feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Access
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing, | Cham :Springer.
    UID:
    almahu_BV046084402
    Format: 1 Online-Ressource (XI, 235 Seiten) : , Illustrationen.
    Edition: 1st ed. 2019
    ISBN: 978-3-030-18248-9
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-18247-2
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-18249-6
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-18250-2
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_BV046229513
    Format: 1 Online-Ressource (XV, 219 Seiten) : , Illustrationen, Diagramme (teilweise farbig).
    ISBN: 978-981-150-410-5
    Series Statement: Energy, Environment, and Sustainability
    Additional Edition: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-981-150-409-9
    Additional Edition: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-981-150-412-9
    Language: English
    Subjects: Engineering , General works
    RVK:
    RVK:
    Keywords: Biomasse ; Bioenergieerzeugung ; Bioenergie
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almahu_9948212053602882
    Format: 1 online resource (643 pages)
    ISBN: 0-12-818997-5
    Note: Includes index. , Front Cover -- Refining Biomass Residues for Sustainable Energy and Bioproducts -- Copyright Page -- Contents -- List of contributors -- Preface -- I. Concept of integrated biorefinery systems for waste management -- 1 Solid waste biorefineries -- 1.1 Introduction -- 1.2 Solid wastes -- 1.2.1 Agricultural and forestry residues -- 1.2.2 Municipal solid waste -- 1.2.3 Properties of municipal solid waste -- 1.2.4 Animal manure -- 1.2.5 Sewage sludge -- 1.3 Biomass pretreatment methods -- 1.4 Pyrolysis -- 1.4.1 Methods characterizing -- 1.4.2 Pyrolysis reactors -- 1.4.3 Microwave-assisted pyrolysis -- 1.4.4 Types-noncatalytic and catalytic -- 1.5 Liquid yield: influence of various parameters -- 1.5.1 Physicochemical properties of biomass -- 1.5.2 Chemical composition of biomass and its phases -- 1.6 Sludge derived bio-oil -- 1.7 Overview of the conversion of biomass to fuel -- 1.8 Future trends of refinery products -- References -- II. Sources and operation of waste biorefineries -- 2 Bacterial production of fatty acid and biodiesel: opportunity and challenges -- 2.1 Introduction -- 2.2 Fatty acid and hydrocarbon production -- 2.3 Fatty acid production using different carbon sources -- 2.3.1 Production of lipids and triacylglycerol from Gram-positive bacteria -- 2.3.2 Production of lipids and triacylglycerol from Gram-negative bacteria -- 2.3.3 Production of free fatty acid and triacylglycerol by genetically modified bacteria -- 2.3.4 Biosynthesis of fatty acid ethyl ester by engineered bacteria -- 2.4 Transesterification reaction -- 2.4.1 Catalytic transesterification methods -- 2.4.1.1 Acid-catalyzed transesterification methods -- 2.4.1.2 Alkali-catalyzed transesterification methods -- 2.4.1.3 Enzyme-catalyzed transesterification -- 2.5 Future prospects: opportunity and challenges -- 2.6 Conclusion -- Acknowledgments -- References. , 3 Microbial-derived natural bioproducts for a sustainable environment: a bioprospective for waste to wealth -- 3.1 Introduction -- 3.2 Fundamentals of biopolymers -- 3.2.1 Polyhydroxyalkanoate -- 3.2.1.1 Structural characteristics and analytical techniques of polyhydroxyalkanoates -- 3.2.1.2 Factors governing polyhydroxyalkanoate production -- 3.2.2 EPS and its composition -- 3.2.2.1 Definition of EPS -- 3.2.2.2 Distribution, structure, and characteristics of EPS -- 3.2.2.3 Structure of EPS -- 3.2.2.4 Characteristics -- 3.2.2.4.1 EPS biodegradability -- 3.2.2.4.2 Amphiphilic nature of EPS -- 3.2.2.4.3 Adsorption capacity -- 3.2.2.5 Parameters governing EPS production -- 3.3 Microbially synthesized polymers -- 3.3.1 Bacterial synthesis of polyhydroxyalkanoate -- 3.3.2 Bacterial synthesis of EPS -- 3.4 Molecular aspects of biopolymers -- 3.4.1 Molecular synthesis of polyhydroxyalkanoate -- 3.4.2 Molecular synthesis of EPS -- 3.5 Application aspects of microbial synthesized polymer -- 3.5.1 Applications of polyhydroxyalkanoate -- 3.5.2 Application of EPS -- 3.5.2.1 Industrial application -- 3.5.2.1.1 Food industry -- 3.5.2.1.2 Other industry -- 3.5.2.2 Biomedical application -- 3.5.2.3 Bioremediation -- 3.5.2.4 Pharmaceuticals -- 3.6 Life cycle analysis of biopolymers -- 3.6.1 Principles of LCA methodology (ISO 14040) -- 3.7 Conclusion -- References -- Further reading -- 4 Application of heterogeneous acid catalyst derived from biomass for biodiesel process intensification: a comprehensive review -- 4.1 Introduction -- 4.2 Acid catalyst mechanism for transesterification and esterification -- 4.3 Preparation of heterogeneous acid catalyst from biomass -- 4.3.1 Direct sulfonation method -- 4.3.2 Carbonation followed by sulfonation -- 4.3.2.1 Thermal process -- 4.3.2.2 Hydrothermal process -- 4.3.2.3 Solvothermal process. , 4.3.2.4 Carbonization with distinct activating agents -- 4.3.3 Special ingredient loaded on carbonized biomass -- 4.4 Parameter influencing catalyst preparation -- 4.5 Catalyst characterization techniques -- 4.6 Parameters affecting the reactions -- 4.7 Reusability of catalyst -- 4.8 Current challenges and future prospects -- 4.9 Conclusion -- Declaration -- References -- 5 Sources and operations of waste biorefineries -- 5.1 Introduction -- 5.2 Generation of waste -- 5.3 Waste biorefinery-concept and classification -- 5.4 Sources of waste biorefinery -- 5.4.1 Agriculture -- 5.4.2 Industrial -- 5.4.3 Municipal -- 5.4.4 Animal -- 5.4.5 Forestry -- 5.4.6 Food -- 5.5 Waste biorefinery methodologies -- 5.5.1 Thermochemical conversion -- 5.5.1.1 Direct or coordinate thermochemical treatment/liquefaction -- 5.5.1.1.1 Liquefaction using organic solvents -- 5.5.1.1.2 Hydrothermal liquefaction -- 5.5.1.1.3 Hydrothermal carbonization -- 5.5.1.2 Pyrolysis -- 5.5.1.3 Gasification -- 5.5.1.4 Combustion/burning -- 5.5.2 Biochemical -- 5.5.2.1 Fermentation -- 5.5.2.2 Anaerobic process -- 5.5.2.3 Enzymatic hydrolysis -- 5.6 Challenges -- 5.7 Future perspectives -- 5.8 Conclusion -- References -- 6 A Biorefinery approach towards development of renewable platform chemicals from sustainable biomass -- 6.1 Introduction -- 6.2 Renewable chemical industry and its growth -- 6.3 Contemporary approach toward biorefinery and its processing strategies -- 6.3.1 Biorefinery approach toward production of bulk chemicals -- 6.3.2 Bio-based chemicals -- 6.3.3 Strategies involved in the conversion of biomass -- 6.3.4 Constrains faced during the production of bio-based chemicals -- 6.4 Production of platform chemicals-an outlook -- 6.5 Regulations and sustainability of bulk chemicals -- 6.6 Conclusions -- References -- Further reading. , 7 Biorefinery of microalgae biomass cultivated in wastewaters -- 7.1 Introduction -- 7.2 Factors affecting algae growth when using wastewaters -- 7.2.1 Ammonia toxicity and pH -- 7.2.2 Turbid liquid wastes and light penetration -- 7.2.3 Heavy metals -- 7.3 Types of wastewaters and the adequacy of their use to grow algae -- 7.3.1 Digestates -- 7.3.2 Domestic flows -- 7.3.3 Landfill leachates -- 7.3.4 Treatment plants waste streams -- 7.4 Achieving a cost-effective microalgae biomass-based biorefinery system -- 7.4.1 Colocation of the biomass production system to an industry -- 7.4.2 Nutrients recycling -- 7.4.3 Efficient biomass fractionation and utilization -- 7.5 Conclusions -- References -- III. Industrial waste biorefineries -- 8 Generation of bioenergy from industrial waste using microbial fuel cell technology for the sustainable future -- 8.1 Introduction -- 8.2 Probable bioenergy from industrial effluents -- 8.3 Environmental effects due to industrial waste -- 8.3.1 Global warming -- 8.3.2 Water pollution -- 8.3.3 Air pollution -- 8.3.4 Soil pollution -- 8.3.5 Effect on human health -- 8.4 Traditional treatments methods on industrial waste -- 8.5 Microbial fuel cell technology -- 8.5.1 Microbial fuel cell configurations and designs -- 8.5.2 Advantages of microbial fuel cell -- 8.6 Research prospects in microbial fuel cell technology -- 8.6.1 Electrodes in microbial fuel cell -- 8.6.2 Effect of spacing between anode and cathode on power production -- 8.6.3 Effect of electrode surface area on power production -- 8.6.4 Influence of microorganisms in microbial fuel cell -- 8.7 Confront/dispute in microbial fuel cell -- 8.8 Utilization of microbial fuel cell -- 8.8.1 Electricity generation -- 8.8.2 Biohydrogen -- 8.8.3 Wastewater treatment -- 8.8.4 Biosensor -- 8.8.5 Artificial wastewater -- 8.9 Conclusion and future prospects of microbial fuel cell. , References -- Further reading -- 9 Assessment of crude glycerol utilization for sustainable development of biorefineries -- 9.1 Introduction -- 9.1.1 Characteristics of crude glycerol -- 9.2 The market scenario of glycerol -- 9.3 Refining of crude glycerol -- 9.3.1 Need for simple purification process -- 9.3.2 Sophisticated purification process -- 9.3.3 Comparison of properties of crude and partially refined and refined glycerol -- 9.4 Applications -- 9.4.1 Biological route -- 9.4.1.1 Glyceric acid -- 9.4.1.2 Lactic acid -- 9.4.1.3 Lipids -- 9.4.1.4 Hydrogen -- 9.4.1.5 Other generalities by biological route -- 9.4.2 Chemical route -- 9.4.2.1 Acrolein -- 9.4.2.2 Epichlorohydrin -- 9.4.2.3 Triacetin -- 9.4.3 Alternate uses -- 9.5 Conclusion -- References -- Further reading -- IV. Agroindustry waste biorefineries -- 10 Sweet sorghum: a potential resource for bioenergy production -- 10.1 Introduction -- 10.2 Sweet sorghum -- 10.2.1 Distribution -- 10.2.2 Production -- 10.2.3 Composition -- 10.2.3.1 Lignin -- 10.2.3.2 Cellulose -- 10.2.3.3 Hemicellulose -- 10.2.3.4 Other components -- 10.3 Pretreatment -- 10.3.1 Physical -- 10.3.2 Chemical -- 10.3.3 Biological -- 10.3.4 Combinatorial -- 10.3.5 Emerging technologies -- 10.3.6 Enzymatic hydrolysis -- 10.4 Biofuel production -- 10.4.1 Bioethanol -- 10.4.2 Biogas -- 10.4.3 Biochar -- 10.4.4 Value-added products -- 10.5 Output across the world -- 10.6 Techno-economic aspects -- 10.7 Conclusion -- References -- 11 Agroresidue-based biorefineries -- 11.1 Introduction -- 11.2 Value-added products from biomass -- 11.2.1 Fuels -- 11.2.1.1 Bioethanol -- 11.2.1.2 Biobutanol -- 11.2.1.3 Biohydrogen -- 11.2.1.4 Biogas -- 11.2.2 Biopolymer -- 11.2.2.1 Poly-3-hydroxybutyrate -- 11.2.2.2 Poly-γ-glutamic acid -- 11.2.3 Enzymes -- 11.2.4 Organic acids -- 11.2.4.1 Lactic acid -- 11.2.4.2 Fumaric acid. , 11.2.4.3 Itaconic acid.
    Additional Edition: ISBN 0-12-818996-7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almahu_9949225600802882
    Format: 1 online resource (863 pages)
    ISBN: 0-12-822431-2 , 0-12-822401-0
    Note: Front Cover -- Nanomaterials -- Copyright Page -- Contents -- List of contributors -- I. Introduction to Nanomaterials -- 1 Introduction to nanomaterials -- 1.1 Bioenergy and biofuel -- 1.2 Nanotechnology -- 1.3 Nanocatalysts in biofuel production systems -- 1.4 Performance of nanoparticles in biofuel production systems -- 1.5 Conclusion -- References -- 2 Recent advancements and challenges of nanomaterials application in biofuel production -- 2.1 Introduction -- 2.1.1 Biofuels -- 2.1.1.1 Bioethanol -- 2.1.1.2 Biohydrogen (bioH2) -- 2.1.1.3 Biogas -- 2.1.1.4 Bioelectricity -- 2.1.1.5 Biodiesel -- 2.1.2 Biofuel global view -- 2.2 Nanotechnological solution -- 2.2.1 Nanomaterials used in biofuel production -- 2.2.2 Types of nanomaterials -- 2.2.2.1 Magnetic nanoparticles -- 2.2.2.2 Carbon nanotubes -- 2.2.3 Preparation and fabrication of nanomaterials -- 2.2.4 Factors affecting the production of biofuel mediated through nanomaterials -- 2.2.4.1 Temperature and pressure -- 2.2.4.2 pH -- 2.2.4.3 Size and concentration of nanoparticles -- 2.2.4.4 Nanoparticles acting as nanocarriers -- 2.3 Potential engineered nanomaterials for biofuel production -- 2.3.1 Bioethanol production -- 2.3.2 Biohydrogen production -- 2.3.3 Biogas production -- 2.3.4 Bioelectricity production -- 2.3.5 Biodiesel production -- 2.4 Recent developments and applications -- 2.4.1 Recent developments -- 2.4.1.1 Scale up of biodiesel production through the application of nanobiocatalysts -- 2.4.2 Applications -- 2.4.2.1 Zerovalent iron nanoparticles -- 2.4.2.2 Metallic and metal oxide nanoparticles -- 2.4.2.3 Carbon-based nanomaterials -- 2.5 Human health and environmental safety assessment of nanomaterials used for biofuel production -- 2.5.1 Life cycle evaluation in high-risk applications -- 2.5.2 Impact of nanomaterials on the human body -- 2.5.3 Hazardousness of nanomaterials. , 2.5.4 Toxicity -- 2.6 Conclusions and future perspectives -- Acknowledgments -- References -- 3 Sustainable energy production using nanomaterials and nanotechnology -- 3.1 Introduction -- 3.2 Size of matter in the nanoscopic range -- 3.3 Application of nanotechnology in solar cells and solar fuels -- 3.4 Analysis of strength related to nanosubstances -- 3.5 Conclusion -- References -- II. Synthesis of Nanomaterials -- 4 Green technologies for the biosynthesis of nanoparticles and their applications for environmental sustainability -- 4.1 Introduction -- 4.2 Green synthesis of nanoparticles -- 4.3 Preparation of plant extract -- 4.4 Mechanism of nanoparticle synthesis from plant extract and its characterization -- 4.5 Preparation of microbial biomass -- 4.6 Mechanism of microbial synthesis of nanoparticles and their characterization -- 4.7 Application of biosynthesized nanoparticles for environmental sustainability -- 4.8 Advantages and future prospects -- 4.9 Conclusions -- References -- 5 Green synthesis of nanoparticles-metals and their oxides -- 5.1 Introduction -- 5.2 Why use green synthesis of nanoparticles? -- 5.3 Synthesis of metal and metal oxide nanoparticles -- 5.4 Routes for green synthesis -- 5.4.1 Synthesis using plant parts -- 5.4.2 Synthesis using bacteria -- 5.4.3 Synthesis using algae and fungi -- 5.5 General applications of nanoparticles obtained from green synthesis -- 5.6 Applications of nanoparticles in biofuels -- 5.7 Conclusion -- Abbreviations -- References -- 6 Synthesis of nanomaterials for biofuel and bioenergy applications -- 6.1 Introduction -- 6.1.1 Size and shape matter -- 6.1.2 Surface area to volume ratio -- 6.1.3 Incorporating bioactive components in biofuel conversion -- 6.1.4 Facile synthesis -- 6.2 Global market size of biofuels -- 6.2.1 Market share across the globe -- 6.2.2 Laws and regulations. , 6.2.3 Resource and environment dynamics accelerating biofuel dependence -- 6.2.3.1 Bioethanol -- 6.2.3.2 Biodiesel -- 6.3 Brief notes on biofuel and its types -- 6.3.1 Generations of biofuel -- 6.3.2 Types of biofuels -- 6.3.2.1 Bioethanol -- 6.3.2.2 Biodiesel -- 6.3.2.3 Fuel cells -- 6.3.2.4 Biogas -- 6.3.2.5 Biohydrogen -- 6.4 Two approaches to synthesizing nanoparticles -- 6.4.1 Top-down approaches -- 6.4.1.1 Ball-milling method -- 6.4.1.2 Inert gas condensation -- 6.4.1.3 Aerosol synthesis -- 6.4.1.4 Pyrolysis -- 6.4.1.5 Vapor deposition -- Sputtering -- Electron beam evaporation -- Vacuum arc vapor deposition -- Laser-assisted (LA) and pulsed laser deposition (PLD) -- 6.4.1.6 Explosion process -- 6.4.1.7 Thermal/laser ablation -- 6.4.1.8 Chemical etching -- 6.4.2 Bottom-up approach -- 6.4.2.1 Chemical vapor deposition (CVD) and plasma-assisted CVD -- 6.4.2.2 Coprecipitation methods -- 6.4.2.3 Sol-gel process -- 6.4.2.4 Stöber's process -- 6.4.2.5 Chemical reduction of metallic salts -- 6.4.2.6 Polyol process -- 6.4.2.7 Bioreduction (green synthesis) -- Green synthesis of NPs, advantages and disadvantages, and relevance to biofuel production -- 6.4.2.8 Electrochemical deposition -- 6.5 Current research trends and common approaches -- 6.5.1 Nanoparticles as heterogeneous catalysts -- 6.5.2 Nanoparticles as substrates for immobilizing enzymes -- 6.5.3 Hybrid nanoparticles for the entrapment method of whole-cell catalyst or enzyme-capsule nanosubstrates -- 6.5.4 Nanoparticles as an enhancing ingredient for biogas and hydrogen production -- 6.6 Conclusion -- References -- 7 Green approaches for nanoparticle synthesis: emerging trends -- 7.1 Introduction -- 7.2 Types of nanoparticles -- 7.2.1 Carbon-based nanoparticles -- 7.2.2 Ceramic nanoparticles -- 7.2.3 Metal nanoparticles -- 7.2.4 Semiconductor nanoparticles -- 7.2.5 Polymeric nanoparticles. , 7.2.6 Lipid-based nanoparticles -- 7.3 Synthesis of nanoparticles -- 7.3.1 Chemical methods -- 7.3.2 Physical methods -- 7.3.3 Photochemical methods -- 7.3.4 Biological methods -- 7.3.4.1 Plants as nanofactories for nanoparticle production -- 7.3.4.2 Algae as nanofactories for nanoparticle production -- 7.3.4.3 Microorganisms as nanofactories for nanoparticle production -- 7.4 Nanoparticles for biofuels and bioenergy -- 7.5 Advantages of biologically synthesized nanoparticles -- 7.6 Conclusion -- References -- 8 Green synthesis of nanoparticles and their applications in the area of bioenergy and biofuel production -- 8.1 Introduction -- 8.2 Nanomaterials for biofuel and bioenergy production -- 8.3 Biogenic synthesis of nanoparticles -- 8.4 Metallic oxide nanoparticles -- 8.4.1 Calcium oxide nanoparticles -- 8.4.2 Magnesium nanoparticles -- 8.4.3 Metal oxide nanoparticle-mediated biofuel production -- 8.4.4 Zinc oxide nanoparticles -- 8.4.5 Performance of nanocatalysts -- 8.4.6 Titanium oxide nanoparticles -- 8.4.7 Production of biofuel by biogenically synthesized algae-based nanoparticles -- 8.4.8 Role of nanotechnology in the cultivation of algae and induction of lipid -- 8.4.9 Nanoparticle-associated bioethanol formation -- 8.4.10 Nanoparticle-mediated biogas production -- 8.5 Conclusion -- References -- 9 Gold nanoparticles: Synthesis and applications in biofuel production -- 9.1 Introduction -- 9.2 Synthesis of gold nanoparticles -- 9.2.1 Chemical methods -- 9.2.2 Turkevich method -- 9.2.3 Brust-Schiffrin method -- 9.2.4 Electrochemical method -- 9.2.5 Seeding growth method -- 9.2.6 Ionic liquids method -- 9.2.7 Sonochemical method -- 9.2.8 Biological method -- 9.3 Nanotechnology in biofuel production -- 9.3.1 Nanocatalysts in biodiesel production -- 9.3.2 Nanocatalysts in bioethanol production -- 9.3.3 Nanotechnology in biogas production. , 9.3.4 Nanoparticles in bioenergy production -- 9.4 Conclusion -- 9.5 Future perspective -- References -- 10 Green synthesis of metal oxide nanomaterials for biofuel production -- 10.1 Introduction -- 10.2 Synthesis of metal oxide nanomaterials -- 10.3 Green synthesis of metal oxide nanomaterials -- 10.4 Mechanism of green synthesis of metal oxide nanomaterials -- 10.5 Characterization of metal oxide nanomaterials -- 10.6 ZnO-based catalysts for biofuel production -- 10.7 Future prospects -- 10.8 Conclusion -- References -- 11 Green synthesis of metallic nanoparticles: a review -- 11.1 Introduction -- 11.2 Characteristics of nanoparticles -- 11.3 Synthesis of nanoparticles -- 11.4 Formation of nanoparticles -- 11.4.1 By microorganisms -- 11.4.2 By waste material -- 11.4.2.1 From fruit waste -- 11.4.2.2 From weeds -- 11.4.2.3 From eggshell and rice husk -- 11.4.2.4 From animal waste -- 11.4.2.5 From e-waste -- 11.5 Nanoparticle applications -- 11.5.1 Drug delivery -- 11.5.2 Biosensors -- 11.5.3 Sorting and molecule detection by magnetic particles -- 11.5.4 Reaction (rate) enhancement factor -- 11.5.5 Antibacterial action -- 11.5.6 Antifungal action -- 11.5.7 Antiparasitic action -- 11.5.8 Antifouling action -- 11.6 Production of bioethanol and biodiesel using nanotechnology -- 11.6.1 Nanotechnology for biofuel production from butchery waste -- 11.6.2 Nanotechnology for biofuel production from spent tea -- 11.6.3 Nanofarming technology for obtaining biofuel from algal biomass -- 11.6.4 Nanotechnology advances for biogas production -- 11.7 Conclusion -- 11.8 Future perspectives -- References -- 12 Green synthesis of nanoparticles from microbes and their prospective applications -- 12.1 Introduction -- 12.2 Green sources of nanoparticles -- 12.3 Microbial synthesis of nanoparticles -- 12.4 Microbial metabolites for synthesizing nanoparticles. , 12.5 Enzyme-mediated synthesis of nanoparticles.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    gbv_671108336
    Format: 240 S. , überw. Ill.
    Edition: 1. publ. in India
    ISBN: 9788189995614 , 9781935677185
    Note: Ausstellungskatalog
    Language: English
    Subjects: Art History
    RVK:
    Keywords: Tagore, Rabindranath 1861-1941 ; Malerei ; Ausstellungskatalog
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    b3kat_BV046083301
    Format: 1 Online-Ressource (XIX, 858 p. 560 illus., 408 illus. in color)
    Edition: 1st ed. 2020
    ISBN: 9789811387678
    Series Statement: Lecture Notes in Mechanical Engineering
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-138-766-1
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-138-768-5
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-138-769-2
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    b3kat_BV046059461
    Format: 1 Online-Ressource (xvii, 632 Seiten) , Illustrationen, Diagramme (teilweise farbig)
    ISBN: 9783030011239
    Series Statement: Trends in mathematics
    In: 2
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-01122-2
    Language: English
    Subjects: Mathematics
    RVK:
    Keywords: Konferenzschrift
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    almafu_9961535807702883
    Format: 1 online resource (XIX, 378 p.)
    ISBN: 9783111398549
    Series Statement: Smart Computing Applications , 9/2
    Content: The book "Digital Transformation in Healthcare 5.0: Metaverse, Nanorobots, and Machine Learning" is a comprehensive discussion of disruptive technologies and their applications in healthcare. The book starts with an overview of blockchain technology's impact on the healthcare sector, emphasizing its potential to improve data security and interoperability. The book also discusses the Metaverse's role in healthcare transformation, utilizing a blockchain method to improve patient care and medical practices. The book also focuses on the interrelationships of Blockchain-Enabled Metaverse Healthcare Systems and Applications, highlighting innovative strategies. It also introduces an Intraocular Pressure Monitoring System for Glaucoma Patients, demonstrating the integration of IoT and Machine Learning for improved care. The book winds up with a Machine Learning Approach to Voice Analysis in Parkinson's disease Diagnosis, demonstrating the potential of voice analysis as a non-invasive diagnostic tool.
    Note: Frontmatter -- , About the book -- , Preface -- , Foreword -- , Contents -- , List of contributors -- , Chapter 1 The impact of blockchain technology on the healthcare system -- , Chapter 2 The role of metaverse in transforming healthcare: blockchain approach -- , Chapter 3 Blockchain-empowered metaverse healthcare systems and applications -- , Chapter 4 Role of artificial intelligence in disease diagnosis -- , Chapter 5 Machine learning for twinning the human body -- , Chapter 6 Improving patient care and healthcare management using bigdata analytics presents several research challenges -- , Chapter 7 An emerging trends of bioinformatics and big data analytics in healthcare -- , Chapter 8 Digital twins in medicine: leveraging machine learning for real-time diagnosis and treatment -- , Chapter 9 Nanorobots in healthcare -- , Chapter 10 Semantic-based approach for medical cyber-physical system (MCPS) with biometric authentication for secured privacy -- , Chapter 11 Integration of cognitive computing and AI for smart healthcare -- , Chapter 12 An overview of recommender systems in the healthcare domain: significant contributions, challenges, and future scope -- , Chapter 13 Advancements and challenges of using natural language processing in the healthcare sector -- , Chapter 14 Intraocular pressure monitoring system for glaucoma patients using IoT and machine learning -- , Chapter 15 A machine learning approach to voice analysis in Parkinson’s disease diagnosis -- , Index , Issued also in print. , In English.
    Additional Edition: ISBN 9783111399119
    Additional Edition: ISBN 9783111397382
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    almahu_9947411209702882
    Format: XXI, 514 p. 64 illus., 42 illus. in color. , online resource.
    ISBN: 9789811074318
    Series Statement: Energy, Environment, and Sustainability,
    Content: This book focuses on value addition to various waste streams, which include industrial waste, agricultural waste, and municipal solid and liquid waste. It addresses the utilization of waste to generate valuable products such as electricity, fuel, fertilizers, and chemicals, while placing special emphasis on environmental concerns and presenting a multidisciplinary approach for handling waste. Including chapters authored by prominent national and international experts, the book will be of interest to researchers, professionals and policymakers alike.
    Note: Introduction to Waste to Wealth -- Biopolymers from Wastes to High Value Products in Biomedicine -- Biosurfactants from Processed Wastes -- Synthesis of Value Added Biomimetic Material of Hydroxyapatite using Aqueous Calcereous Fish Wastes -- Utilization of Crude Glycerol from Biodiesel Industry for the Production of Value added Bioproducts -- Utilization of Citrus Waste Biomass for Antioxidant Production by Solid-State Fermentation -- Coffee Husk: A Potential Agro-Residue for Bioprocess -- Sustainable Valorization of Seafood Processing By-Products/Discards -- Bioeconomy and Biorefinery: Valorization of Hemicellulose from Lignocellulosic Biomass and Potential Use of Avocado Residues as a Promising Resource of Bioproducts -- Land Applications of Biochar: An Emerging Area -- Vermicomposting: A Green Technology for Organic Waste Management -- Bioelectricity Generation from Organic Wastes -- Economics of Solid Waste Management -- Biodiesel from Microalgae -- Food Waste Volarization by Microalage -- High Value Co-Products from Algae- An Innovational Way to Deal with Advance Algal Industry -- Wastewater Algae to Value Added Products -- The Pretreatment Technologies for Deconstruction of Lignocellulosic Biomass -- Bioethanol Production from Sugarcane Green Harvest Residues using Auxin Assisted Pretreatment -- Cellulosic Biomass Hydrolyzing Enzymes -- Consolidated Bioprocessing at High Temperature -- Wastes Valorization to Fuel and Chemicals through Pyrolysis: Technology, Feedstock, Products and Economic Analysis.
    In: Springer eBooks
    Additional Edition: Printed edition: ISBN 9789811074301
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    almafu_9959328229502883
    Format: 1 online resource (xvi, 265 pages) : , illustrations (some color)
    ISBN: 9783527630011 , 3527630015 , 9783527630028 , 3527630023 , 3527324070 , 9783527324071 , 1282686313 , 9781282686311 , 9786612686313 , 6612686316
    Content: This monograph provides special focus on methods and approaches for enhancing the performance of next-generation batteries. Deeper understanding of the mechanisms and strategies is conveyed by introductory chapters which explain electrochemical fundamentals and the development from classic batteries to advanced second-generation power cells and their degradation pathways.
    Note: Front Matter -- Introduction to Electrochemical Cells / R. Vasant Kumar, Thapanee Sarakonsri -- Primary Batteries / Thapanee Sarakonsri, R. Vasant Kumar -- A Review of Materials and Chemistry for Secondary Batteries / R. Vasant Kumar, Thapanee Sarakonsri -- Current and Potential Applications of Secondary Li Batteries / Katerina E. Aifantis, Stephen A. Hackney -- Li-Ion Cathodes: Materials Engineering through Chemistry / Stephen A. Hackney -- Next-Generation Anodes for Secondary Li-Ion Batteries / Katerina E. Aifantis -- Next-Generation Electrolytes for Li Batteries / Soo-Jin Park, Min-Kang Seo, Seok Kim -- Mechanics of Materials for Li-Battery Systems / Katerina E. Aifantis, Kurt Maute, Martin L. Dunn, Stephen A. Hackney -- Index.
    Additional Edition: Print version: High energy density lithium batteries. Weinheim : Wiley-VCH, ©2010 ISBN 9783527324071
    Additional Edition: ISBN 3527324070
    Language: English
    Keywords: Electronic books. ; Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages