 1.7 TFET Analog/RF Application -- 1.7.1 Transconductance Generation Factor (gm/IDS) -- 1.7.2 Linearity Performance -- 1.8 TFET-Based OTA -- 1.9 Summary -- Acknowledgment -- References -- 2 Electrothermal Characterization, TCAD Simulations, and Physical Modeling of Advanced SiGe HBTs -- 2.1 SiGe HBT Technologies and Their Thermal Issues -- 2.1.1 THz Waves and Applications -- 2.1.2 SiGe BiCMOS Technologies -- 2.1.3 Thermal Issues in SiGe HBT Technology Nodes -- 2.2 Device Characterization in SiGe HBT Technologies -- 2.2.1 Modeling of Device Self-heating in HiCuM -- 2.2.2 Self-heating Effect on the Device DC and AC Characteristics -- 2.2.3 Extraction of the Rth -- 2.2.4 Extraction of the Zth -- 2.2.4.1 Theoretical formulation -- 2.2.5 Recursive Thermal Network Models -- 2.2.6 Behavior of the Transistor Under Two Tones Excitation -- 2.3 Electrothermal Impact of the BEOL Metallization in SiGe HBTs -- 2.3.1 Electrothermal Characterization of Dedicated HBT Test Structures. , 2.3.1.1 DC electrical characterization -- 2.3.1.2 Thermal characterization -- 2.3.1.3 Small signal RF characterization -- 2.3.1.4 Large signal RF measurements -- 2.3.2 Compact Modeling of the BEOL Thermal Impact -- 2.3.2.1 Thermal modeling of the BEOL metallization -- 2.3.2.2 DC electrical characterization -- 2.3.2.3 Low-frequency measurements -- 2.3.2.4 Pulsed measurements -- 2.3.2.5 Large-signal two-tones simulations -- 2.3.3 Static and Dynamic 3D TCAD Thermal Simulations -- 2.3.3.1 Thermal parameters and doping dependence -- 2.3.3.2 Static thermal analysis and 3D simulations -- 2.3.3.3 Dynamic thermal analysis and 3D simulations -- References -- 3 InP-Based High-Electron-Mobility Transistors for High-Frequency Applications -- 3.1 History and Background of HEMT -- 3.2 Applications -- 3.3 Working Principle -- 3.3.1 Two-Dimensional Electron Gas in HEMT -- 3.4 Materials and its Properties-(InP/GaAs) -- 3.5 General Structure of Inp HEMT -- 3.6 DC and Microwave Characteristics of HEMT -- 3.7 Drain Current Characteristics -- 3.8 Subthreshold and Gate Leakage Characteristics -- 3.9 Measurement of DC and RF Performance of the Device -- 3.10 Transconductance Characteristics -- 3.11 Drain Current Characteristics -- 3.12 Subthreshold and Gate Leakage Characteristics -- 3.13 Future Scope -- References -- Further Reading -- 4 Organic Transistor- Device Structure, Model and Applications -- 4.1 Organic Electronics: Low-Cost, Large-Area, and Flexible -- 4.2 Field-Effect Transistors Structure -- 4.3 Field-Effect Transistors Characterization -- 4.4 Organic Semiconductors Selection -- 4.5 Interfacial Engineering in Field-Effect Transistors -- 4.5.1 Changes in Surface Energy as a Result of SAM Treatment -- 4.5.2 Work Function Shift -- 4.5.3 Contact Resistance -- References -- Further Reading -- II. Spintronics. , 5 Mitigating Read Disturbance Errors in STT-RAM Caches by Using Data Compression -- 5.1 Introduction -- 5.2 Background -- 5.2.1 Motivation for Using Nonvolatile Memories -- 5.2.2 Working of STT-RAM -- 5.2.3 Origin of Read Disturbance Error -- 5.2.4 Characteristics of Read Disturbance Error -- 5.2.5 Strategies for Addressing RDE -- 5.2.6 Cache Properties -- 5.3 SHIELD: Key Idea and Architecture -- 5.3.1 Compression Algorithm -- 5.3.2 Defining Consecutive Reads -- 5.3.3 SHIELD: Key Idea -- 5.3.4 Action on Read and Write Operations -- 5.3.5 Overhead Assessment -- 5.4 Salient Features of SHIELD and Qualitative Comparison -- 5.5 Experimentation Platform -- 5.5.1 Simulator Parameters -- 5.5.2 Workloads -- 5.5.3 Simulation Completion Strategy -- 5.5.4 Comparison with Related Schemes -- 5.5.5 Evaluation Metrics -- 5.6 Results and Analysis -- 5.6.1 Main Results -- 5.6.2 Parameter Sensitivity Results -- 5.7 Conclusion and Future Work -- References -- 6 Multi-Functionality of Spintronic Materials -- 6.1 Introduction-What Is Spintronics? -- 6.1.1 Spintronics Based on Multiferroics -- 6.1.2 Spintronics Based on DMSs -- 6.2 Methods of Synthesis of the Spintronic Materials -- 6.2.1 Synthesis of Multiferroics -- 6.2.1.1 Sol-gel method -- 6.2.1.2 Chemical combustion -- 6.2.1.3 Hydrothermal method -- 6.2.1.4 Metallo-organic decomposition synthesis -- 6.2.1.5 Spark plasma sintering -- 6.2.1.6 Conventional solid-state reaction -- 6.2.1.7 Pulsed laser deposition -- 6.2.1.8 Electrospray method -- 6.2.1.9 Sol-gel precipitation -- 6.2.1.10 RF sputtering -- 6.2.2 Synthesis of DMSs -- 6.2.2.1 Thermal evaporation method -- 6.2.2.2 Chemical vapor deposition -- 6.2.2.3 Sol-gel spin-coating technique -- 6.2.2.4 Spray pyrolysis technique -- 6.3 Spintronics Based on BTO Multiferroic Systems -- 6.3.1 Perovskite (ABO3) Multiferroics -- 6.3.2 Single-Phase Multiferroic BTO Systems. , 6.3.2.1 Structure and phase transition of doped BTO -- 6.3.2.1.1 X-ray diffraction of Ce-, La-substituted BaFe0.01Ti0.99O3 nanostructures -- 6.3.2.2 Induction of multiferroicity of the BTO with doping -- 6.3.2.2.1 TM impurity in BTO -- 6.3.2.2.2 Low doping level of Fe impurity ions in BTO influence multiferroicity -- 6.3.2.2.3 Tetragonal distortion by splitting/shifting of (200) XRD peak of BTO with TM ions -- 6.3.2.2.4 Rare earth ions impurity in multiferroic BTO -- 6.3.2.3 Multiferroic nanostructures -- 6.3.2.3.1 Zero-dimensional nanostructures -- 6.3.2.3.2 One-dimensional nanostructures -- 6.3.2.3.3 Two-dimensional nanostructures -- 6.3.2.3.4 Three-dimensional nanostructures -- 6.3.2.3.5 Grain-size-dependent ME coupling of BTO nanoparticles -- 6.3.2.3.6 Physical significance of BTO multiferroic nanostructures -- 6.3.2.4 Raman measurement of BTO: lattice structure, defects/vacancies evaluation -- 6.3.2.5 Magnetism in BTO with doping -- 6.3.2.5.1 Magnetic ordering near ferroelectric transition in BTO:Fe113 ppm system -- 6.3.2.6 Ferroelectricity in BTO with doping -- 6.3.2.6.1 Ferroelectricity induced by lone-pair electrons -- 6.3.2.6.2 Ferroelectricity due to charge ordering -- 6.3.2.6.3 Multiferroicity due to DM interaction -- 6.3.2.7 ME response due to an anomaly in phase transition temperatures -- 6.3.2.8 Magnetocapacitance -- 6.3.3 Multiferroic Composites -- 6.3.3.1 MFe2O4/BaTiO3 (M=Mn, Co, Ni, Zn) nanocomposites -- 6.3.3.2 Multiferroic NiFe2O4/BaTiO3 nanostructures -- 6.3.4 Multiferroic Thin Films -- 6.3.4.1 Nanostructural MFe2O4/BaTiO3 (M=Mn, Co, Ni, Zn) thin films -- 6.3.4.2 ME coupling due to magnetic control of ferroelectric polarization -- 6.3.4.3 Dynamic ME coupling measurement for MFe2O4/BaTiO3 thin films -- 6.4 Spintronics Based on Diluted Magnetic Semiconductor, DMS ZnO -- 6.4.1 TM Ions Impurity in DMS ZnO. , 6.4.2 RE Ions Impurity in DMS ZnO -- 6.4.3 Defects-Assisted Ferromagnetism Due to TM and RE Ions in ZnO -- 6.4.3.1 BMP in Co-substituted ZnO -- 6.4.4 First-Principle Calculations for RE and TM Ions in the Wurtzite ZnO Structure -- 6.4.5 Influence of Dopant Concentration (TM and RE ions) on Ferromagnetism of ZnO -- 6.4.6 Realizing Wurtzite Structure of ZnO With Dopant Ions -- 6.4.6.1 XRD studies of ZnO nanoparticles with La and Fe doping -- 6.4.6.2 Calculation for lattice constants and bond length of La-, Gd-, Co-doped ZnO -- 6.4.7 Nanostructural Formation in Pure and Doped DMS ZnO -- 6.4.7.1 Nanostructural growth of ZnO with Fe, Co, Ce substitution -- 6.4.8 Raman Spectra for Ni-, Cu-, Ce-Substituted ZnO Nanoparticles -- 6.4.9 Photoluminescence Spectra Evaluated Defects in Co:ZnO Nanoparticles -- 6.4.10 Magnetism in DMS ZnO -- 6.4.10.1 RTFM in Co, Fe, ZnO nanorods -- 6.4.10.2 Origin of RTFM in Ni:ZnO nanostructure -- 6.4.10.3 Lattice defects influenced ferromagnetic ordering of ZnO by Cu and Ce ions -- 6.4.10.4 The ac susceptibility SQUID measurement of Co,Fe,Ce:ZnO nanoparticles -- 6.4.10.5 Vacancies induce ferromagnetism of pure and doped ZnO -- 6.4.10.5.1 XPS spectra for Zn 2p, Co 2p and O 1s for Co:ZnO nanoparticles -- 6.4.10.5.2 Valence states of RE La, Gd ions influence ferromagnetism of ZnO nanoparticles -- 6.4.10.6 RTFM of DMS ZnO influenced with nanostructural formation -- 6.5 Conclusion -- Acknowledgment -- References -- III. Optics and Photonics -- 7 Photonics Integrated Circuits -- 7.1 Introduction to Photonics -- 7.2 Material Platform -- 7.2.1 Silica-on-Silicon -- 7.2.2 III-V Semiconductor Materials -- 7.2.3 Lithium Niobate -- 7.2.4 Silicon Nitride -- 7.2.5 Silicon-on-Insulator -- 7.3 Waveguide Geometries -- 7.3.1 Slab Waveguide -- 7.3.2 Ridge Waveguide -- 7.3.3 Rib Waveguide -- 7.3.4 Slot Waveguide -- 7.4 Passive Devices. , 7.4.1 Optical Couplers.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almafu_BV044702314
    Format: 1 Online-Ressource (XXI, 815 Seiten, 486 illus).
    ISBN: 978-981-10-7470-7
    Series Statement: Communications in computer and information science 711
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-10-7469-1
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    b3kat_BV042261216
    Format: 1 Online-Ressource
    ISBN: 9788132220473
    Series Statement: SpringerBriefs in applied sciences and technology
    Additional Edition: Erscheint auch als Druckausgabe ISBN 978-81-322-2046-6
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Boston :Artech House, | [Piscataqay, New Jersey] :IEEE Xplore,
    UID:
    almafu_9959229921302883
    Format: 1 online resource (280 pages) : , illustrations.
    ISBN: 1-63081-436-9
    Series Statement: Artech House microwave series
    Content: Completely dedicated to spin transfer torque (STT) based devices, circuits, and memory, this book covers a wide range of topics including STT MRAMs, MTJ based logic circuits, simulation and modeling strategies, fabrication of MTJ CMOS circuits, and more. --
    Note: Also available in print.
    Additional Edition: ISBN 1-63081-092-4
    Additional Edition: ISBN 1-63081-091-6
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    b3kat_BV044291686
    Format: 1 Online-Ressource (xvii, 92 Seiten) , Illustrationen
    ISBN: 9789811027208
    Series Statement: SpringerBriefs in applied sciences and technology
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-10-2719-2
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edocfu_BV044702314
    Format: 1 Online-Ressource (XXI, 815 Seiten, 486 illus).
    ISBN: 978-981-10-7470-7
    Series Statement: Communications in computer and information science 711
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-10-7469-1
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    edoccha_9961089630102883
    Format: 1 online resource (477 pages).
    ISBN: 0-12-813354-6 , 0-12-813353-8
    Series Statement: Micro & nano technologies
    Content: "Nanoelectronics: Devices, Circuits and Systems explores current and emerging trends in the field of nanoelectronics, from both a devices-to-circuits and circuits-to-systems perspective. It covers a wide spectrum and detailed discussion on the field of nanoelectronic devices, circuits and systems. This book presents an in-depth analysis and description of electron transport phenomenon at nanoscale dimensions. Both qualitative and analytical approaches are taken to explore the devices, circuit functionalities and their system applications at deep submicron and nanoscale levels. Recent devices, including FinFET, Tunnel FET, and emerging materials, including graphene, and its applications are discussed. In addition, a chapter on advanced VLSI interconnects gives clear insight to the importance of these nano-transmission lines in determining the overall IC performance. The importance of integration of optics with electronics is elucidated in the optoelectronics and photonic integrated circuit sections of this book. This book provides valuable resource materials for scientists and electrical engineers who want to learn more about nanoscale electronic materials and how they are used."--
    Note: Front Cover -- Nanoelectronics -- Copyright Page -- Dedication -- Contents -- List of Contributors -- About the Author -- Preface -- Acknowledgments -- I. Device Modeling and Applications -- 1 Tunnel FET: Devices and Circuits -- 1.1 CMOS Power Trends -- 1.2 Tunneling Phenomena -- 1.2.1 Kane's Formulation -- 1.2.2 WKB Approximation -- 1.3 Tunneling Field-Effect Transistors -- 1.3.1 Current-Voltage Characteristics -- 1.3.2 Capacitance-Voltage Characteristics -- 1.4 Challenges for TFETs -- 1.4.1 ON Current Performance Boosters -- 1.4.1.1 High-k gate dielectric -- 1.4.1.2 Area scaled devices -- 1.4.1.3 III-V HTFETs -- 1.4.2 Ambipolarity -- 1.5 TFET Characteristics and Impact on the Circuit Design -- 1.5.1 Unidirectional Conduction -- 1.5.2 Enhanced ON-State Miller Capacitance -- 1.6 Tunnel FET SRAM Design -- 1.6.1 6T TFET SRAM Cell -- 1.6.2 8T TFET SRAM Cell -- 1.7 TFET Analog/RF Application -- 1.7.1 Transconductance Generation Factor (gm/IDS) -- 1.7.2 Linearity Performance -- 1.8 TFET-Based OTA -- 1.9 Summary -- Acknowledgment -- References -- 2 Electrothermal Characterization, TCAD Simulations, and Physical Modeling of Advanced SiGe HBTs -- 2.1 SiGe HBT Technologies and Their Thermal Issues -- 2.1.1 THz Waves and Applications -- 2.1.2 SiGe BiCMOS Technologies -- 2.1.3 Thermal Issues in SiGe HBT Technology Nodes -- 2.2 Device Characterization in SiGe HBT Technologies -- 2.2.1 Modeling of Device Self-heating in HiCuM -- 2.2.2 Self-heating Effect on the Device DC and AC Characteristics -- 2.2.3 Extraction of the Rth -- 2.2.4 Extraction of the Zth -- 2.2.4.1 Theoretical formulation -- 2.2.5 Recursive Thermal Network Models -- 2.2.6 Behavior of the Transistor Under Two Tones Excitation -- 2.3 Electrothermal Impact of the BEOL Metallization in SiGe HBTs -- 2.3.1 Electrothermal Characterization of Dedicated HBT Test Structures. , 2.3.1.1 DC electrical characterization -- 2.3.1.2 Thermal characterization -- 2.3.1.3 Small signal RF characterization -- 2.3.1.4 Large signal RF measurements -- 2.3.2 Compact Modeling of the BEOL Thermal Impact -- 2.3.2.1 Thermal modeling of the BEOL metallization -- 2.3.2.2 DC electrical characterization -- 2.3.2.3 Low-frequency measurements -- 2.3.2.4 Pulsed measurements -- 2.3.2.5 Large-signal two-tones simulations -- 2.3.3 Static and Dynamic 3D TCAD Thermal Simulations -- 2.3.3.1 Thermal parameters and doping dependence -- 2.3.3.2 Static thermal analysis and 3D simulations -- 2.3.3.3 Dynamic thermal analysis and 3D simulations -- References -- 3 InP-Based High-Electron-Mobility Transistors for High-Frequency Applications -- 3.1 History and Background of HEMT -- 3.2 Applications -- 3.3 Working Principle -- 3.3.1 Two-Dimensional Electron Gas in HEMT -- 3.4 Materials and its Properties-(InP/GaAs) -- 3.5 General Structure of Inp HEMT -- 3.6 DC and Microwave Characteristics of HEMT -- 3.7 Drain Current Characteristics -- 3.8 Subthreshold and Gate Leakage Characteristics -- 3.9 Measurement of DC and RF Performance of the Device -- 3.10 Transconductance Characteristics -- 3.11 Drain Current Characteristics -- 3.12 Subthreshold and Gate Leakage Characteristics -- 3.13 Future Scope -- References -- Further Reading -- 4 Organic Transistor- Device Structure, Model and Applications -- 4.1 Organic Electronics: Low-Cost, Large-Area, and Flexible -- 4.2 Field-Effect Transistors Structure -- 4.3 Field-Effect Transistors Characterization -- 4.4 Organic Semiconductors Selection -- 4.5 Interfacial Engineering in Field-Effect Transistors -- 4.5.1 Changes in Surface Energy as a Result of SAM Treatment -- 4.5.2 Work Function Shift -- 4.5.3 Contact Resistance -- References -- Further Reading -- II. Spintronics. , 5 Mitigating Read Disturbance Errors in STT-RAM Caches by Using Data Compression -- 5.1 Introduction -- 5.2 Background -- 5.2.1 Motivation for Using Nonvolatile Memories -- 5.2.2 Working of STT-RAM -- 5.2.3 Origin of Read Disturbance Error -- 5.2.4 Characteristics of Read Disturbance Error -- 5.2.5 Strategies for Addressing RDE -- 5.2.6 Cache Properties -- 5.3 SHIELD: Key Idea and Architecture -- 5.3.1 Compression Algorithm -- 5.3.2 Defining Consecutive Reads -- 5.3.3 SHIELD: Key Idea -- 5.3.4 Action on Read and Write Operations -- 5.3.5 Overhead Assessment -- 5.4 Salient Features of SHIELD and Qualitative Comparison -- 5.5 Experimentation Platform -- 5.5.1 Simulator Parameters -- 5.5.2 Workloads -- 5.5.3 Simulation Completion Strategy -- 5.5.4 Comparison with Related Schemes -- 5.5.5 Evaluation Metrics -- 5.6 Results and Analysis -- 5.6.1 Main Results -- 5.6.2 Parameter Sensitivity Results -- 5.7 Conclusion and Future Work -- References -- 6 Multi-Functionality of Spintronic Materials -- 6.1 Introduction-What Is Spintronics? -- 6.1.1 Spintronics Based on Multiferroics -- 6.1.2 Spintronics Based on DMSs -- 6.2 Methods of Synthesis of the Spintronic Materials -- 6.2.1 Synthesis of Multiferroics -- 6.2.1.1 Sol-gel method -- 6.2.1.2 Chemical combustion -- 6.2.1.3 Hydrothermal method -- 6.2.1.4 Metallo-organic decomposition synthesis -- 6.2.1.5 Spark plasma sintering -- 6.2.1.6 Conventional solid-state reaction -- 6.2.1.7 Pulsed laser deposition -- 6.2.1.8 Electrospray method -- 6.2.1.9 Sol-gel precipitation -- 6.2.1.10 RF sputtering -- 6.2.2 Synthesis of DMSs -- 6.2.2.1 Thermal evaporation method -- 6.2.2.2 Chemical vapor deposition -- 6.2.2.3 Sol-gel spin-coating technique -- 6.2.2.4 Spray pyrolysis technique -- 6.3 Spintronics Based on BTO Multiferroic Systems -- 6.3.1 Perovskite (ABO3) Multiferroics -- 6.3.2 Single-Phase Multiferroic BTO Systems. , 6.3.2.1 Structure and phase transition of doped BTO -- 6.3.2.1.1 X-ray diffraction of Ce-, La-substituted BaFe0.01Ti0.99O3 nanostructures -- 6.3.2.2 Induction of multiferroicity of the BTO with doping -- 6.3.2.2.1 TM impurity in BTO -- 6.3.2.2.2 Low doping level of Fe impurity ions in BTO influence multiferroicity -- 6.3.2.2.3 Tetragonal distortion by splitting/shifting of (200) XRD peak of BTO with TM ions -- 6.3.2.2.4 Rare earth ions impurity in multiferroic BTO -- 6.3.2.3 Multiferroic nanostructures -- 6.3.2.3.1 Zero-dimensional nanostructures -- 6.3.2.3.2 One-dimensional nanostructures -- 6.3.2.3.3 Two-dimensional nanostructures -- 6.3.2.3.4 Three-dimensional nanostructures -- 6.3.2.3.5 Grain-size-dependent ME coupling of BTO nanoparticles -- 6.3.2.3.6 Physical significance of BTO multiferroic nanostructures -- 6.3.2.4 Raman measurement of BTO: lattice structure, defects/vacancies evaluation -- 6.3.2.5 Magnetism in BTO with doping -- 6.3.2.5.1 Magnetic ordering near ferroelectric transition in BTO:Fe113 ppm system -- 6.3.2.6 Ferroelectricity in BTO with doping -- 6.3.2.6.1 Ferroelectricity induced by lone-pair electrons -- 6.3.2.6.2 Ferroelectricity due to charge ordering -- 6.3.2.6.3 Multiferroicity due to DM interaction -- 6.3.2.7 ME response due to an anomaly in phase transition temperatures -- 6.3.2.8 Magnetocapacitance -- 6.3.3 Multiferroic Composites -- 6.3.3.1 MFe2O4/BaTiO3 (M=Mn, Co, Ni, Zn) nanocomposites -- 6.3.3.2 Multiferroic NiFe2O4/BaTiO3 nanostructures -- 6.3.4 Multiferroic Thin Films -- 6.3.4.1 Nanostructural MFe2O4/BaTiO3 (M=Mn, Co, Ni, Zn) thin films -- 6.3.4.2 ME coupling due to magnetic control of ferroelectric polarization -- 6.3.4.3 Dynamic ME coupling measurement for MFe2O4/BaTiO3 thin films -- 6.4 Spintronics Based on Diluted Magnetic Semiconductor, DMS ZnO -- 6.4.1 TM Ions Impurity in DMS ZnO. , 6.4.2 RE Ions Impurity in DMS ZnO -- 6.4.3 Defects-Assisted Ferromagnetism Due to TM and RE Ions in ZnO -- 6.4.3.1 BMP in Co-substituted ZnO -- 6.4.4 First-Principle Calculations for RE and TM Ions in the Wurtzite ZnO Structure -- 6.4.5 Influence of Dopant Concentration (TM and RE ions) on Ferromagnetism of ZnO -- 6.4.6 Realizing Wurtzite Structure of ZnO With Dopant Ions -- 6.4.6.1 XRD studies of ZnO nanoparticles with La and Fe doping -- 6.4.6.2 Calculation for lattice constants and bond length of La-, Gd-, Co-doped ZnO -- 6.4.7 Nanostructural Formation in Pure and Doped DMS ZnO -- 6.4.7.1 Nanostructural growth of ZnO with Fe, Co, Ce substitution -- 6.4.8 Raman Spectra for Ni-, Cu-, Ce-Substituted ZnO Nanoparticles -- 6.4.9 Photoluminescence Spectra Evaluated Defects in Co:ZnO Nanoparticles -- 6.4.10 Magnetism in DMS ZnO -- 6.4.10.1 RTFM in Co, Fe, ZnO nanorods -- 6.4.10.2 Origin of RTFM in Ni:ZnO nanostructure -- 6.4.10.3 Lattice defects influenced ferromagnetic ordering of ZnO by Cu and Ce ions -- 6.4.10.4 The ac susceptibility SQUID measurement of Co,Fe,Ce:ZnO nanoparticles -- 6.4.10.5 Vacancies induce ferromagnetism of pure and doped ZnO -- 6.4.10.5.1 XPS spectra for Zn 2p, Co 2p and O 1s for Co:ZnO nanoparticles -- 6.4.10.5.2 Valence states of RE La, Gd ions influence ferromagnetism of ZnO nanoparticles -- 6.4.10.6 RTFM of DMS ZnO influenced with nanostructural formation -- 6.5 Conclusion -- Acknowledgment -- References -- III. Optics and Photonics -- 7 Photonics Integrated Circuits -- 7.1 Introduction to Photonics -- 7.2 Material Platform -- 7.2.1 Silica-on-Silicon -- 7.2.2 III-V Semiconductor Materials -- 7.2.3 Lithium Niobate -- 7.2.4 Silicon Nitride -- 7.2.5 Silicon-on-Insulator -- 7.3 Waveguide Geometries -- 7.3.1 Slab Waveguide -- 7.3.2 Ridge Waveguide -- 7.3.3 Rib Waveguide -- 7.3.4 Slot Waveguide -- 7.4 Passive Devices. , 7.4.1 Optical Couplers.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    edocfu_9961089630102883
    Format: 1 online resource (477 pages).
    ISBN: 0-12-813354-6 , 0-12-813353-8
    Series Statement: Micro & nano technologies
    Content: "Nanoelectronics: Devices, Circuits and Systems explores current and emerging trends in the field of nanoelectronics, from both a devices-to-circuits and circuits-to-systems perspective. It covers a wide spectrum and detailed discussion on the field of nanoelectronic devices, circuits and systems. This book presents an in-depth analysis and description of electron transport phenomenon at nanoscale dimensions. Both qualitative and analytical approaches are taken to explore the devices, circuit functionalities and their system applications at deep submicron and nanoscale levels. Recent devices, including FinFET, Tunnel FET, and emerging materials, including graphene, and its applications are discussed. In addition, a chapter on advanced VLSI interconnects gives clear insight to the importance of these nano-transmission lines in determining the overall IC performance. The importance of integration of optics with electronics is elucidated in the optoelectronics and photonic integrated circuit sections of this book. This book provides valuable resource materials for scientists and electrical engineers who want to learn more about nanoscale electronic materials and how they are used."--
    Note: Front Cover -- Nanoelectronics -- Copyright Page -- Dedication -- Contents -- List of Contributors -- About the Author -- Preface -- Acknowledgments -- I. Device Modeling and Applications -- 1 Tunnel FET: Devices and Circuits -- 1.1 CMOS Power Trends -- 1.2 Tunneling Phenomena -- 1.2.1 Kane's Formulation -- 1.2.2 WKB Approximation -- 1.3 Tunneling Field-Effect Transistors -- 1.3.1 Current-Voltage Characteristics -- 1.3.2 Capacitance-Voltage Characteristics -- 1.4 Challenges for TFETs -- 1.4.1 ON Current Performance Boosters -- 1.4.1.1 High-k gate dielectric -- 1.4.1.2 Area scaled devices -- 1.4.1.3 III-V HTFETs -- 1.4.2 Ambipolarity -- 1.5 TFET Characteristics and Impact on the Circuit Design -- 1.5.1 Unidirectional Conduction -- 1.5.2 Enhanced ON-State Miller Capacitance -- 1.6 Tunnel FET SRAM Design -- 1.6.1 6T TFET SRAM Cell -- 1.6.2 8T TFET SRAM Cell -- 1.7 TFET Analog/RF Application -- 1.7.1 Transconductance Generation Factor (gm/IDS) -- 1.7.2 Linearity Performance -- 1.8 TFET-Based OTA -- 1.9 Summary -- Acknowledgment -- References -- 2 Electrothermal Characterization, TCAD Simulations, and Physical Modeling of Advanced SiGe HBTs -- 2.1 SiGe HBT Technologies and Their Thermal Issues -- 2.1.1 THz Waves and Applications -- 2.1.2 SiGe BiCMOS Technologies -- 2.1.3 Thermal Issues in SiGe HBT Technology Nodes -- 2.2 Device Characterization in SiGe HBT Technologies -- 2.2.1 Modeling of Device Self-heating in HiCuM -- 2.2.2 Self-heating Effect on the Device DC and AC Characteristics -- 2.2.3 Extraction of the Rth -- 2.2.4 Extraction of the Zth -- 2.2.4.1 Theoretical formulation -- 2.2.5 Recursive Thermal Network Models -- 2.2.6 Behavior of the Transistor Under Two Tones Excitation -- 2.3 Electrothermal Impact of the BEOL Metallization in SiGe HBTs -- 2.3.1 Electrothermal Characterization of Dedicated HBT Test Structures. , 2.3.1.1 DC electrical characterization -- 2.3.1.2 Thermal characterization -- 2.3.1.3 Small signal RF characterization -- 2.3.1.4 Large signal RF measurements -- 2.3.2 Compact Modeling of the BEOL Thermal Impact -- 2.3.2.1 Thermal modeling of the BEOL metallization -- 2.3.2.2 DC electrical characterization -- 2.3.2.3 Low-frequency measurements -- 2.3.2.4 Pulsed measurements -- 2.3.2.5 Large-signal two-tones simulations -- 2.3.3 Static and Dynamic 3D TCAD Thermal Simulations -- 2.3.3.1 Thermal parameters and doping dependence -- 2.3.3.2 Static thermal analysis and 3D simulations -- 2.3.3.3 Dynamic thermal analysis and 3D simulations -- References -- 3 InP-Based High-Electron-Mobility Transistors for High-Frequency Applications -- 3.1 History and Background of HEMT -- 3.2 Applications -- 3.3 Working Principle -- 3.3.1 Two-Dimensional Electron Gas in HEMT -- 3.4 Materials and its Properties-(InP/GaAs) -- 3.5 General Structure of Inp HEMT -- 3.6 DC and Microwave Characteristics of HEMT -- 3.7 Drain Current Characteristics -- 3.8 Subthreshold and Gate Leakage Characteristics -- 3.9 Measurement of DC and RF Performance of the Device -- 3.10 Transconductance Characteristics -- 3.11 Drain Current Characteristics -- 3.12 Subthreshold and Gate Leakage Characteristics -- 3.13 Future Scope -- References -- Further Reading -- 4 Organic Transistor- Device Structure, Model and Applications -- 4.1 Organic Electronics: Low-Cost, Large-Area, and Flexible -- 4.2 Field-Effect Transistors Structure -- 4.3 Field-Effect Transistors Characterization -- 4.4 Organic Semiconductors Selection -- 4.5 Interfacial Engineering in Field-Effect Transistors -- 4.5.1 Changes in Surface Energy as a Result of SAM Treatment -- 4.5.2 Work Function Shift -- 4.5.3 Contact Resistance -- References -- Further Reading -- II. Spintronics. , 5 Mitigating Read Disturbance Errors in STT-RAM Caches by Using Data Compression -- 5.1 Introduction -- 5.2 Background -- 5.2.1 Motivation for Using Nonvolatile Memories -- 5.2.2 Working of STT-RAM -- 5.2.3 Origin of Read Disturbance Error -- 5.2.4 Characteristics of Read Disturbance Error -- 5.2.5 Strategies for Addressing RDE -- 5.2.6 Cache Properties -- 5.3 SHIELD: Key Idea and Architecture -- 5.3.1 Compression Algorithm -- 5.3.2 Defining Consecutive Reads -- 5.3.3 SHIELD: Key Idea -- 5.3.4 Action on Read and Write Operations -- 5.3.5 Overhead Assessment -- 5.4 Salient Features of SHIELD and Qualitative Comparison -- 5.5 Experimentation Platform -- 5.5.1 Simulator Parameters -- 5.5.2 Workloads -- 5.5.3 Simulation Completion Strategy -- 5.5.4 Comparison with Related Schemes -- 5.5.5 Evaluation Metrics -- 5.6 Results and Analysis -- 5.6.1 Main Results -- 5.6.2 Parameter Sensitivity Results -- 5.7 Conclusion and Future Work -- References -- 6 Multi-Functionality of Spintronic Materials -- 6.1 Introduction-What Is Spintronics? -- 6.1.1 Spintronics Based on Multiferroics -- 6.1.2 Spintronics Based on DMSs -- 6.2 Methods of Synthesis of the Spintronic Materials -- 6.2.1 Synthesis of Multiferroics -- 6.2.1.1 Sol-gel method -- 6.2.1.2 Chemical combustion -- 6.2.1.3 Hydrothermal method -- 6.2.1.4 Metallo-organic decomposition synthesis -- 6.2.1.5 Spark plasma sintering -- 6.2.1.6 Conventional solid-state reaction -- 6.2.1.7 Pulsed laser deposition -- 6.2.1.8 Electrospray method -- 6.2.1.9 Sol-gel precipitation -- 6.2.1.10 RF sputtering -- 6.2.2 Synthesis of DMSs -- 6.2.2.1 Thermal evaporation method -- 6.2.2.2 Chemical vapor deposition -- 6.2.2.3 Sol-gel spin-coating technique -- 6.2.2.4 Spray pyrolysis technique -- 6.3 Spintronics Based on BTO Multiferroic Systems -- 6.3.1 Perovskite (ABO3) Multiferroics -- 6.3.2 Single-Phase Multiferroic BTO Systems. , 6.3.2.1 Structure and phase transition of doped BTO -- 6.3.2.1.1 X-ray diffraction of Ce-, La-substituted BaFe0.01Ti0.99O3 nanostructures -- 6.3.2.2 Induction of multiferroicity of the BTO with doping -- 6.3.2.2.1 TM impurity in BTO -- 6.3.2.2.2 Low doping level of Fe impurity ions in BTO influence multiferroicity -- 6.3.2.2.3 Tetragonal distortion by splitting/shifting of (200) XRD peak of BTO with TM ions -- 6.3.2.2.4 Rare earth ions impurity in multiferroic BTO -- 6.3.2.3 Multiferroic nanostructures -- 6.3.2.3.1 Zero-dimensional nanostructures -- 6.3.2.3.2 One-dimensional nanostructures -- 6.3.2.3.3 Two-dimensional nanostructures -- 6.3.2.3.4 Three-dimensional nanostructures -- 6.3.2.3.5 Grain-size-dependent ME coupling of BTO nanoparticles -- 6.3.2.3.6 Physical significance of BTO multiferroic nanostructures -- 6.3.2.4 Raman measurement of BTO: lattice structure, defects/vacancies evaluation -- 6.3.2.5 Magnetism in BTO with doping -- 6.3.2.5.1 Magnetic ordering near ferroelectric transition in BTO:Fe113 ppm system -- 6.3.2.6 Ferroelectricity in BTO with doping -- 6.3.2.6.1 Ferroelectricity induced by lone-pair electrons -- 6.3.2.6.2 Ferroelectricity due to charge ordering -- 6.3.2.6.3 Multiferroicity due to DM interaction -- 6.3.2.7 ME response due to an anomaly in phase transition temperatures -- 6.3.2.8 Magnetocapacitance -- 6.3.3 Multiferroic Composites -- 6.3.3.1 MFe2O4/BaTiO3 (M=Mn, Co, Ni, Zn) nanocomposites -- 6.3.3.2 Multiferroic NiFe2O4/BaTiO3 nanostructures -- 6.3.4 Multiferroic Thin Films -- 6.3.4.1 Nanostructural MFe2O4/BaTiO3 (M=Mn, Co, Ni, Zn) thin films -- 6.3.4.2 ME coupling due to magnetic control of ferroelectric polarization -- 6.3.4.3 Dynamic ME coupling measurement for MFe2O4/BaTiO3 thin films -- 6.4 Spintronics Based on Diluted Magnetic Semiconductor, DMS ZnO -- 6.4.1 TM Ions Impurity in DMS ZnO. , 6.4.2 RE Ions Impurity in DMS ZnO -- 6.4.3 Defects-Assisted Ferromagnetism Due to TM and RE Ions in ZnO -- 6.4.3.1 BMP in Co-substituted ZnO -- 6.4.4 First-Principle Calculations for RE and TM Ions in the Wurtzite ZnO Structure -- 6.4.5 Influence of Dopant Concentration (TM and RE ions) on Ferromagnetism of ZnO -- 6.4.6 Realizing Wurtzite Structure of ZnO With Dopant Ions -- 6.4.6.1 XRD studies of ZnO nanoparticles with La and Fe doping -- 6.4.6.2 Calculation for lattice constants and bond length of La-, Gd-, Co-doped ZnO -- 6.4.7 Nanostructural Formation in Pure and Doped DMS ZnO -- 6.4.7.1 Nanostructural growth of ZnO with Fe, Co, Ce substitution -- 6.4.8 Raman Spectra for Ni-, Cu-, Ce-Substituted ZnO Nanoparticles -- 6.4.9 Photoluminescence Spectra Evaluated Defects in Co:ZnO Nanoparticles -- 6.4.10 Magnetism in DMS ZnO -- 6.4.10.1 RTFM in Co, Fe, ZnO nanorods -- 6.4.10.2 Origin of RTFM in Ni:ZnO nanostructure -- 6.4.10.3 Lattice defects influenced ferromagnetic ordering of ZnO by Cu and Ce ions -- 6.4.10.4 The ac susceptibility SQUID measurement of Co,Fe,Ce:ZnO nanoparticles -- 6.4.10.5 Vacancies induce ferromagnetism of pure and doped ZnO -- 6.4.10.5.1 XPS spectra for Zn 2p, Co 2p and O 1s for Co:ZnO nanoparticles -- 6.4.10.5.2 Valence states of RE La, Gd ions influence ferromagnetism of ZnO nanoparticles -- 6.4.10.6 RTFM of DMS ZnO influenced with nanostructural formation -- 6.5 Conclusion -- Acknowledgment -- References -- III. Optics and Photonics -- 7 Photonics Integrated Circuits -- 7.1 Introduction to Photonics -- 7.2 Material Platform -- 7.2.1 Silica-on-Silicon -- 7.2.2 III-V Semiconductor Materials -- 7.2.3 Lithium Niobate -- 7.2.4 Silicon Nitride -- 7.2.5 Silicon-on-Insulator -- 7.3 Waveguide Geometries -- 7.3.1 Slab Waveguide -- 7.3.2 Ridge Waveguide -- 7.3.3 Rib Waveguide -- 7.3.4 Slot Waveguide -- 7.4 Passive Devices. , 7.4.1 Optical Couplers.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Boca Raton :Taylor & Francis, CRC Press,
    UID:
    almahu_9949865650002882
    Format: 1 online resource
    ISBN: 9781498736534 , 149873653X , 9781498736558 , 1498736556 , 9781315352596 , 1315352591 , 9781315369600 , 1315369605 , 9781315333540 , 1315333546
    Content: Text provides information about advanced OTFT (Organic thin film transistor) structures, their modeling and extraction of performance parameters, materials of individual layers, their molecular structures, basics of pi-conjugated semiconducting materials and their properties, OTFT charge transport phenomena and fabrication techniques.
    Note: Section I. Organic device physics and modeling -- section II. Organic device applications.
    Additional Edition: Print version: Kaushik, Brajesh Kumar. Organic thin-film transistor applications. Boca Raton : Taylor & Francis, CRC Press, 2017 ISBN 9781498736534
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    almahu_9949386421102882
    Format: 1 online resource
    ISBN: 9781000223071 , 1000223078 , 9781000223095 , 1000223094 , 9781000223088 , 1000223086 , 9781003049203 , 1003049206
    Content: Focussing on micro- and nanoelectronics design and technology, this book provides thorough analysis and demonstration, starting from semiconductor devices to VLSI fabrication, designing (analog and digital), on-chip interconnect modeling culminating with emerging non-silicon/ nano devices. It gives detailed description of both theoretical as well as industry standard HSPICE, Verilog, Cadence simulation based real-time modeling approach with focus on fabrication of bulk and nano-devices. Each chapter of this proposed title starts with a brief introduction of the presented topic and ends with a summary indicating the futuristic aspect including practice questions. Aimed at researchers and senior undergraduate/graduate students in electrical and electronics engineering, microelectronics, nanoelectronics and nanotechnology, this book: Provides broad and comprehensive coverage from Microelectronics to Nanoelectronics including design in analog and digital electronics. Includes HDL, and VLSI design going into the nanoelectronics arena. Discusses devices, circuit analysis, design methodology, and real-time simulation based on industry standard HSPICE tool. Explores emerging devices such as FinFETs, Tunnel FETs (TFETs) and CNTFETs including their circuit co-designing. Covers real time illustration using industry standard Verilog, Cadence and Synopsys simulations.
    Additional Edition: Print version: ISBN 0367502372
    Additional Edition: ISBN 9780367502379
    Language: English
    Keywords: Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages