feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_BV047560638
    Format: xvi, 559 Seiten : , Illustrationen, Diagramme ; , 24.4 cm x 17 cm.
    ISBN: 3-527-34715-1 , 978-3-527-34715-5
    Additional Edition: Erscheint auch als Online-Ausgabe, PDF ISBN 978-3-527-82578-3
    Additional Edition: Erscheint auch als Online-Ausgabe, EPUB ISBN 978-3-527-82580-6
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-3-527-82579-0
    Language: English
    Subjects: Engineering , Chemistry/Pharmacy
    RVK:
    RVK:
    RVK:
    RVK:
    Keywords: Fotovoltaik ; Perowskit ; Bauelement ; Solarzelle ; Perowskit ; Fotovoltaik ; Perowskit ; Bauelement ; Solarzelle ; Aufsatzsammlung ; Aufsatzsammlung
    Author information: Ahmad, Shahzada.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier Ltd.,
    UID:
    almahu_9949772196502882
    Format: 1 online resource (504 pages)
    Edition: First edition.
    ISBN: 9780323954952
    Series Statement: Nanophotonics Series
    Note: Front Cover -- Photoelectrochemical Engineering for Solar Harvesting -- Copyright Page -- Contents -- List of contributors -- Foreword -- Preface -- 1 Solar fuel generation based on first-row transition metal catalysts -- 1.1 Introduction -- 1.2 Photoelectrodes for water splitting -- 1.3 Biomimetic molecular water oxidation catalysts -- 1.4 CO2 reduction by photoelectrochemical -- 1.5 Photoelectrodes for CO2 reduction -- 1.6 Biomimetic molecular CO2 reduction catalysts -- 1.7 Conclusion -- References -- 2 Au nanoparticles decorated textured Si with Fc/Fc+ and I−/I3− redox active gels for photoelectrochemical light harvesting -- 2.1 Introduction -- 2.2 Experimental -- 2.2.1 Chemicals used -- 2.2.2 Preparation of textured silicon -- 2.2.3 Preparation of gold nanoparticles -- 2.2.4 Synthesis of NiO-coated fluorinated tin oxide -- 2.2.5 Fabrication of photoelectrochemical liquid junction solar cells -- 2.3 Instrumental methods -- 2.4 Results and discussion -- 2.4.1 Structural analysis of gold nanoparticles, textured silicon, and composite -- 2.4.2 Optical properties of photoanode components -- 2.4.3 Charge transfer mechanism under illumination -- 2.4.4 Electrochemical properties of the gel electrolytes and NiO -- 2.4.5 Solar cell characterization -- 2.4.6 Impedance studies of the devices -- 2.5 Conclusion -- Acknowledgments -- References -- 3 Dual photoelectrodes in photoelectrochemical water splitting -- 3.1 Introduction -- 3.2 Dual-working-electrode photoelectrochemical -- 3.2.1 Tandem photoelectrochemical water-splitting cells -- 3.2.1.1 Photoanode/photocathode tandem cells -- 3.2.1.2 Photoelectrode/photovoltaic tandem cells -- 3.2.2 Parallel photoelectrochemical water-splitting cells -- 3.2.2.1 Photoanode/photocathode parallel cells -- 3.2.2.2 Photoelectrode/photovoltaic parallel cells -- 3.3 Photovoltaic/electrolysis water-splitting cells. , 3.4 Outlook -- Acknowledgment -- Declaration of competing interest -- References -- 4 Metal-organic framework as light harvesting for photoelectrochemical water splitting: from fundamental to recent progress -- 4.1 Introduction -- 4.2 Metal-organic frameworks -- 4.3 Properties and applications of metal-organic framework -- 4.3.1 Optical properties of metal-organic frameworks -- 4.3.1.1 Electrically conducting metal-organic frameworks -- 4.3.2 Bandgap -- 4.3.3 Work function -- 4.3.4 Electron-hole separation -- 4.3.4.1 Charge separation and transfer -- 4.3.5 Electron lifetime -- 4.3.6 Excited-state conductivity -- 4.3.6.1 Route resembling a semiconductor -- 4.3.6.2 Theory of lowest unoccupied molecular orbital and ligand-to-metal charge transfer -- 4.3.6.3 Using density functional theory to predict photocatalytic mechanisms -- 4.3.6.3.1 Ligand-to-ligand energy transfer -- 4.3.6.3.2 Ligand-to-metal energy transfer -- 4.3.6.3.3 Metal-to-metal energy transfer -- 4.3.6.3.4 Guest-to-metal-organic framework (metal-organic framework-to-guest) energy transfer -- 4.4 Light harvesting by metal-organic framework (principle and features) -- 4.5 Photoelectrochemical cells based on metal-organic framework -- 4.5.1 Photoelectrochemical sensors -- 4.5.2 Solar cells -- 4.5.3 Metal-organic framework-sensitized solar cells -- 4.5.4 Metal-organic frameworks as effective electron transport scaffold -- 4.5.5 Metal-organic frameworks-based quantum dots -- 4.5.6 Quasisolid electrolyte solar cells based on metal-organic frameworks -- 4.5.7 Metal-organic frameworks scaffold for Perovskite layers -- 4.5.8 Metal-organic frameworks-based photoelectrochemical water splitting [76] -- 4.5.9 CO2 reduction -- 4.5.10 Photoelectrochemical alcohol oxidation based on metal-organic frameworks -- 4.5.11 Photoelectrochemical based on metal-organic frameworks for environmental remediation. , 4.6 The basic principle of photoelectrochemical water splitting by metal-organic frameworks -- 4.6.1 Metal-organic framework-based water splitting device configurations: photocathodes cell, photoanode cell, and tandem cell -- 4.6.2 Oxygen evolution reaction by metal-organic frameworks: light-harvesting role -- 4.6.2.1 Postsynthetic modification -- 4.6.2.2 Ligand and substituent functionalization -- 4.6.2.3 Doping and introducing cocatalysts -- 4.6.2.4 Heterojunction designing and bandgap engineering -- 4.6.3 Hydrogen evolution reaction by metal-organic frameworks -- 4.6.3.1 Pristine metal-organic frameworks -- 4.6.3.2 Metal-organic frameworks as supports -- 4.6.3.3 Metal-organic framework derivatives -- 4.7 New metal-organic framework-based systems in photoelectrochemical water splittings -- 4.8 Conclusions, challenges, and perspectives -- 4.8.1 Advantages -- 4.8.2 Challenges -- 4.8.3 Perspective -- Acknowledgments -- Declaration of competing interest -- References -- 5 Applications of metal ferrites as photocatalyst for solar fuel production, water splitting and carbon dioxide reduction -- 5.1 Introduction -- 5.2 Types of ferrite -- 5.2.1 Spinel ferrites -- 5.2.2 Garnet -- 5.2.3 Orthoferrites -- 5.2.4 Hexagonal ferrites -- 5.2.5 Magnetoplumbite ferrites -- 5.3 Hydrogen production from water splitting -- 5.4 Photoelectrochemical water splitting -- 5.4.1 Ferrite photocathodes -- 5.4.2 Ferrite photoanodes -- 5.5 Ferrite photocatalysts -- 5.5.1 Water splitting -- 5.5.2 CO2 photoreduction -- 5.6 Promising ferrite-based photoanodes -- 5.6.1 Zinc ferrite -- 5.6.2 Magnesium ferrite -- 5.6.3 Copper ferrite -- 5.6.4 Bismuth ferrite -- 5.6.5 Yttrium ferrite -- 5.6.6 Iron vanadates -- 5.6.7 Iron tungstates -- 5.7 Promising ferrites for photocathodes -- 5.7.1 Lanthanum ferrite -- 5.7.2 Calcium ferrite -- 5.7.3 Nickel ferrite and cobalt ferrite. , 5.7.4 Iron chromium aluminum oxide -- 5.8 Conclusion -- References -- 6 Redefining solar conversion: advancing technologies with metal-organic framework nanocomposites -- 6.1 Introduction -- 6.1.1 Solar energy conversion -- 6.1.2 Challenges while harvesting solar energy -- 6.2 Metal-organic frameworks-based nanocomposites -- 6.2.1 Mechanism of photocatalysis -- 6.3 Applications of metal-organic framework nanocomposites -- 6.3.1 Photocatalytic water splitting -- 6.3.1.1 Why metal-organic frameworks? -- 6.3.1.2 Metal-organic framework/nanoparticles composites for hydrogen evolution reaction and oxygen evolution reaction -- 6.3.2 Photoelectrochemical water splitting -- 6.3.3 Photocatalytic CO2 conversion -- 6.3.4 Solar cells and light-emitting diodes -- 6.3.5 Other applications -- 6.4 Summary and outlook -- References -- 7 Photoelectrochemical water splitting based on 2D-transition metal dichalcogenide materials -- 7.1 Introduction -- 7.2 Photoelectrochemical water splitting -- 7.2.1 Basic principles -- 7.2.2 Materials selection -- 7.2.3 Performance parameters -- 7.3 Two-dimensional transition metal dichalcogenides -- 7.3.1 Crystal structures -- 7.3.2 Band structures -- 7.3.3 Synthesis methods -- 7.3.3.1 Wet chemical synthesis -- 7.3.3.2 Liquid-phase exfoliation -- 7.3.3.3 Chemical vapor deposition -- 7.4 Two-dimensional transition metal dichalcogenides-based materials for photoelectrochemical water splitting -- 7.4.1 Molybdenum disulfide -- 7.4.2 Tungsten disulfide -- 7.4.3 Molybdenum diselenide -- 7.4.4 Tungsten diselenide -- 7.5 Conclusions and prospects -- References -- 8 Perovskite materials: from synthesis to solar energy conversion applications -- 8.1 Introduction -- 8.2 Synthesis of perovskite nanomaterials -- 8.2.1 Preparation of perovskite films -- 8.2.1.1 Solution processing method -- 8.2.1.2 Vapor deposition. , 8.2.2 Synthesis of perovskite single and microcrystals -- 8.2.2.1 Solution temperature lowering method -- 8.2.2.2 Inverse temperature crystallization -- 8.2.3 Perovskite nanocrystals and quantum dots -- 8.2.3.1 Hot injection method -- 8.2.3.2 Ligand-assisted reprecipitation -- 8.3 Some postmodification procedures for halide perovskites -- 8.3.1 Surface treatment of perovskite nanocrystals -- 8.3.2 Phase transformation -- 8.4 Optical properties of halide perovskites -- 8.4.1 Absorption and photoluminescence -- 8.5 Some recent applications of perovskite materials -- 8.5.1 Perovskite solar cells -- 8.5.2 Perovskite-based light-emitting diodes -- 8.5.3 Perovskite-based LASERS -- 8.5.4 Photocatalysis by perovskites -- 8.5.4.1 Photocatalytic CO2 reduction -- 8.5.4.2 Photocatalytic hydrogen evolution by perovskites -- 8.5.4.3 Photocatalytic degradation by perovskite materials -- 8.5.4.4 Perovskite-based photodetectors -- 8.6 Conclusion and future perspective -- References -- 9 Photo-valorization of biomass into H2 fuel and value-added chemicals -- 9.1 Introduction -- 9.2 Photo-driven upgradation of biomass to biochemical and hydrogen -- 9.2.1 Oxide-based semiconductor photocatalysts -- 9.2.2 Chalcogenides-based photocatalysts -- 9.2.3 Polymeric semiconductor materials -- 9.2.4 Carbon-based photocatalysts -- 9.3 Conclusion -- References -- 10 Main group metal chalcogenides for photoelectrochemical water splitting -- 10.1 Introduction -- 10.2 Geometrics and crystal structure of main group chalcogenides -- 10.3 Main group metal chalcogenide materials for photoelectrochemical performance -- 10.3.1 Binary metal chalcogenides with metal: chalcogen ratio 2:3, M2X3 -- 10.3.2 Binary metal chalcogenides with metal: chalcogen ratio 1:1, MX -- 10.3.3 Binary metal chalcogenides with metal: chalcogen ratio 1:2, MX2 -- 10.3.4 Summary and perspective -- 10.4 Conclusions. , Acknowledgments.
    Additional Edition: Print version: Kazim, Samrana Photoelectrochemical Engineering for Solar Harvesting San Diego : Elsevier,c2024 ISBN 9780323954945
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    b3kat_BV048251610
    Format: 1 Online-Ressource (XIX, 412 p. 171 illus., 129 illus. in color)
    Edition: 1st ed. 2022
    ISBN: 9783030941147
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-94113-0
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-94115-4
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-94116-1
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almafu_9960101852002883
    Format: 1 online resource.
    ISBN: 9783527825790 , 3527825797 , 9783527825806 , 3527825800
    Note: Includes index. , Chemical Processing of Mixed-Cation Hybrid Perovskites: Stabilizing Effects of Configurational Entropy / Feray ©₋nl©ơ, Eunhwan Jung, Senol z, Heechae Choi, Thomas Fischer, Sanjay Mathur -- Flash Infrared Annealing for Processing of Perovskite Solar Cells / Sandy Sanchez, Anders Hagfeldt -- Passivation of Hybrid/Inorganic Perovskite Solar Cells / Muhammad Akmal Kamarudin, Shuzi Hayase -- Tuning Interfacial Effects in Hybrid Perovskite Solar Cells / Rafael S Sanchez, Lionel Hirsch, Dario M Bassani -- All-inorganic Perovskite Solar Cells / Yaowen Li, Yongfang Li -- Tin Halide Perovskite Solar Cells / Thomas Stergiopoulos -- Low-Temperature and Facile Solution-Processed Two-Dimensional Materials as Electron Transport Layer for Highly Efficient Perovskite Solar Cells / Shao Hui, Najib H Ladi, Han Pan, Yan Shen, Mingkui Wang -- Metal Oxides in Stable and Flexible Halide Perovskite Solar Cells: Toward Self-Powered Internet of Things / Carlos Pereyra, Haibing Xie, Amir N Shandy, Vanessa Martinez, Henck Pierre, Elia Santigosa, Daniel A Acula-Leal, Laia Capdevila, Quentin Billon, Lis Mergny, Maria Ramos-Payn, Monica Gomez, Bindu Krishnan, Maria Munoz, David M Tanenbaum, Anders Hagfeldt, Monica Lira-Cantu -- Electron Transport Layers in Perovskite Solar Cells / Fatemeh Jafari, Mehrad Ahmadpour, Um Kanta Aryal, Mariam Ahmad, Michela Prete, Naeimeh Torabi, Vida Turkovic, Horst-Gunter Rubahn, Abbas Behjat, Morten Madsen -- Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells / Meenakshi Pegu, Shahzada Ahmad, Samrana Kazim -- Impact of Monovalent Metal Halides on the Structural and Photophysical Properties of Halide Perovskite / Mojtaba Abdi-Jalebi, M Ibrahim Dar -- Charge Carrier Dynamics in Perovskite Solar Cells / Mohd T Khan, Abdullah Almohammedi, Samrana Kazim, Shahzada Ahmad -- Printable Mesoscopic Perovskite Solar Cells / Daiyu Li, Yaoguang Rong, Yue Hu, Anyi Mei, Hongwei Han -- Upscaling of Perovskite Photovoltaics / Dongju Jang, Fu Yang, Lirong Dong, Christoph J Brabec, Hans-Joachim Egelhaaf -- Scalable Architectures and Fabrication Processes of Perovskite Solar Cell Technology / Ghufran S Hashmi -- Multi-Junction Perovskite Solar Cells / Suhas Mahesh, Bernard Wenger.
    Additional Edition: Print version: PEROVSKITE SOLAR CELLS. [S.l.] : WILEY VCH, 2021 ISBN 3527347151
    Language: English
    Keywords: Electronic books. ; Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almahu_BV048221060
    Format: 1 Online-Ressource (xvi, 559 Seiten) : , Illustrationen, Diagramme (teilweise farbig).
    ISBN: 978-3-527-82578-3 , 978-3-527-82580-6 , 978-3-527-82579-0
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-527-34715-5
    Language: English
    Subjects: Engineering , Chemistry/Pharmacy
    RVK:
    RVK:
    RVK:
    RVK:
    Keywords: Fotovoltaik ; Perowskit ; Bauelement ; Solarzelle ; Perowskit ; Fotovoltaik ; Perowskit ; Bauelement ; Solarzelle ; Aufsatzsammlung
    URL: Volltext  (URL des Erstveröffentlichers)
    Author information: Ahmad, Shahzada.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages