feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    UID:
    almafu_BV049818824
    Format: 1 Online-Ressource (XXX, 738 p. 115 illus., 106 illus. in color).
    Edition: 1st ed. 2024
    ISBN: 978-3-031-58441-1
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-58440-4
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-58442-8
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-58443-5
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer Nature Switzerland, | Cham :Springer.
    UID:
    almafu_BV049781182
    Format: 1 Online-Ressource (XXII, 400 p. 52 illus., 49 illus. in color).
    Edition: 1st ed. 2024
    ISBN: 978-3-031-58456-5
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-58455-8
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-58457-2
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-58458-9
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almafu_BV049641153
    Format: 1 Online-Ressource (XVII, 450 p. 82 illus., 55 illus. in color).
    Edition: 1st ed. 2024
    ISBN: 978-3-031-51967-3
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-51966-6
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-51968-0
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-51969-7
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore, | Singapore :Springer.
    UID:
    almafu_BV048497041
    Format: 1 Online-Ressource (XXI, 702 p. 1 illus).
    Edition: 1st ed. 2022
    ISBN: 978-981-1943-20-1
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1943-19-5
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1943-21-8
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1943-22-5
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almafu_9961512167502883
    Format: 1 online resource (269 pages)
    Edition: 1st ed.
    ISBN: 1-78906-376-0
    Additional Edition: ISBN 1-78906-374-4
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edoccha_BV049641153
    Format: 1 Online-Ressource (XVII, 450 p. 82 illus., 55 illus. in color).
    Edition: 1st ed. 2024
    ISBN: 978-3-031-51967-3
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-51966-6
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-51968-0
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-51969-7
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    almahu_9948621203502882
    Format: 1 online resource (691 pages)
    ISBN: 0-12-820525-3
    Additional Edition: ISBN 0-12-820524-5
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    almahu_9949697744002882
    Format: 1 online resource (714 pages)
    ISBN: 0-323-88548-9
    Content: Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water focuses on the exploitation of plants and their associated microbes as a tool to degrade/detoxify/stabilize toxic and hazardous contaminants and restore the contaminated site. The book introduces various phytoremediation technologies using an array of plants and their associated microbes for environmental cleanup and sustainable development. The book mainly focuses on the remediation of toxic and hazardous environmental contaminants, their phytoremediation mechanisms and strategies, advances and challenges in the current scenario.
    Additional Edition: ISBN 0-323-85763-9
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    almahu_9949697689402882
    Format: 1 online resource (586 pages)
    ISBN: 0-323-98485-1
    Content: Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development provides comprehensive and advanced information on integrated environmental technologies and their limitations, challenges and potential applications in treatment of environmental pollutants and those that are discharged in wastewater from industrial, domestic and municipal sources. The book covers applied and recently developed integrated technologies to solve five major trends in the field of wastewater treatment, including nutrient removal and resource recovery, recalcitrant organic and inorganic compounds detoxification, energy saving, and biofuel and bioenergy production for environmental sustainability.
    Note: Front cover -- Half title -- Title -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- Preface -- Acknowledgments -- Chapter 1 Integration of photocatalytic and biological processes for treatment of complex effluent: Recent developments, trends, and advances -- 1.1 Introduction -- 1.2 Biological treatment of organic contaminants -- 1.2.1 Activated sludge process -- 1.2.2 Anaerobic digestion -- 1.2.3 Trickling bed filter/bioreactor -- 1.2.4 Membrane bioreactor -- 1.2.5 Moving bed biofilm reactor -- 1.3 Photocatalytic degradation of organic contaminants -- 1.4 Need for integrated process for treatment of complex effluent -- 1.5 Combined photocatalysis and biological process -- 1.5.1 Photocatalysis as pretreatment -- 1.5.2 Photocatalysis as post-treatment -- 1.5.3 Multistep processes -- 1.6 Mineralization and toxicity reduction -- 1.7 Pilot-scale integrated process -- 1.8 Conclusion -- References -- Chapter 2 Anaerobic ammonium oxidation (anammox) technology for nitrogen removal from wastewater: Recent advances and challenges -- 2.1 Introduction -- 2.2 Microbiology of anaerobic ammonium oxidation (anammox) -- 2.3 Techniques for enrichment of anammox -- 2.3.1 Anammox enrichment in batch experiments -- 2.3.2 Anammox enrichment in bioreactor systems -- 2.3.3 Sequencing batch reactor (SBR) -- 2.3.4 Upflow anaerobic sludge blanket (UASB) reactor -- 2.3.5 Upflow biofilter (UBF) -- 2.4 Molecular methods for identification of anammox -- 2.4.1 Polymerase chain reaction followed by denaturing gradient gel electrophoresis \(PCR-DGGE\) -- 2.4.2 Denaturing gradient gel electrophoresis (DGGE) -- 2.4.3 Fluorescent in situ hybridization -- 2.4.4 Real-time polymerase chain reaction -- 2.5 Preservation of anammox -- 2.6 Carriers and their effects on anammox -- 2.7 Application of anammox in wastewater treatment. , 2.8 Factors affecting treatment performance of anammox -- 2.8.1 pH -- 2.8.2 Temperature -- 2.8.3 Effect of substrate concentration -- 2.8.4 Dissolved oxygen (DO) concentration -- 2.8.5 Organic matter -- 2.8.6 Sludge retention time -- 2.9 Integration of anammox into other remediation technologies for effective wastewater treatment -- 2.10 Challenges and future prospects for anammox research -- 2.11 Conclusion and recommendations -- References -- Chapter 3 Integrated process technology for recycling and re-use of industrial and municipal wastewater: A review -- 3.1 Introduction -- 3.2 Wastewater treatment technologies -- 3.2.1 Differences between industrial and municipal wastewater -- 3.2.2 Classes of treatment processes -- 3.3 Integrated processes: examples and benefits -- 3.4 The future of water reuse opportunities -- 3.4.1 Potable usage -- 3.4.2 Nonpotable usage -- 3.5 Conclusion -- Acknowledgments -- References -- Chapter 4 Integrated production of biodiesel and industrial wastewater treatment by culturing oleaginous microorganisms -- 4.1 Alternative energy sources: biodiesel -- 4.1.1 Oleaginous microorganisms -- 4.1.2 Lipogenesis in oleaginous microorganisms and more important aspects of lipid accumulation -- 4.2 Substrates for SCO production by oleaginous microorganisms -- 4.2.1 Low-cost substrates for SCO production -- 4.3 Integrated strategies for simultaneous production of SCO and biological treatment of wastewaters by oleaginous microorganisms -- 4.3.1 Wastewaters as substrates of oleaginous microorganisms -- 4.3.2 Oleaginous microorganisms employed for simultaneous wastewater treatment and SCO production -- 4.3.3 Industrial application of the wastewater treatment by oleaginous microorganisms: advantages, technology, strategies, problems, and perspectives -- 4.4 Conclusions -- Acknowledgments -- References. , Chapter 5 Nature-inspired ecotechnological approaches toward recycling and recovery of resources from wastewater -- 5.1 Introduction -- 5.2 Living technologies: borrowing ideas and inspiration from Mother Nature -- 5.3 Genesis of the concept of "living machines" -- 5.4 Trademark tenets of living technologies: ten commandments (wisdom) of Mother Nature mark the hallmarks -- 5.5 Applications of living technologies: Mother Nature's Midas touch for transforming waste\(water\) into wealth -- 5.6 Designing traits for trading natural wastewater treatment systems -- 5.7 Tools of the trade -- 5.7.1 Floral components: the solar-based photosynthetic foundations -- 5.7.2 Faunal diversity -- 5.8 Variants of living technological systems -- 5.8.1 Floating treatment wetlands -- 5.8.2 Integrated waste stabilization ponds train system -- 5.8.3 Constructed wetlands: phytomicroremediation in Nature's image -- 5.8.4 Hydroponics: soilless cultivation -- 5.8.5 Wastewater-fed aquaculture: a win-win way to waste into wealth? -- 5.9 Conclusions -- References -- Chapter 6 Integrated microbial desalination cell and microbial electrolysis cell for wastewater treatment, bioelectricity generation, and biofuel production: Success, experience, challenges, and future prospects -- 6.1 Introduction -- 6.2 Microbial electrolysis cells (MECs) -- 6.2.1 MEC for wastewater treatment and hydrogen production -- 6.2.2 Integration MEC with other systems -- 6.2.3 MEC for the production of valuable products -- 6.3 Microbial desalination cells (MDCs) -- 6.3.1 Optimized MDC systems for wastewater treatment, salinity removal and power generation -- 6.3.2 Integrated MDC systems -- 6.3.3 MDC for the production of valuable products -- 6.4 Challenges and limitations -- 6.4.1 MEC challenges -- 6.4.2 MDC challenges -- 6.5. Conclusions and future perspectives -- References. , Chapter 7 Hydroxyapatite for environmental remediation of water/wastewater -- 7.1 Introduction -- 7.2 Synthesis and properties of hydroxyapatite -- 7.2.1 Synthesis techniques -- 7.2.2 Properties of hydroxyapatite -- 7.3 Hydroxyapatite as an adsorbent for wastewater treatment -- 7.3.1 Common pollutants in wastewater -- 7.3.2 Removal of pollutants -- 7.4 Mechanisms involved -- 7.4.1 Dissolution precipitation -- 7.4.2 Ion exchange -- 7.4.3 Physical adsorption -- 7.4.4 Electrostatic interactions -- 7.5 Recent trends in wastewater treatment with HAP -- 7.6 Conclusion and future perspectives -- Acknowledgments -- References -- Chapter 8 Algae coupled constructed wetland system for wastewater treatment -- 8.1 Introduction -- 8.2 Constructed wetlands in wastewater system -- 8.2.1 Classification -- 8.2.2 Design parameters -- 8.2.3 Removal efficiency -- 8.2.4 Limitations with constructed wetlands in wastewater treatment -- 8.3 Algae in wastewater treatment -- 8.3.1 Cultivation system for algae-mediated wastewater treatment -- 8.3.2 Limitation with algae-mediated wastewater treatment -- 8.4 Algae coupled constructed wetland -- 8.4.1 Removal of nutrients -- 8.4.2 Removal of organics -- 8.4.3 Removal of emerging contaminants -- 8.4.4 Challenges with algae coupled constructed wetland -- 8.5 Resource and energy recovery through algae coupled constructed wetland -- 8.6 Real-world application of algae coupled constructed wetland: perspectives -- 8.7 Conclusion and future prospects -- Acknowledgments -- References -- Chapter 9 Integrated CO2 sequestration, wastewater treatment, and biofuel production by microalgae culturing: Needs and limitations -- 9.1 Introduction -- 9.2 Integrated carbon sequestration and its sequestration technologies -- 9.2.1 Integrated approach in wastewater treatment -- 9.2.2 Limitations of carbon sequestration technologies. , 9.2.3 Applications of integrated carbon sequestration technologies -- 9.3 Microalgae-based biorefinery -- 9.3.1 Biorefinery products -- 9.4 Products obtained from biorefinery for biofuel industry -- 9.4.1 Bioethanol -- 9.4.2 Biodiesel -- 9.4.3 Biomethane -- 9.4.4 Biofertilizers -- 9.4.5 Biohydrogen -- 9.5 Applications of microalgal biomass -- 9.6 Limitations of algal biomass products -- 9.7 Conclusion -- Acknowledgments -- References -- Chapter 10 Physicochemical- biotechnological approaches for removal of contaminants from wastewater -- 10.1 Introduction -- 10.2 Water pollution -- 10.2.1 Causes and nature of contamination -- 10.3 Wastewater treatment - general scheme -- 10.4 Physicochemical approaches for removal of contaminants from wastewater -- 10.4.1 Screening and use of grit chambers -- 10.4.2 Flotation -- 10.4.3 Sedimentation -- 10.4.4 Centrifugal separation -- 10.4.5 Filtration -- 10.4.6 Reverse osmosis (RO) -- 10.5 Chemical approach -- 10.5.1 Neutralization -- 10.5.2 Precipitation -- 10.5.3 Flocculation -- 10.5.4 Redox reactions -- 10.5.5 Adsorption with activated carbon -- 10.5.6 Ozonation -- 10.5.7 Disinfection -- 10.6 Biotechnological approaches for removal of contaminants from wastewater -- 10.6.1 Bioremediation -- 10.6.2 Phytoremediation -- 10.6.3 Mycoremediation -- 10.6.4 Phycoremediation -- 10.6.5 Nanobiotechnology -- 10.7 Conclusions -- References -- Chapter 11 Integrated biopolymer and bioenergy production from organic wastes: Recent advances and future outlook -- 11.1 Introduction -- 11.2 Structural and chemical characteristics of biopolymer and bioenergy -- 11.3 Chemical insights into organic wastes -- 11.4 Traditional technologies for bioenergy and biopolymer production through organic wastes -- 11.4.1 Conventional incineration -- 11.4.2 Hydrothermal incineration and oxidation -- 11.4.3 Pyrolysis -- 11.4.4 Liquefaction. , 11.4.5 Gasification.
    Additional Edition: Print version: Kumar, Vineet Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development San Diego : Elsevier,c2022 ISBN 9780323911801
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    London, England :Academic Press,
    UID:
    almahu_9949372543602882
    Format: 1 online resource (834 pages)
    ISBN: 0-323-99480-6
    Series Statement: Developments in applied microbiology and biotechnology
    Content: Metagenomics to Bioremediation: Applications, Cutting Edge Tools, and Future Outlook provides detailed insight into metagenomics approaches to bioremediation in a comprehensive manner, thus enabling the analysis of microbial behavior at a community level under different environmental stresses during degradation and detoxification of environmental pollutants. The book summarizes each and all aspects of metagenomics applications to bioremediation, helping readers overcome the lack of updated information on advancement in microbial ecology dealing with pollution abatement. Users will find insight not only on the fundamentals of metagenomics and bioremediation, but also on recent trends and future expectations.
    Note: Intro -- Metagenomics to Bioremediation -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- Acknowledgments -- Section 1: Introduction to bioremediation and metagenomics -- Chapter 1: Bioremediation: A green technology for environmental cleanup -- 1. Introduction -- 2. Agents of bioremediation -- 2.1. Bioremediation by bacteria -- 2.2. Bioremediation by fungus -- 2.3. Bioremediation by algae -- 3. Role of biotechnology in bioremediation -- 4. Microorganisms to clean up contaminated environments -- 4.1. The role of microbes in bioremediation -- 4.2. How microbes destroy contaminants -- 4.3. Pollutants that are biodegradable -- 4.3.1. Hydrocarbons -- 4.3.2. Polycyclic aromatic hydrocarbons (PAHs) -- 4.3.3. Polychlorinated biphenyls (PCBs) -- 4.3.4. Pesticides -- 4.3.5. Dyes -- 4.3.6. Radionuclides -- 4.3.7. Heavy metals -- 5. Bacterial degradation -- 5.1. PGPR and PGPB degradation -- 5.2. Microfungi and mycorrhiza degradation -- 5.3. Yeasts degradation -- 6. Degradative capacities of algae and protozoa -- 7. Plant-assisted bioremediation -- 7.1. Mechanism of phytoremediation of contaminated soils -- 7.1.1. Phytoextraction (phytoaccumulation of contaminants) -- 7.1.2. Phytostabilization (immobilization of contaminants) -- 7.1.3. Phytovolatilization (evapotranspiration of detoxified contaminants) -- 7.1.4. Rhizofiltration -- 7.1.5. Phytostimulation (microbe stimulated phytoremediation) -- 8. Mycorrhiza assisted phytoremediation -- 9. Limitations of bioremediation -- 10. Conclusion -- Chapter 2: Recent trends in bioremediation of heavy metals -- 1. Introduction -- 2. Heavy metals: Sources and environmental effects -- 3. Effect of heavy metal toxicity on soil, microorganisms, and plants -- 4. Heavy metals toxicity in human beings -- 5. Bioremediation and its significance. , 5.1. The need for bioremediation: Demerits of conventional remediation methods -- 5.2. What is bioremediation? -- 5.3. Phytoremediation -- 5.4. Bioremediation with algae -- 5.5. Microbial bioremediation -- 5.5.1. Bacterial bioremediation -- 5.5.2. Fungal bioremediation -- 6. Metagenomics and its application in bioremediation -- 6.1. Metagenomics methodology -- 6.2. Application of metagenomics for the remediation of different contaminated mediums -- 7. Conclusion -- Chapter 3: Recent advances in bioremediation by metagenomics-based approach for pharmaceutical derived pollutants -- 1. Introduction -- 2. Bioremediation -- 2.1. Bioremediation methods involved in purifying air pollutants -- 2.2. Bioremediation in the removal of water pollutants -- 3. Bioremediation techniques -- 3.1. Ex situ bioremediation technologies -- 3.1.1. Biopile -- 3.1.2. Windows -- 3.1.3. Bioreactor -- 3.1.4. Land farming -- 3.2. In situ bioremediation techniques -- 3.2.1. Bioventing -- 3.2.2. Biosparging -- 3.2.3. Phytoremediation -- 3.2.4. Permeable reactive barrier (PRB) -- 3.2.5. Intrinsic bioremediation -- 4. Pharmaceutical wastes -- 4.1. Different types of pharmaceutical wastes -- 4.1.1. Over-the-counter drug wastes -- 4.1.2. Non-hazardous drug wastes -- 4.1.3. Hazardous drug wastes -- 5. Controlled drug wastes -- 5.1. Pharmaceuticals for veterinary use -- 5.2. Agricultural use of pharmaceutical -- 5.3. Sources of pharmaceutical waste products -- 5.3.1. Pharmaceutical manufacturing plants -- 5.3.2. Health care institution and extended care facilities -- 5.3.3. Personal care product (PCPs) manufacturers -- 5.4. Veterinary offices -- 6. Regulation of the disposal of pharmaceutical wastes -- 7. Characteristic hazardous wastes -- 8. Remediation methods for pharmaceutical waste -- 8.1. How bioremediation process helps in remediating pharmaceutical wastes?. , 8.2. Bioremediation of pharmaceutical wastes using cow dung/gomeya -- 8.2.1. Composition of cow dung/gomeya -- 8.3. Bioremediation of pharmaceuticals and pesticides -- 8.3.1. Antimicrobial agents -- 8.3.2. Degradation of biomedical waste by bioremediation process -- 8.3.3. Bioremediation of pesticides using cow dung -- 8.4. Mycoremediation: A process to remediate pharmaceutical wastes -- 8.5. Green approaches -- 9. Conclusion -- Chapter 4: Metagenomics in bioremediation: Recent advances, challenges, and perspectives -- 1. Introduction -- 2. Microorganisms that are important in biosorption -- 3. Omics approach in bioremediation/biosorption -- 4. Application of metagenomics in bioremediation -- 5. Exploring microbial communities using next-generation sequencing -- 5.1. Shotgun sequencing -- 5.2. Sanger sequencing -- 5.2.1. Short-read sequencing -- 5.2.2. Long-read (third-generation) sequencing -- 5.2.3. 16S rRNA amplicon sequencing -- 6. Molecular biology approach in bioremediation -- 6.1. 16S rRNA and other specific gene approaches -- 6.2. PCR, RT-PCR, and qPCR technologies -- 6.3. Temperature or denaturing gradient gel electrophoresis -- 6.4. Amplified ribosomal DNA restriction analysis and ribosomal intergenic spacer analysis -- 6.5. Terminal-restriction fragment length polymorphism (T-RFLP) -- 6.6. Fluorescent in situ hybridization (FISH) -- 6.7. Applications of DNA microarray technologies -- 6.8. Nucleic acids based stable isotope probing (SIP) -- 6.9. Compound-specific isotope analysis (CSIA) -- 7. Role of transcriptomics and metatranscriptomics in bioremediation -- 8. Conclusion and future direction -- Chapter 5: Metagenomic approaches for understanding microbial communities in contaminated environments: Bioinformatic too ... -- 1. Introduction -- 2. Sequencing-based study of environmental microbiomes. , 2.1. Metataxonomics or amplicon sequence-based microbiome surveys -- 2.2. Metagenomics -- 2.3. Metatranscriptomics -- 3. Bioinformatic analysis of high-throughput sequencing data -- 3.1. Quality control -- 3.2. 16S rRNA data analysis -- 3.3. Metagenomic classification -- 3.4. Metagenomic assembly -- 3.5. Binning and MAGs -- 3.6. Strain level metagenomic analysis -- 3.7. Assembly pipelines -- 3.8. Metatranscriptomic analysis -- 3.9. Integrated metatranscriptomic workflows -- 4. Microbial community structure and processes in contaminated environments -- 4.1. Petroleum hydrocarbons -- 4.2. Acid mine drainage -- 4.3. Radioactive waste -- 4.4. Pesticides and herbicides -- 4.5. Azo dyes -- 4.6. Industrial wastewaters -- 5. Challenges and future outlook -- 6. Conclusions -- Chapter 6: Microbial enzymes and their budding roles in bioremediation: Foreseen tool for combating environmental pollution -- 1. Introduction -- 2. Pollutants: The stubborn enemy -- 2.1. Heavy metals -- 2.1.1. Arsenic -- 2.1.2. Lead -- 2.1.3. Mercury -- 2.1.4. Chromium -- 2.2. Persistent organic pollutants (POPs) -- 2.3. Petroleum products -- 2.4. Radioactive isotopes -- 3. Bioremediation -- 3.1. Classification of bioremediation -- 3.1.1. In situ bioremediation -- 3.1.2. Ex situ bioremediation -- 3.2. Types of bioremediation -- 3.2.1. Bio-stimulation -- 3.2.2. Bio-augmentation -- 3.2.3. Mycoremediation -- 3.2.4. Enzymatic remediation -- 4. Microbial enzymes in bioremediation -- 4.1. Oxidoreductases -- 4.1.1. Oxygenases -- Mono-oxygenases -- Dioxygenases -- 4.1.2. Laccases -- 4.1.3. Peroxidases -- Lignin peroxidase (LiP) -- Manganese peroxidase (MnP) -- Versatile peroxidase -- 4.2. Hydrolases -- 4.2.1. Lipases -- 4.2.2. Cellulase -- 4.2.3. Protease -- 4.2.4. Carboxylesterases -- 4.2.5. Phosphotriesterases -- 4.2.6. Dehalogenases -- 5. Molecular advancements in bioremediation. , 5.1. Genetic engineering -- 5.2. Enzyme engineering -- 5.3. Enzyme immobilization -- 5.4. Nanozymes -- 6. Conclusion and future prospects -- Acknowledgments -- Chapter 7: Interface of `meta-omics in gut biome remediation to unravel the complications of environmental pollutants -- 1. Introduction -- 2. Environmental pollution-A rising social menace -- 3. Crucial transformations of pollutants as toxicants -- 4. Intrusions into the human system as various ailments -- 5. Beneficial microbial ecosystems-Overview -- 6. Gut biome as potential bio remediators to transformer toxicants -- 7. Biosorption of toxicants in the human body-The interplay of gastrointestinal (GI) microbiotas -- 8. Vital microbial metabolites and their mechanism in bioremediation targeting various environmental pollutants -- 9. The metabolization of gut microbiota on various environmental chemicals -- 9.1. Heavy metals -- 9.2. Pesticides -- 9.3. Plastics -- 10. Meta-omics, the tool to bridge host-microbe interactions -- 10.1. Metagenomics -- 10.2. Metatranscriptomics -- 10.3. Metaproteomics -- 10.4. Metabolomics -- 11. Metabolic modeling -- 12. Computational approaches to investigate the microbiome -- 13. Applications of GEM in gut bioremediation -- 14. Conclusion -- Section 2: Bioremediation and metagenomics in environmental remediation -- Chapter 8: Bioremediation: A favorable perspective to eliminate heavy metals from polluted soil -- 1. Heavy metal pollution and bioremediation -- 2. Types of bioremediation -- 3. Importance and applications of bioremediation -- 4. Heavy metals in soil pollution -- 5. Bioremediation of heavy metals -- 5.1. Bacterial bioremediation of cadmium (Cd) -- 5.2. Fungal bioremediation of cadmium -- 5.3. Phytoremediation of cadmium -- 5.4. Bacterial bioremediation of mercury (Hg) -- 5.5. Fungal bioremediation of mercury -- 5.6. Phytoremediation of mercury. , 5.7. Bacterial bioremediation of lead (Pb).
    Additional Edition: Print version: Kumar, Vineet Metagenomics to Bioremediation San Diego : Elsevier Science & Technology,c2022 ISBN 9780323961134
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages