feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949698026502882
    Format: 1 online resource (978 pages)
    ISBN: 0-12-821967-X
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- Preface -- Part I - Fundamentals of greener synthesis -- 1 - The Fundamental perspectives of greener synthesis -- 1.1 Introduction -- 1.2 General synthetic methods in green chemistry -- 1.2.1 Ultrasound-assisted nanoparticle synthesis -- 1.2.2 Microwave-assisted nanoparticles synthesis -- 1.2.3 Reactor technology in NP synthesis -- 1.3 Green solvents in synthetic methods -- 1.3.1 Applications of ionic liquids in NPs synthesis -- 1.3.2 Applications of scCO 2 in NPs synthesis -- 1.4 Conclusions -- Acknowledgments -- References -- 2 - The importance of green chemistry metrics -- 2.1 Introduction -- 2.2 Green metrics parameters -- 2.2.1 Organic chemistry metrics -- 2.2.1.1 Atom economy (AE), atom efficiency (AEf) and atom utilization (AU) -- 2.2.1.2 Environmental assessment tool for organic syntheses (EATOS) -- 2.2.1.3 E-Factor -- 2.2.1.4 Carbon efficiency -- 2.2.1.5 Effective mass yield (EMY) -- 2.2.1.6 Reaction mass efficiency (RME) -- 2.2.1.7 Mass intensity (MI) or product mass intensity (PMI) -- 2.2.1.8 Stoichiometric factor -- 2.2.1.9 Solvent and catalyst environmental impact parameter -- 2.2.2 Analytical chemistry metrics -- 2.2.2.1 National environmental methods index (NEMI) -- 2.2.2.2 Analytical eco-scale -- 2.2.2.3 Green certificate -- 2.2.2.4 Green analytical procedure index (GAPI) -- 2.2.2.5 Analytical method volume intensity (AMVI) -- 2.2.3 Industry metrics -- 2.2.3.1 Life cycle assessment (LCA) -- 2.2.3.2 Carbon footprint -- 2.2.3.3 Green aspiration level (GAL) -- 2.3 Final remarks -- References -- 3 - Greener synthesis at different scales -- 3.1 Introduction -- 3.1.1 Motivation and goal of the present chapter -- 3.2 Synthesis at macroscale -- 3.2.1 Organic compounds -- 3.2.2 Polymers. , 3.2.3 Metal oxides and other systems -- 3.2.4 Organometallic complexes and MOFs -- 3.2.5 Biomaterials -- 3.2.6 Pharmaceuticals -- 3.3 Greener synthesis at nanoscale -- 3.3.1 Different strategies for the greener synthesis of nanomaterials -- 3.3.2 Bacteria in NP synthesis -- 3.3.3 Actinomycetes in NP synthesis -- 3.3.4 Fungi in NP synthesis -- 3.3.5 Algae in NP synthesis -- 3.3.6 Virus-based NP synthesis -- 3.3.7 Synthesis of NPs using plant extracts -- 3.3.8 Factors affecting the synthesis of NPs -- 3.3.9 Mechanism: NPs synthesis using microorganisms -- 3.3.10 Nonbiogenic greener approaches -- 3.3.11 Different NPs synthesized using green processes -- 3.3.12 Nanomaterials, nanocomposites, and hybrids -- 3.4 Possibilities of the synthesis at industrial scale -- 3.4.1 A few scaled up greener syntheses -- 3.5 Summary and final remarks -- References -- 4 - Role of greener syntheses at the nanoscale -- 4.1 Introduction -- 4.2 Green syntheses -- 4.3 Role of green synthesis -- 4.3.1 Metal NPs -- 4.3.2 Nonmetal NPs -- 4.3.3 Noble-metal NPs -- 4.3.4 Metal oxide NPs -- 4.3.5 Nanocomposites -- 4.3.6 Nanohybrids -- 4.4 Possibilities of the synthesis at industrial scale -- 4.5 Conclusion and outlook -- References -- Part II - Greener methods: Physical and chemical methods -- 5 - One-pot synthesis of nanomaterials -- 5.1 Introduction -- 5.2 General applications of nanomaterials -- 5.2.1 Applications of nanomaterials as catalysts -- 5.2.2 Applications of nanomaterials for wastewater treatments -- 5.2.3 Applications of nanomaterials as sensors -- 5.2.4 Applications of nanomaterials for energy storage/production -- 5.2.5 Applications of nanomaterials in health care -- 5.3 General methods for the preparation of nanomaterials -- 5.3.1 One-pot synthesis of nanomaterials -- 5.3.2 One-pot synthesis of NPs. , 5.3.3 One-pot bio-inspired synthesis of NPs -- 5.3.4 One-pot synthesis of NCs -- 5.3.5 Bioinspired one-pot synthesis of NCs -- 5.3.6 One-pot synthesis of QDs -- 5.3.7 Bioinspired one-pot synthesis of QDs -- 5.3.8 One-pot synthesis of carbon nanotubes -- 5.3.9 Bio-inspired one-pot synthesis of carbon nanotubes -- 5.3.10 One-pot synthesis of nanoflowers -- 5.3.11 Bio-inspired one-pot synthesis of nanoflowers -- 5.4 Conclusion -- References -- 6 - Ultrasound assisted reactions -- 6.1 Introduction -- 6.1.1 Ultrasound in synthetic organic chemistry -- 6.2 Synthesis of heterocyclic compounds -- 6.2.1 Synthesis of pyrazoline derivatives -- 6.2.2 Synthesis of imidazolines -- 6.2.3 Synthesis of benzotriazoles and 1-Acylbenzotriazoles -- 6.2.4 Synthesis of 1,5-benzodiazepinic heterocyclic rings -- 6.2.5 Synthesis of 1,4-dihydropyridines -- 6.2.6 Synthesis of 3,4-dihydropyrimidin-2-(1 H )-ones: KV -- 6.2.7 Synthesis of aminopyrazoles -- 6.2.8 Synthesis of 5,5-disubstituted hydantoins -- 6.2.9 Synthesis of vitamins -- 6.2.10 Synthesis of 2-amino-2-chromenes & -- 2H-chromen-2-ones -- 6.2.11 Synthesis of 1,8-dioxo-octahydroxanthene derivatives -- 6.2.12 Synthesis of 5‑hydroxy-5-trihalomethyl-4,5-dihydroisoxazoles and β-enamino trihalomethyl ketone -- 6.2.13 Synthesis of pyrroles -- 6.2.15 Synthesis of benzo[ b ]furans/nitro benzo[ b ]furans -- 6.3 Condensation reactions -- 6.3.1 Synthesis of β‑hydroxyl ketones -- 6.3.2 Synthesis of ferrocenyl substituted 3-cyanopyridine derivatives -- 6.3.3 Synthesis of imines -- 6.3.4 Synthesis of aryl-hydrazones -- 6.3.5 Synthesis of 1,5-diaryl-1,4-pentadien-3-ones -- 6.3.6 Synthesis of chalconoids -- 6.3.7 Synthesis of β-Aminoketones -- 6.3.8 Synthesis of 2-(Alkylamino)benzoic acids -- 6.3.9 Synthesis of arylmethylenemalononitriles. , 6.3.10 Synthesis of 2-Amino-4-aryl-3-carbalkoxy-7,7-dimethyl-5,6,7,8-tetrahydrobenzo[ b ] pyran derivatives -- 6.3.11 Synthesis of 4-Oxo-2-thioxohexahydropyrimidines -- 6.3.12 Synthesis of α,α'-bis(SubstitutedBenzylidene) cycloalkanones -- 6.3.13 Synthesis of 1-amidoalkyl-2-naphthols -- 6.3.14 Synthesis of pyrido[2,3- d ]pyrimidine derivatives -- 6.3.15 Synthesis of ketoximes -- 6.4 Addition reactions -- 6.4.1 Synthesis of ferrocenyl substituted 1,5-diketone and cyclic α,β-unsaturated ketones -- 6.4.2 Synthesis of 3,3-di(heteroaryl)indolin-2-one derivatives -- 6.4.3 Additions of furan to masked ortho-benzoquinones -- 6.4.4 Synthesis of β-indolylketones -- 6.4.5 Synthesis of 2,3-epoxyl-1,3-diaryl-1-propanone -- 6.4.6 Synthesis of 2-((1H-indol-3-yl)(aryl)methyl)malononitriles -- 6.5 Substitution reactions -- 6.5.1 Synthesis of oximes -- 6.5.2 Synthesis of 4-alkyl-(aryl)aminobenzaldehydes -- 6.5.3 Synthesis of ferujol -- 6.5.4 Synthesis of arylacetylenes -- 6.5.5 Anchoring of carboxylic acids to merrifield resin -- 6.5.6 Synthesis of trimethylsilyl pseudohalides -- 6.5.7 Synthesis of diaryl ethers -- 6.5.8 Sonochemical reaction of bromothiophenes with chlorotrimethylsilane -- 6.5.9 Nitration of phenols -- 6.5.10 Synthesis of bis(indolyl)methanes -- 6.6 Reductions -- 6.6.1 Synthesis of fluorinated alkanes and cycloalkanes -- 6.6.2 Synthesis of 1α,7α,10αH-guaian-4-11‑dien-3-one and hydrocolorenone -- 6.6.3 Synthesis of arylalkanones -- 6.6.4 Clemmensen-type reduction -- 6.6.5 Reduction of enones -- 6.6.6 Synthesis of histrionicotoxin -- 6.6.7 Hydrogenation of trifluoromethyl ketones -- 6.6.8 Chemo-enantioselective hydrogenations -- 6.6.9 Hydrosilylation of 2-substituted cyclohexanones -- 6.6.10 Indirect electroreduction of benzyl chlorides -- 6.6.11 Asymmetric transfer hydrogenation of ketones. , 6.7 Photochemical reactions -- 6.7.1 Synthesis and photochemistry of 1-Iodocyclohexene -- 6.7.2 Photochemical reaction of cyclohexanone -- 6.7.3 Photochemical reactions of bromotrichloromethane -- 6.8 Coupling reactions -- 6.8.1 Synthesis of z and e stilbenes -- 6.8.2 Synthesis of propargylamines -- 6.8.3 Suzuki reaction -- 6.8.4 Synthesis of biaryls -- 6.8.5 Synthesis of β-iodoethers -- 6.8.6 Synthesis of α-amino phosphonates -- 6.9 Alkylation and acylation reactions -- 6.9.1 N-alkylation of pyrrole -- 6.9.2 Alkylation of phenylacetonitrile -- 6.9.3 Acylation of 2-methoxynaphthalene -- 6.9.4 C-alkylation of benzyl cyanide -- 6.9.5 Synthesis of δ-chloroesters -- 6.9.6 Synthesis of 2-alkyl-2-alkoxy-1,2-di(furan-2-yl)ethanone -- 6.9.7 Synthesis of dioximes -- 6.9.8 Synthesis of N-alkoxyphthalimides -- 6.10 Polymerisation reactions -- 6.10.1 Synthesis of poly-organosilanes -- 6.10.2 Dimerization of pivalic acid -- 6.10.3 Sonochemical polymerization -- 6.10.4 Synthesis of siloxanes -- 6.11 Oxidation reactions -- 6.11.1 Oxidation of dihydropyrimidinones -- 6.11.2 Synthesis of α-benzoylbenzyl cyanide & -- alkylphenyl ketone -- 6.11.3 Glucose oligomerisation and sucrose oxidation -- 6.11.4 Oxidation of phenols -- 6.11.5 Esterification of bile acids -- 6.11.6 Esterification of palmitic acid -- 6.11.7 Synthesis of isatoic anhydrides -- 6.11.8 Oxidation of alkylarenes -- 6.11.9 Epoxidation of cyclohexene -- 6.12 Miscellaneous -- 6.12.1 Preparation of 1,1-diacetate -- 6.12.2 Preparation of diarylmethanes -- 6.12.3 Preparation of nitroalkenes -- 6.12.4 Regioselective synthesis of ketones -- 6.12.5 Synthesis of substituted coumarins -- 6.12.6 Synthesis of pyrazolo[1,5- a ]pyrimidines -- 6.12.7 Synthesis of sulfonamides -- 6.12.8 Preparation of 1-(benzyloxy)−4-nitrobenzene. , 6.12.9 Synthesis of spiro[indoline-3,4'-pyrano[2,3- c ]pyrazole] derivatives.
    Additional Edition: ISBN 0-12-821938-6
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9949225588302882
    Format: 1 online resource (680 pages)
    ISBN: 0-12-822447-9
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- Part I - Greener Synthesis: Synthesis at Macroscale -- 1 - Polyhydroxyalkanoates: naturally occurring microbial polymers suitable for nanotechnology applications -- 1.1 Introduction -- 1.2 Polyhydroxyalkanoates: biobased and biodegradable polymers -- 1.2.1 Chemical structure -- 1.2.2 Microbial cultivation and polymer synthesis -- 1.3 Polyhydroxyalkanoates as a source of nanotechnology applications -- 1.3.1 Tissue engineering -- 1.3.2 Drug delivery systems -- 1.3.3 Enzyme immobilization -- 1.4 Future trends and concluding remarks -- Summary -- References -- 2 - Green protocols for active pharmaceutical ingredients (API) -- 2.1 Introduction -- 2.2 Green protocols for active pharmaceutical ingredient (API): case studies -- 2.3 Conclusion -- References -- 3 - Green polyols for polyurethane applications and nanomaterials -- 3.1 Polyurethanes -- 3.2 Isocyanates for polyurethane production -- 3.3 Polyols for polyurethane production -- 3.3.1 Polyols for flexible polyurethanes -- 3.3.2 Polyols for rigid polyurethanes -- 3.4 En route to increased sustainability -- 3.5 Catalysts for the production of polyethercarbonate polyols -- 3.6 Reaction engineering aspects of copolymerization of CO 2 and epoxides -- 3.6.1 Batch process -- 3.6.2 Semi-Batch process -- 3.6.3 Continuous process -- 3.7 Polyurethane nanomaterials -- 3.8 Tuning polyurethane materials with nanoparticles -- 3.8.1 Applications in rigid foam -- 3.8.2 Multifunctionality for applications -- 3.9 Selected applications of polyurethane nanomaterials -- 3.9.1 Nanocontainers in dyeing -- 3.10 Selected biomedical applications of polyurethane nanomaterials -- 3.10.1 Biomedical applications -- 3.11 Conclusions -- Acknowledgements -- References. , 4 - A chapter on synthesis of various heterocyclic compounds by environmentally friendly green chemistry technologies -- 4.1 Introduction -- 4.2 Green synthesis of some bioactive heterocyclic compounds by using different techniques and biocatalyst -- 4.2.1 Triazoles -- 4.2.2 Triazines -- 4.2.3 Benzimidazoles and imidazoles -- 4.2.4 Benzoxazoles -- 4.2.4.1 Oxadiazoles -- 4.2.5 Benzothiazoles -- 4.2.6 Miscellaneous -- 4.3 Current state of execution of green chemistry -- 4.4 Conclusion -- Acknowledgements -- References -- 5 - Greener synthesis of enzymes from marine microbes using nanomaterials -- 5.1 Introduction -- 5.2 Enzymes -- 5.2.1 Nomenclature of enzymes -- 5.2.2 Classification of enzymes -- 5.2.3 Properties and characteristics of enzymes -- 5.3 Marine sources -- 5.3.1 Role of microbes in regulating temperatures -- 5.3.2 Biological responses of microbes to ocean global change -- 5.4 Marine enzymes -- 5.4.1 Sources of marine enzymes -- 5.4.1.1 Bacteria -- 5.4.1.2 Fungi -- 5.4.1.3 Algae -- 5.4.1.4 Viruses -- 5.4.2 Role of the marine environment -- 5.5 Cultivation of marine microbes -- 5.5.1 Techniques available to culture the unculturable -- 5.6 Green synthesis of marine enzymes -- 5.6.1 Marine bacterium: enzymes and bacterium pathways -- 5.6.2 Marine fungi: enzymes and fungal pathways -- 5.6.3 Marine algae: enzymes and algal pathways -- 5.7 Applications of microbial enzymes -- 5.7.1 Medicine and biotechnology -- 5.7.2 Energy and biofuels -- 5.7.3 Food, nutrition and agriculture -- 5.7.4 Others -- 5.8 Conclusions and future perspectives -- References -- Part II - Greener Synthesis: Synthesis at Nanoscale -- 6 - Green synthesis of iron oxide nanoparticles using plant extracts and its biological application -- 6.1 Background -- 6.1.1 History of iron -- 6.1.2 Biological significance of iron. , 6.1.3 Brief outline for the synthesis of iron oxide nanoparticles -- 6.1.3.1 Physical methods -- 6.1.3.2 Chemical methods -- 6.1.3.3 Biological approach -- 6.1.4 Characterization of iron oxide nanoparticles -- 6.2 Mechanism of the biosynthesized iron oxide nanoparticles formation -- 6.3 Theranostics applications of biosynthesized iron oxide nanoparticles -- 6.3.1 Anticancer activity -- 6.3.2 Antimicrobial activity -- 6.3.3 Neuroprotective activity -- 6.3.4 Wound healing properties -- 6.3.5 Bioimaging activity -- 6.3.6 Biosensing activity -- 6.3.7 Antioxidant activity -- 6.3.8 Hyperthermic activity -- 6.4 Other applications of biosynthesized iron oxide nanoparticles -- 6.4.1 Photocatalytic activity -- 6.4.2 Dye and heavy metal removal -- 6.5 Limitations of biosynthesized iron oxide nanoparticles -- 6.6 Toxicity of biosynthesized iron oxide nanoparticles -- 6.7 Conclusions and future perspective -- Acknowledgment -- Abbreviations -- References -- 7 - Green synthesis of selenium nanoparticles: characterization and application -- 7.1 Introduction -- 7.2 Synthesis of selenium nanoparticles -- 7.2.1 Biological approach for SeNPs synthesis -- 7.2.2 Green chemical approach for SeNPs synthesis -- 7.2.3 Green physical approach for SeNPs synthesis -- 7.3 Characterization of selenium nanoparticles -- 7.3.1 Determination of yield of SeNPs synthesis -- 7.3.2 Monitoring of SeNPs formation -- 7.3.3 Microscopic techniques for morphology and particle size determination -- 7.3.4 Particle size, particle size distribution, and particle number concentration determination using analytical methods -- 7.3.5 Analysis of SeNPs surface-associated (bio)molecules -- 7.4 Application of selenium nanoparticles -- 7.4.1 SeNPs as a new source of selenium in human diet -- 7.4.2 Anticancer, antiviral, and antimicrobial treatment. , 7.4.3 SeNPs as a detoxifying agent -- 7.5 Conclusion -- Acknowledgment -- References -- 8 - Biosynthesis of silver sulfide nanoparticle and its applications -- 8.1 Introduction -- 8.2 Green synthesis of NPs -- 8.2.1 Green synthesis of Ag 2 S NPs from plants -- 8.2.2 Biosynthesis of Ag 2 S NPs from microbes -- 8.3 Recent applications of biosynthesized Ag 2 S NPs -- 8.4 Conclusion -- References -- 9 - Plant-based green synthesis and applications of cuprous oxide nanoparticles -- 9.1 Introduction -- 9.2 Green synthesis of Cu 2 O NPs from different sources -- 9.2.1 Green synthesis of Cu 2 O NPs from plants -- 9.3 Applications of biosynthesized Cu 2 O NPs -- 9.3.1 Antimicrobial applications -- 9.3.2 Photocatalytic applications -- 9.4 Conclusion and future prospective -- References -- 10 - Phytogenic synthesis of manganese dioxide nanoparticles using plant extracts and their biological application -- 10.1 Introduction -- 10.2 Green synthesis of MnO 2 NPs -- 10.2.1 Green synthesis of MnO 2 NPs from plants -- 10.3 Characterization of MnO 2 NPs -- 10.4 Biological applications of phytogenically synthesized MnO 2 NPs -- 10.5 Conclusion and future direction -- References -- 11 - Greener synthesis of carbon dots -- 11.1 Introduction -- 11.2 C-Dot structure, morphology and optical properties -- 11.3 Vanished the photoluminescence quantum yield (PL QY percent) -- 11.3.1 Surface defect of C-Dots -- 11.3.1.1 Odd sp 2 and isolated sp 2 , sp 3 dangling bonds -- 11.3.1.2 Nonradiative electron-hole recombination -- 11.3.2 Lewis acids basis complexes -- 11.4 Enhancement the photoluminescence quantum yield (PL QY percent) -- 11.4.1 Effect of the use of hydrophilic precursors compared with use of hydrophobic precursors on QY percent -- 11.4.2 Effect of the reaction temperatures of carbon pyrolysis on QY percent. , 11.4.3 Effect of hydrothermal time on QY percent -- 11.4.4 Effect of doping C-Dots with heterogonous atoms on QY%percent -- 11.5 Determination of quantum yield (QY) -- 11.6 Kind of surface modification of C-Dots -- 11.6.1 Covalently surface modification and passivation of C-Dots -- 11.6.2 Noncovalent surface modification and passivation of C-Dots -- 11.7 Advantages of C-Dots surface modification -- 11.8 Disadvantages of C-Dots surface modification -- 11.9 Natural materials selected to C-Dots synthesis -- References -- 12 - Greener synthesis and stabilization of metallic nanoparticles in ionic liquids -- 12.1 Introduction -- 12.2 Synthesis of gold and silver nanoparticles (Au/Ag NPs) -- 12.3 Synthesis of palladium and rhodium nanoparticles (Pd and Rh NPS) -- 12.4 Synthesis of copper nanoparticles (Cu NPs) -- 12.5 Synthesis Ni nanoparticles (Ni- NP S ) -- 12.6 Synthesis of mono metallic and bimetallic combined nanoparticles -- References -- 13 - Green synthesis of carbon nanoparticles: characterization and their biocidal properties -- 13.1 Introduction -- 13.2 Varied types of carbon-based nanostructures -- 13.3 Fullerenes -- 13.4 Carbon nanotubes (CNTs) -- 13.5 Graphene -- 13.6 Diamond nanostructure -- 13.7 Green synthesis of carbon-based nanostructures (CNSs) -- 13.8 Characterization process of different carbon-based nanostructures (CNSs) -- 13.9 Antimicrobial activities of carbon nanostructures -- 13.10 Toxicity of carbon-based nanostructures -- 13.11 Biomedical applications of carbon-based nanostructures -- 13.12 Conclusion -- References -- 14 - Hierarchical nanoporous silica-based materials from marine diatoms -- 14.1 Introduction -- 14.2 Silicification of cell walls diatoms -- 14.3 Porous materials from diatoms -- 14.3.1 Diatom's silica frustules -- 14.3.2 Modified diatom's silica frustules. , 14.3.2.1 Metal-doped diatom's silica frustules via biomineralization.
    Additional Edition: ISBN 0-12-822446-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Springer
    UID:
    b3kat_BV046062770
    Edition: Living reference work, continuously updated edition
    ISBN: 9783319482811
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Springer
    UID:
    b3kat_BV045500955
    Format: 1 Online-Ressource (1227 illus., 805 illus. in color. eReference)
    ISBN: 9783319682556
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-319-68254-9
    Language: English
    Subjects: Physics , Biology
    RVK:
    RVK:
    RVK:
    Keywords: Werkstoffkunde ; Umweltverträglichkeit
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almafu_9959328696502883
    Format: 1 online resource
    ISBN: 9781118845547 , 1118845544 , 9781118845356 , 1118845358 , 9781118845530 , 1118845536 , 1118496973 , 9781118496978
    Content: "Provides an interdisciplinary approach to applying nanomaterials to disinfect water, air and soil while addressing possible environmental risks associated with nanoparticles. Remediation, toxicity, and nanoparticle structures are discussed"--
    Note: Nanomaterials for Environmental Protection; Copyright; Contents; Preface; List of Contributors; List of Abbreviations; Part I Remediation with Use of Metals, Metal Oxides, Complexes and Composites; Chapter 1 Groundwater Water Remediation by Static Diffusion Using Nano-Zero Valent Metals (Fe0, Cu0, Al0), n-FeHn+, n-Fe(OH)x, n-FeOOH, n-Fe-[OxHy](n+/−); 1.1 Introduction; 1.2 Contaminants Removed by n-Fe0, n-Cu0, and n-Al0; 1.3 Remediation Mechanisms; 1.4 Remediation Market; 1.5 Conclusions; Appendix 1.A List of Abbreviations and Equation Symbols. , Appendix 1.B Ions (Oxides, Hydrides, Peroxides, and Hydroxides) Removed by Precipitation Due to the Alteration of Eh and pH in Groundwater by ZVMAppendix 1.C Half Reactions and Redox Potentials Associated with ZVM; References; Chapter 2 Nanostructured Metal Oxides for Wastewater Disinfection; 2.1 Introduction; 2.2 Photoactive Metal Oxides; 2.3 Kinetics and Reaction Mechanisms; 2.4 Visible Light Absorbing Semiconductors; 2.5 Slurries or Immobilized Photocatalyst; 2.6 TiO2 Particles and Nanotubes; 2.7 Photocatalysis on TiO2 Nanotubes; 2.8 Photoelectrocatalysis on TDN. , 2.9 Other Nanostructured Metal Oxides2.10 Conclusions; References; Chapter 3 Cu2O-Based Nanocomposites for Environmental Protection: Relationship between Structure and Photocatalytic Activity, Application, and Mechanism; 3.1 Introduction; 3.2 Structural Feature and Cu2O Modification; 3.3 Cu2O-Based Nanocomposites for Environmental Protection; 3.4 Conclusions and Outlook; Acknowledgments; References; Chapter 4 Multifunctional Nanocomposites for Environmental Remediation; 4.1 Introduction; 4.2 Multifunctional Nanocomposites Development: From Fabrication to Processing. , 4.3 Characterization and Property Analysis of Multifunctional Nanocomposites4.4 Environmental Remediation through Multifunctional Nanocomposites; 4.5 Summary; References; Chapter 5 Nanomaterials for the Removal of Volatile Organic Compounds from Aqueous Solutions; 5.1 Introduction; 5.2 NMs for BTEX Removal; 5.3 Nanomaterials for Chlorobenzene Removal; 5.4 NMs for Chlorinated Alkenes Removal; 5.5 NMs for Phenol Removal; 5.6 The Impact of NMs on VOC Removal by Other Processes; 5.7 Challenges in the Use of NMs for VOC Remediation; References. , Chapter 6 Hybrid Metal Nanoparticle-Containing Polymer Nanofibers for Environmental Applications6.1 Introduction; 6.2 Challenges of Environmental Nanotechnology; 6.3 Electrospinning Technology; 6.4 Fabrication of Hybrid Metal NP-Containing Polymer Nanofibers; 6.5 Environmental Applications of Hybrid Metal NP-Containing Polymer Nanofibers; 6.6 Conclusions and Outlook; References; Chapter 7 Nanomaterials on the Basis of Chelating Agents, Metal Complexes, and Organometallics for Environmental Purposes; 7.1 Introduction; 7.2 Elemental Metals Functionalized with Chelating Ligands.
    Additional Edition: Print version: Nanomaterials for environmental protection. Hoboken, New Jersey : Wiley, 2014 ISBN 9781118496978
    Language: English
    Keywords: Electronic books. ; Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    b3kat_BV046283727
    Format: 1 Online-Ressource (X, 1100 Seiten)
    Edition: Living reference work, continuously updated edition
    ISBN: 9783030111557
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Springer
    UID:
    b3kat_BV045948383
    Format: 1 Online-Ressource (XV, 790 p. 1077 illus., 673 illus. in color)
    ISBN: 9783030035051
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-03504-4
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-03506-8
    Language: English
    Subjects: Chemistry/Pharmacy
    RVK:
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    almahu_BV047082771
    Format: xv, 790 Seiten : , Illustrationen, Diagramme (überwiegend farbig).
    ISBN: 978-3-030-03504-4
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-3-030-03505-1
    Language: English
    Subjects: Chemistry/Pharmacy
    RVK:
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    gbv_678625298
    Format: XXVII, 836 S. , Ill., graph. Darst , 1 CD-ROM (12 cm)
    ISBN: 9781439853436
    Content: "As nanotechnology has developed over the last two decades, some nanostructures, such as nanotubes, nanowires, and nanoparticles, have become very well known. However, recent research has led to the discovery of other, less common nanoforms, which often serve as building blocks for more complex structures. This book covers these structures and outlines their potential use in many current and future applications, in particular as functional blocks in electronics, batteries, catalysis, ultrahigh density data storage, and drug delivery. The text first discusses the methods used to produce nanostructures and then presents examples of various nanostructures. Describes various nanostructures that are little known in the scientific world. Offers a unifying vision of the synthesis of nanostructures and the generalization of rare nanoforms. Discusses current and future applications. Includes a CD-ROM with color versions of more than 100 nanostructures"--
    Note: Includes bibliographical references and indexes , CD-ROM Beil.: Includes color versions of more than 100 nanostructures. - Includes bibliographical references and indexes
    Additional Edition: Erscheint auch als Online-Ausgabe Kharisov, Boris I. Handbook of less-common nanostructures Boca Raton, FL : CRC Press, 2012 ISBN 9781280122262
    Additional Edition: ISBN 1280122269
    Additional Edition: ISBN 9781439853443
    Language: English
    Subjects: Chemistry/Pharmacy , Physics
    RVK:
    RVK:
    Keywords: Nanostrukturiertes Material
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    edocfu_9960074481102883
    Format: 1 online resource (680 pages)
    ISBN: 0-12-822447-9
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- Part I - Greener Synthesis: Synthesis at Macroscale -- 1 - Polyhydroxyalkanoates: naturally occurring microbial polymers suitable for nanotechnology applications -- 1.1 Introduction -- 1.2 Polyhydroxyalkanoates: biobased and biodegradable polymers -- 1.2.1 Chemical structure -- 1.2.2 Microbial cultivation and polymer synthesis -- 1.3 Polyhydroxyalkanoates as a source of nanotechnology applications -- 1.3.1 Tissue engineering -- 1.3.2 Drug delivery systems -- 1.3.3 Enzyme immobilization -- 1.4 Future trends and concluding remarks -- Summary -- References -- 2 - Green protocols for active pharmaceutical ingredients (API) -- 2.1 Introduction -- 2.2 Green protocols for active pharmaceutical ingredient (API): case studies -- 2.3 Conclusion -- References -- 3 - Green polyols for polyurethane applications and nanomaterials -- 3.1 Polyurethanes -- 3.2 Isocyanates for polyurethane production -- 3.3 Polyols for polyurethane production -- 3.3.1 Polyols for flexible polyurethanes -- 3.3.2 Polyols for rigid polyurethanes -- 3.4 En route to increased sustainability -- 3.5 Catalysts for the production of polyethercarbonate polyols -- 3.6 Reaction engineering aspects of copolymerization of CO 2 and epoxides -- 3.6.1 Batch process -- 3.6.2 Semi-Batch process -- 3.6.3 Continuous process -- 3.7 Polyurethane nanomaterials -- 3.8 Tuning polyurethane materials with nanoparticles -- 3.8.1 Applications in rigid foam -- 3.8.2 Multifunctionality for applications -- 3.9 Selected applications of polyurethane nanomaterials -- 3.9.1 Nanocontainers in dyeing -- 3.10 Selected biomedical applications of polyurethane nanomaterials -- 3.10.1 Biomedical applications -- 3.11 Conclusions -- Acknowledgements -- References. , 4 - A chapter on synthesis of various heterocyclic compounds by environmentally friendly green chemistry technologies -- 4.1 Introduction -- 4.2 Green synthesis of some bioactive heterocyclic compounds by using different techniques and biocatalyst -- 4.2.1 Triazoles -- 4.2.2 Triazines -- 4.2.3 Benzimidazoles and imidazoles -- 4.2.4 Benzoxazoles -- 4.2.4.1 Oxadiazoles -- 4.2.5 Benzothiazoles -- 4.2.6 Miscellaneous -- 4.3 Current state of execution of green chemistry -- 4.4 Conclusion -- Acknowledgements -- References -- 5 - Greener synthesis of enzymes from marine microbes using nanomaterials -- 5.1 Introduction -- 5.2 Enzymes -- 5.2.1 Nomenclature of enzymes -- 5.2.2 Classification of enzymes -- 5.2.3 Properties and characteristics of enzymes -- 5.3 Marine sources -- 5.3.1 Role of microbes in regulating temperatures -- 5.3.2 Biological responses of microbes to ocean global change -- 5.4 Marine enzymes -- 5.4.1 Sources of marine enzymes -- 5.4.1.1 Bacteria -- 5.4.1.2 Fungi -- 5.4.1.3 Algae -- 5.4.1.4 Viruses -- 5.4.2 Role of the marine environment -- 5.5 Cultivation of marine microbes -- 5.5.1 Techniques available to culture the unculturable -- 5.6 Green synthesis of marine enzymes -- 5.6.1 Marine bacterium: enzymes and bacterium pathways -- 5.6.2 Marine fungi: enzymes and fungal pathways -- 5.6.3 Marine algae: enzymes and algal pathways -- 5.7 Applications of microbial enzymes -- 5.7.1 Medicine and biotechnology -- 5.7.2 Energy and biofuels -- 5.7.3 Food, nutrition and agriculture -- 5.7.4 Others -- 5.8 Conclusions and future perspectives -- References -- Part II - Greener Synthesis: Synthesis at Nanoscale -- 6 - Green synthesis of iron oxide nanoparticles using plant extracts and its biological application -- 6.1 Background -- 6.1.1 History of iron -- 6.1.2 Biological significance of iron. , 6.1.3 Brief outline for the synthesis of iron oxide nanoparticles -- 6.1.3.1 Physical methods -- 6.1.3.2 Chemical methods -- 6.1.3.3 Biological approach -- 6.1.4 Characterization of iron oxide nanoparticles -- 6.2 Mechanism of the biosynthesized iron oxide nanoparticles formation -- 6.3 Theranostics applications of biosynthesized iron oxide nanoparticles -- 6.3.1 Anticancer activity -- 6.3.2 Antimicrobial activity -- 6.3.3 Neuroprotective activity -- 6.3.4 Wound healing properties -- 6.3.5 Bioimaging activity -- 6.3.6 Biosensing activity -- 6.3.7 Antioxidant activity -- 6.3.8 Hyperthermic activity -- 6.4 Other applications of biosynthesized iron oxide nanoparticles -- 6.4.1 Photocatalytic activity -- 6.4.2 Dye and heavy metal removal -- 6.5 Limitations of biosynthesized iron oxide nanoparticles -- 6.6 Toxicity of biosynthesized iron oxide nanoparticles -- 6.7 Conclusions and future perspective -- Acknowledgment -- Abbreviations -- References -- 7 - Green synthesis of selenium nanoparticles: characterization and application -- 7.1 Introduction -- 7.2 Synthesis of selenium nanoparticles -- 7.2.1 Biological approach for SeNPs synthesis -- 7.2.2 Green chemical approach for SeNPs synthesis -- 7.2.3 Green physical approach for SeNPs synthesis -- 7.3 Characterization of selenium nanoparticles -- 7.3.1 Determination of yield of SeNPs synthesis -- 7.3.2 Monitoring of SeNPs formation -- 7.3.3 Microscopic techniques for morphology and particle size determination -- 7.3.4 Particle size, particle size distribution, and particle number concentration determination using analytical methods -- 7.3.5 Analysis of SeNPs surface-associated (bio)molecules -- 7.4 Application of selenium nanoparticles -- 7.4.1 SeNPs as a new source of selenium in human diet -- 7.4.2 Anticancer, antiviral, and antimicrobial treatment. , 7.4.3 SeNPs as a detoxifying agent -- 7.5 Conclusion -- Acknowledgment -- References -- 8 - Biosynthesis of silver sulfide nanoparticle and its applications -- 8.1 Introduction -- 8.2 Green synthesis of NPs -- 8.2.1 Green synthesis of Ag 2 S NPs from plants -- 8.2.2 Biosynthesis of Ag 2 S NPs from microbes -- 8.3 Recent applications of biosynthesized Ag 2 S NPs -- 8.4 Conclusion -- References -- 9 - Plant-based green synthesis and applications of cuprous oxide nanoparticles -- 9.1 Introduction -- 9.2 Green synthesis of Cu 2 O NPs from different sources -- 9.2.1 Green synthesis of Cu 2 O NPs from plants -- 9.3 Applications of biosynthesized Cu 2 O NPs -- 9.3.1 Antimicrobial applications -- 9.3.2 Photocatalytic applications -- 9.4 Conclusion and future prospective -- References -- 10 - Phytogenic synthesis of manganese dioxide nanoparticles using plant extracts and their biological application -- 10.1 Introduction -- 10.2 Green synthesis of MnO 2 NPs -- 10.2.1 Green synthesis of MnO 2 NPs from plants -- 10.3 Characterization of MnO 2 NPs -- 10.4 Biological applications of phytogenically synthesized MnO 2 NPs -- 10.5 Conclusion and future direction -- References -- 11 - Greener synthesis of carbon dots -- 11.1 Introduction -- 11.2 C-Dot structure, morphology and optical properties -- 11.3 Vanished the photoluminescence quantum yield (PL QY percent) -- 11.3.1 Surface defect of C-Dots -- 11.3.1.1 Odd sp 2 and isolated sp 2 , sp 3 dangling bonds -- 11.3.1.2 Nonradiative electron-hole recombination -- 11.3.2 Lewis acids basis complexes -- 11.4 Enhancement the photoluminescence quantum yield (PL QY percent) -- 11.4.1 Effect of the use of hydrophilic precursors compared with use of hydrophobic precursors on QY percent -- 11.4.2 Effect of the reaction temperatures of carbon pyrolysis on QY percent. , 11.4.3 Effect of hydrothermal time on QY percent -- 11.4.4 Effect of doping C-Dots with heterogonous atoms on QY%percent -- 11.5 Determination of quantum yield (QY) -- 11.6 Kind of surface modification of C-Dots -- 11.6.1 Covalently surface modification and passivation of C-Dots -- 11.6.2 Noncovalent surface modification and passivation of C-Dots -- 11.7 Advantages of C-Dots surface modification -- 11.8 Disadvantages of C-Dots surface modification -- 11.9 Natural materials selected to C-Dots synthesis -- References -- 12 - Greener synthesis and stabilization of metallic nanoparticles in ionic liquids -- 12.1 Introduction -- 12.2 Synthesis of gold and silver nanoparticles (Au/Ag NPs) -- 12.3 Synthesis of palladium and rhodium nanoparticles (Pd and Rh NPS) -- 12.4 Synthesis of copper nanoparticles (Cu NPs) -- 12.5 Synthesis Ni nanoparticles (Ni- NP S ) -- 12.6 Synthesis of mono metallic and bimetallic combined nanoparticles -- References -- 13 - Green synthesis of carbon nanoparticles: characterization and their biocidal properties -- 13.1 Introduction -- 13.2 Varied types of carbon-based nanostructures -- 13.3 Fullerenes -- 13.4 Carbon nanotubes (CNTs) -- 13.5 Graphene -- 13.6 Diamond nanostructure -- 13.7 Green synthesis of carbon-based nanostructures (CNSs) -- 13.8 Characterization process of different carbon-based nanostructures (CNSs) -- 13.9 Antimicrobial activities of carbon nanostructures -- 13.10 Toxicity of carbon-based nanostructures -- 13.11 Biomedical applications of carbon-based nanostructures -- 13.12 Conclusion -- References -- 14 - Hierarchical nanoporous silica-based materials from marine diatoms -- 14.1 Introduction -- 14.2 Silicification of cell walls diatoms -- 14.3 Porous materials from diatoms -- 14.3.1 Diatom's silica frustules -- 14.3.2 Modified diatom's silica frustules. , 14.3.2.1 Metal-doped diatom's silica frustules via biomineralization.
    Additional Edition: ISBN 0-12-822446-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages