feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949225616002882
    Format: 1 online resource (xvii, 592 pages)
    ISBN: 3-446-41281-6
    Additional Edition: ISBN 3-446-21771-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9948026303002882
    Format: 1 online resource (613 pages)
    Edition: Second edition.
    ISBN: 1-5231-1540-8 , 1-56990-612-2
    Content: Includes new and updated material on developments in polymer synthesis and characterization, computational algorithms for linear and nonlinear rheology prediction, measurement of nonlinear viscoelasticity, entanglement detection algorithms in molecular dynamics, nonlinear constitutive equations, and instabilities.
    Note: Intro -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- 1 Introduction -- 1.1  Melt Structure and Its Effect on Rheology -- 1.2  Overview of This Book -- 1.3  Applications of the Information Presented -- 1.4  Supplementary Sources of Information -- References -- 2 Structure of Polymers -- 2.1  Molecular Size -- 2.1.1  The Freely-Jointed Chain -- 2.1.2  The Gaussian Size Distribution -- 2.1.2.1  Linear Molecules -- 2.1.2.2  Branched Molecules -- 2.1.3  The Dilute Solution and the Theta State -- 2.1.4  Polymer Molecules in the Melt -- 2.2  Molecular Weight Distribution -- 2.2.1  Monodisperse Polymers -- 2.2.2  Average Molecular Weights and Moments of the Distribution -- 2.2.3  Continuous Molecular Weight Distribution -- 2.2.4  Distribution Functions -- 2.2.5  Narrow Distribution Samples -- 2.2.6  Bimodality -- 2.3  Tacticity -- 2.4  Branching -- 2.5  Intrinsic Viscosity -- 2.5.1  Introduction -- 2.5.2  Rigid Sphere Models -- 2.5.3  The Free-Draining Molecule -- 2.5.4  Non-Theta Conditions and the Mark-Houwink-Sakurada Equation -- 2.5.5  Effect of Polydispersity -- 2.5.6  Effect of Long-Chain Branching -- 2.5.7  Effects of Short-Chain Branching -- 2.5.8  Determination of Intrinsic Viscosity-Extrapolation Methods -- 2.5.9  Effect of Shear Rate -- 2.6  Other Structure Characterization Methods -- 2.6.1  Membrane Osmometry -- 2.6.2  Light Scattering -- 2.6.3  Gel Permeation Chromatography -- 2.6.3.1  MWD of Linear Polymers -- 2.6.3.2  GPC with Branched Polymers -- 2.6.3.3  GPC with LDPE -- 2.6.3.4  Interactive Chromatography -- 2.6.3.5  Field Flow Fractionation -- 2.6.4  Mass Spectrometry (MALDI-TOF) -- 2.6.5  Nuclear Magnetic Resonance -- 2.6.6  Separations Based on Crystallizability: TREF, CRYSTAF, and CEF -- 2.6.7  Bivariate (Two-Dimensional) Characterizations -- 2.6.8  Molecular Structure from Rheology -- 2.7  Summary. , References -- 3 Polymerization Reactions and Processes -- 3.1  Introduction -- 3.2  Classifications of Polymers and Polymerization Reactions -- 3.3  Structural Characteristics of Polymers -- 3.3.1  Introduction -- 3.3.2  Chemical Composition-Role of Backbone Bonds in Chain Flexibility -- 3.3.3  Chemical Composition-Copolymers -- 3.3.4  Tacticity -- 3.3.5  Branching -- 3.4  Living Polymers Having Prescribed Structures -- 3.4.1  Anionic Polymerization -- 3.4.2  Living Free-Radical Polymerization (Reversible Deactivation Radical Polymerization-RDRP) -- 3.4.3  Model Polyethylenes for Research -- 3.5  Industrial Polymerization Processes -- 3.6  Free-Radical Polymerization of Low‑Density Polyethylene (LDPE) -- 3.6.1  Shear Modification -- 3.7  Linear Polyethylene via Complex Coordination Catalysts -- 3.7.1  Catalyst Systems -- 3.7.2  Branching in High-Density Polyethylene -- 3.7.3  Ultrahigh Molecular Weight Polyethylene -- 3.8  Linear Low-Density Polyethylene via Ziegler‑Natta Catalysts -- 3.9  Single-Site Catalysts -- 3.9.1  Metallocene Catalysts -- 3.9.2  Long-Chain Branching in Metallocene Polyethylenes -- 3.9.3  Post-Metallocene Catalysts -- 3.10  Polypropylene -- 3.11  Reactors for Polyolefins -- 3.12  Polystyrene -- 3.13  Summary -- References -- 4 Linear Viscoelasticity-Fundamentals -- 4.1  Stress Relaxation and the Relaxation Modulus -- 4.1.1  The Boltzmann Superposition Principle -- 4.1.2  The Maxwell Model for the Relaxation Modulus -- 4.1.3  The Generalized Maxwell Model and the Discrete Relaxation Spectrum -- 4.1.4  The Continuous Relaxation Spectrum -- 4.2  The Creep Compliance and the Retardation Spectrum -- 4.3  Experimental Characterization of Linear Viscoelastic Behavior -- 4.3.1  Oscillatory Shear -- 4.3.2  Experimental Determination of the Storage and Loss Moduli -- 4.3.3  Creep Measurements. , 4.3.4  Other Methods for Monitoring Relaxation Processes -- 4.4  Calculation of Relaxation Spectra from Experimental Data -- 4.4.1  Discrete Spectra -- 4.4.2  Continuous Spectra -- 4.5  Time-Temperature Superposition -- 4.5.1  Time/Frequency (Horizontal) Shifting -- 4.5.2  The Modulus (Vertical) Shift Factor -- 4.5.3  Validity of Time-Temperature Superposition -- 4.6  Time-Pressure Superposition -- 4.7  Alternative Plots of Linear Viscoelastic Data -- 4.7.1  Van Gurp-Palmen Plot of Loss Angle Versus Complex Modulus -- 4.7.2  Cole-Cole Plots -- 4.8  Summary -- References -- 5 Linear Viscoelasticity-Behavior of Molten Polymers -- 5.1  Introduction -- 5.2  Zero-Shear Viscosity of Linear Polymers -- 5.2.1  Effect of Molecular Weight -- 5.2.2  Effect of Polydispersity -- 5.3  The Relaxation Modulus -- 5.3.1  General Features -- 5.3.2  How Can a Melt Act like a Rubber? -- 5.4  The Storage and Loss Moduli -- 5.5  The Creep and Recoverable Compliances -- 5.6  The Steady-State Compliance -- 5.7  The Plateau Modulus -- 5.7.1  Determination of GN0 -- 5.7.2  Effects of Short Branches and Tacticity -- 5.8  The Molecular Weight between Entanglements, Me -- 5.8.1  Definitions of Me -- 5.8.2  Molecular Weight between Entanglements (Me) Based on Molecular Theory -- 5.9  Rheological Behavior of Copolymers -- 5.10  Effect of Long-Chain Branching on Linear Viscoelastic Behavior -- 5.10.1  Introduction -- 5.10.2  Ideal Branched Polymers -- 5.10.2.1  Zero-Shear Viscosity of Ideal Stars and Combs -- 5.10.2.2  Steady-State Compliance of Model Star Polymers -- 5.10.3  Storage and Loss Moduli of Model Branched Systems -- 5.10.4  Randomly Branched Polymers -- 5.10.5  Low-Density Polyethylene -- 5.11  Use of Linear Viscoelastic Data to Determine Branching Level -- 5.11.1  Introduction -- 5.11.2  Correlations Based on the Zero-Shear Viscosity -- 5.12  Summary -- References. , 6 Tube Models for Linear Polymers-Fundamentals -- 6.1  Introduction -- 6.2  The Rouse-Bueche Model for Unentangled Polymers -- 6.2.1  Introduction -- 6.2.2  The Rouse Model for the Viscoelasticity of a Dilute Polymer Solution -- 6.2.3  Bueche's Modification for an Unentangled Melt -- 6.3  Entanglements and the Tube Model -- 6.3.1  The Critical Molecular Weight for Entanglement MC -- 6.3.2  The Plateau Modulus GN0 -- 6.3.3  The Molecular Weight Between Entanglements Me -- 6.3.4  The Tube Diameter a -- 6.3.5  The Equilibration Time τe -- 6.3.6  Identification of Entanglements and Tubes in Computer Simulation -- 6.4  Modes of Relaxation -- 6.4.1  Reptation -- 6.4.2  Primitive Path Fluctuations -- 6.4.3  Reptation Combined with Primitive Path Fluctuations -- 6.4.4  Constraint Release-Double Reptation -- 6.4.4.1  Monodisperse Melts -- 6.4.4.2  Bidisperse Melts -- 6.4.4.3  Polydisperse Melts -- 6.4.5  Rouse Relaxation within the Tube -- 6.5  An Alternative Picture for Entangled Polymers: Slip-Links -- 6.6  Summary -- References -- 7 Tube Models for Linear Polymers-Advanced Topics -- 7.1  Introduction -- 7.2  Limitations of Double Reptation Theory -- 7.3  Constraint-Release Rouse Relaxation in Bidisperse Melts -- 7.3.1  Non-Self-Entangled Long Chains in a Short-Chain Matrix -- 7.3.2  Self-Entangled Long Chains in a Short-Chain Matrix -- 7.3.3  Thin Tubes, Fat Tubes, and the Viovy Diagram -- 7.4  Polydisperse Melts and "Dynamic Dilution" -- 7.4.1  Polydisperse Chains -- 7.4.2  Tube Dilation or "Dynamic Dilution" -- 7.5  Input Parameters for Tube Models -- 7.6  Summary -- References -- 8 Determination of Molecular Weight Distribution Using Rheology -- 8.1  Introduction -- 8.2  Viscosity Methods -- 8.3  Empirical Correlations Based on the Elastic Modulus -- 8.4  Methods Based on Double Reptation -- 8.5  Generalization of Double Reptation. , 8.6  Dealing with the Rouse Modes -- 8.7  Models that Account for Additional Relaxation Processes -- 8.8  Determination of Polydispersity Indexes -- 8.9  Summary -- References -- 9 Tube Models for Branched Polymers -- 9.1  Introduction -- 9.2  General Effect of LCB on Rheology -- 9.2.1  Qualitative Description of Relaxation Mechanisms in Long‑Chain‑Branched Polymers -- 9.3  Star Polymers -- 9.3.1  Deep Primitive Path Fluctuations -- 9.3.2  Dynamic Dilution -- 9.3.3  Comparison of Milner-McLeish Theory to Linear Viscoelastic Data -- 9.3.3.1  Monodisperse Stars -- 9.3.3.2  Bidisperse Stars -- 9.3.3.3  Star/Linear Blends -- 9.4  Multiply Branched Polymers -- 9.4.1  Dynamic Dilution for Polymers with Backbones -- 9.4.2  Branch Point Motion -- 9.4.3  Backbone Relaxation -- 9.5  Tube Model Algorithms for Polydisperse Branched Polymers -- 9.5.1  "Hierarchical" and "BoB" Dynamic Dilution Models -- 9.5.2  The "Time-Marching" Algorithm -- 9.5.3  Data and Predictions for Model Polymers and Randomly Branched Polymers -- 9.6  Slip-Link Models for Branched Polymers -- 9.6.1  Symmetric Star Polymers and Blends with Linear Polymers -- 9.6.2  Branch Point Hopping in Slip-Link Simulations -- 9.7  Summary -- References -- 10 Nonlinear Viscoelasticity -- 10.1  Introduction -- 10.2  Nonlinear Phenomena-A Tube Model Interpretation -- 10.2.1  Large Scale Orientation-The Need for a Finite Strain Tensor -- 10.2.2  Chain Retraction and the Damping Function -- 10.2.3  Convective Constraint Release and Shear Thinning -- 10.3  Constitutive Equations -- 10.3.1  Boltzmann Revisited -- 10.3.2  Integral Constitutive Equations -- 10.3.3  Differential Constitutive Equations -- 10.4  Nonlinear Stress Relaxation -- 10.4.1  Doi and Edwards Predictions of the Damping Function -- 10.4.2  Estimating the Rouse Time of an Entangled Chain -- 10.4.3  Damping Functions of Typical Polymers. , 10.4.4  Normal Stress Relaxation.
    Additional Edition: ISBN 1-56990-611-4
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Book
    Book
    Stoneham, Mass. : Butterworth
    UID:
    b3kat_BV024636209
    Format: 364 S.
    ISBN: 0409901199
    Series Statement: Butterworths series in chemical engineering
    Language: Undetermined
    Keywords: Polymerschmelze ; Zustandsgleichung ; Polymerlösung ; Zustandsgleichung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    b3kat_BV044432188
    Format: XVII, 592 Seiten , Diagramme , 25 cm
    Edition: 2nd edition
    ISBN: 9781569906118 , 1569906114
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-1-56990-612-5
    Language: English
    Subjects: Engineering , Physics
    RVK:
    RVK:
    Keywords: Polymerschmelze ; Molekülstruktur ; Rheologische Eigenschaft
    Author information: Read, Daniel J.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    b3kat_BV044883487
    Format: 1 Online-Ressource , Diagramme
    Edition: 2nd edition
    ISBN: 9781569906125
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 1-56990-611-4
    Additional Edition: ISBN 978-1-56990-611-8
    Language: English
    Subjects: Physics
    RVK:
    Keywords: Polymerschmelze ; Molekülstruktur ; Rheologische Eigenschaft
    URL: Volltext  (URL des Erstveröffentlichers)
    Author information: Read, Daniel J.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edoccha_9960073485502883
    Format: 1 online resource (xvii, 592 pages)
    ISBN: 3-446-41281-6
    Additional Edition: ISBN 3-446-21771-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edocfu_9960073485502883
    Format: 1 online resource (xvii, 592 pages)
    ISBN: 3-446-41281-6
    Additional Edition: ISBN 3-446-21771-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    edoccha_9961089624102883
    Format: 1 online resource (613 pages)
    Edition: Second edition.
    ISBN: 1-5231-1540-8 , 1-56990-612-2
    Content: Includes new and updated material on developments in polymer synthesis and characterization, computational algorithms for linear and nonlinear rheology prediction, measurement of nonlinear viscoelasticity, entanglement detection algorithms in molecular dynamics, nonlinear constitutive equations, and instabilities.
    Note: Intro -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- 1 Introduction -- 1.1  Melt Structure and Its Effect on Rheology -- 1.2  Overview of This Book -- 1.3  Applications of the Information Presented -- 1.4  Supplementary Sources of Information -- References -- 2 Structure of Polymers -- 2.1  Molecular Size -- 2.1.1  The Freely-Jointed Chain -- 2.1.2  The Gaussian Size Distribution -- 2.1.2.1  Linear Molecules -- 2.1.2.2  Branched Molecules -- 2.1.3  The Dilute Solution and the Theta State -- 2.1.4  Polymer Molecules in the Melt -- 2.2  Molecular Weight Distribution -- 2.2.1  Monodisperse Polymers -- 2.2.2  Average Molecular Weights and Moments of the Distribution -- 2.2.3  Continuous Molecular Weight Distribution -- 2.2.4  Distribution Functions -- 2.2.5  Narrow Distribution Samples -- 2.2.6  Bimodality -- 2.3  Tacticity -- 2.4  Branching -- 2.5  Intrinsic Viscosity -- 2.5.1  Introduction -- 2.5.2  Rigid Sphere Models -- 2.5.3  The Free-Draining Molecule -- 2.5.4  Non-Theta Conditions and the Mark-Houwink-Sakurada Equation -- 2.5.5  Effect of Polydispersity -- 2.5.6  Effect of Long-Chain Branching -- 2.5.7  Effects of Short-Chain Branching -- 2.5.8  Determination of Intrinsic Viscosity-Extrapolation Methods -- 2.5.9  Effect of Shear Rate -- 2.6  Other Structure Characterization Methods -- 2.6.1  Membrane Osmometry -- 2.6.2  Light Scattering -- 2.6.3  Gel Permeation Chromatography -- 2.6.3.1  MWD of Linear Polymers -- 2.6.3.2  GPC with Branched Polymers -- 2.6.3.3  GPC with LDPE -- 2.6.3.4  Interactive Chromatography -- 2.6.3.5  Field Flow Fractionation -- 2.6.4  Mass Spectrometry (MALDI-TOF) -- 2.6.5  Nuclear Magnetic Resonance -- 2.6.6  Separations Based on Crystallizability: TREF, CRYSTAF, and CEF -- 2.6.7  Bivariate (Two-Dimensional) Characterizations -- 2.6.8  Molecular Structure from Rheology -- 2.7  Summary. , References -- 3 Polymerization Reactions and Processes -- 3.1  Introduction -- 3.2  Classifications of Polymers and Polymerization Reactions -- 3.3  Structural Characteristics of Polymers -- 3.3.1  Introduction -- 3.3.2  Chemical Composition-Role of Backbone Bonds in Chain Flexibility -- 3.3.3  Chemical Composition-Copolymers -- 3.3.4  Tacticity -- 3.3.5  Branching -- 3.4  Living Polymers Having Prescribed Structures -- 3.4.1  Anionic Polymerization -- 3.4.2  Living Free-Radical Polymerization (Reversible Deactivation Radical Polymerization-RDRP) -- 3.4.3  Model Polyethylenes for Research -- 3.5  Industrial Polymerization Processes -- 3.6  Free-Radical Polymerization of Low‑Density Polyethylene (LDPE) -- 3.6.1  Shear Modification -- 3.7  Linear Polyethylene via Complex Coordination Catalysts -- 3.7.1  Catalyst Systems -- 3.7.2  Branching in High-Density Polyethylene -- 3.7.3  Ultrahigh Molecular Weight Polyethylene -- 3.8  Linear Low-Density Polyethylene via Ziegler‑Natta Catalysts -- 3.9  Single-Site Catalysts -- 3.9.1  Metallocene Catalysts -- 3.9.2  Long-Chain Branching in Metallocene Polyethylenes -- 3.9.3  Post-Metallocene Catalysts -- 3.10  Polypropylene -- 3.11  Reactors for Polyolefins -- 3.12  Polystyrene -- 3.13  Summary -- References -- 4 Linear Viscoelasticity-Fundamentals -- 4.1  Stress Relaxation and the Relaxation Modulus -- 4.1.1  The Boltzmann Superposition Principle -- 4.1.2  The Maxwell Model for the Relaxation Modulus -- 4.1.3  The Generalized Maxwell Model and the Discrete Relaxation Spectrum -- 4.1.4  The Continuous Relaxation Spectrum -- 4.2  The Creep Compliance and the Retardation Spectrum -- 4.3  Experimental Characterization of Linear Viscoelastic Behavior -- 4.3.1  Oscillatory Shear -- 4.3.2  Experimental Determination of the Storage and Loss Moduli -- 4.3.3  Creep Measurements. , 4.3.4  Other Methods for Monitoring Relaxation Processes -- 4.4  Calculation of Relaxation Spectra from Experimental Data -- 4.4.1  Discrete Spectra -- 4.4.2  Continuous Spectra -- 4.5  Time-Temperature Superposition -- 4.5.1  Time/Frequency (Horizontal) Shifting -- 4.5.2  The Modulus (Vertical) Shift Factor -- 4.5.3  Validity of Time-Temperature Superposition -- 4.6  Time-Pressure Superposition -- 4.7  Alternative Plots of Linear Viscoelastic Data -- 4.7.1  Van Gurp-Palmen Plot of Loss Angle Versus Complex Modulus -- 4.7.2  Cole-Cole Plots -- 4.8  Summary -- References -- 5 Linear Viscoelasticity-Behavior of Molten Polymers -- 5.1  Introduction -- 5.2  Zero-Shear Viscosity of Linear Polymers -- 5.2.1  Effect of Molecular Weight -- 5.2.2  Effect of Polydispersity -- 5.3  The Relaxation Modulus -- 5.3.1  General Features -- 5.3.2  How Can a Melt Act like a Rubber? -- 5.4  The Storage and Loss Moduli -- 5.5  The Creep and Recoverable Compliances -- 5.6  The Steady-State Compliance -- 5.7  The Plateau Modulus -- 5.7.1  Determination of GN0 -- 5.7.2  Effects of Short Branches and Tacticity -- 5.8  The Molecular Weight between Entanglements, Me -- 5.8.1  Definitions of Me -- 5.8.2  Molecular Weight between Entanglements (Me) Based on Molecular Theory -- 5.9  Rheological Behavior of Copolymers -- 5.10  Effect of Long-Chain Branching on Linear Viscoelastic Behavior -- 5.10.1  Introduction -- 5.10.2  Ideal Branched Polymers -- 5.10.2.1  Zero-Shear Viscosity of Ideal Stars and Combs -- 5.10.2.2  Steady-State Compliance of Model Star Polymers -- 5.10.3  Storage and Loss Moduli of Model Branched Systems -- 5.10.4  Randomly Branched Polymers -- 5.10.5  Low-Density Polyethylene -- 5.11  Use of Linear Viscoelastic Data to Determine Branching Level -- 5.11.1  Introduction -- 5.11.2  Correlations Based on the Zero-Shear Viscosity -- 5.12  Summary -- References. , 6 Tube Models for Linear Polymers-Fundamentals -- 6.1  Introduction -- 6.2  The Rouse-Bueche Model for Unentangled Polymers -- 6.2.1  Introduction -- 6.2.2  The Rouse Model for the Viscoelasticity of a Dilute Polymer Solution -- 6.2.3  Bueche's Modification for an Unentangled Melt -- 6.3  Entanglements and the Tube Model -- 6.3.1  The Critical Molecular Weight for Entanglement MC -- 6.3.2  The Plateau Modulus GN0 -- 6.3.3  The Molecular Weight Between Entanglements Me -- 6.3.4  The Tube Diameter a -- 6.3.5  The Equilibration Time τe -- 6.3.6  Identification of Entanglements and Tubes in Computer Simulation -- 6.4  Modes of Relaxation -- 6.4.1  Reptation -- 6.4.2  Primitive Path Fluctuations -- 6.4.3  Reptation Combined with Primitive Path Fluctuations -- 6.4.4  Constraint Release-Double Reptation -- 6.4.4.1  Monodisperse Melts -- 6.4.4.2  Bidisperse Melts -- 6.4.4.3  Polydisperse Melts -- 6.4.5  Rouse Relaxation within the Tube -- 6.5  An Alternative Picture for Entangled Polymers: Slip-Links -- 6.6  Summary -- References -- 7 Tube Models for Linear Polymers-Advanced Topics -- 7.1  Introduction -- 7.2  Limitations of Double Reptation Theory -- 7.3  Constraint-Release Rouse Relaxation in Bidisperse Melts -- 7.3.1  Non-Self-Entangled Long Chains in a Short-Chain Matrix -- 7.3.2  Self-Entangled Long Chains in a Short-Chain Matrix -- 7.3.3  Thin Tubes, Fat Tubes, and the Viovy Diagram -- 7.4  Polydisperse Melts and "Dynamic Dilution" -- 7.4.1  Polydisperse Chains -- 7.4.2  Tube Dilation or "Dynamic Dilution" -- 7.5  Input Parameters for Tube Models -- 7.6  Summary -- References -- 8 Determination of Molecular Weight Distribution Using Rheology -- 8.1  Introduction -- 8.2  Viscosity Methods -- 8.3  Empirical Correlations Based on the Elastic Modulus -- 8.4  Methods Based on Double Reptation -- 8.5  Generalization of Double Reptation. , 8.6  Dealing with the Rouse Modes -- 8.7  Models that Account for Additional Relaxation Processes -- 8.8  Determination of Polydispersity Indexes -- 8.9  Summary -- References -- 9 Tube Models for Branched Polymers -- 9.1  Introduction -- 9.2  General Effect of LCB on Rheology -- 9.2.1  Qualitative Description of Relaxation Mechanisms in Long‑Chain‑Branched Polymers -- 9.3  Star Polymers -- 9.3.1  Deep Primitive Path Fluctuations -- 9.3.2  Dynamic Dilution -- 9.3.3  Comparison of Milner-McLeish Theory to Linear Viscoelastic Data -- 9.3.3.1  Monodisperse Stars -- 9.3.3.2  Bidisperse Stars -- 9.3.3.3  Star/Linear Blends -- 9.4  Multiply Branched Polymers -- 9.4.1  Dynamic Dilution for Polymers with Backbones -- 9.4.2  Branch Point Motion -- 9.4.3  Backbone Relaxation -- 9.5  Tube Model Algorithms for Polydisperse Branched Polymers -- 9.5.1  "Hierarchical" and "BoB" Dynamic Dilution Models -- 9.5.2  The "Time-Marching" Algorithm -- 9.5.3  Data and Predictions for Model Polymers and Randomly Branched Polymers -- 9.6  Slip-Link Models for Branched Polymers -- 9.6.1  Symmetric Star Polymers and Blends with Linear Polymers -- 9.6.2  Branch Point Hopping in Slip-Link Simulations -- 9.7  Summary -- References -- 10 Nonlinear Viscoelasticity -- 10.1  Introduction -- 10.2  Nonlinear Phenomena-A Tube Model Interpretation -- 10.2.1  Large Scale Orientation-The Need for a Finite Strain Tensor -- 10.2.2  Chain Retraction and the Damping Function -- 10.2.3  Convective Constraint Release and Shear Thinning -- 10.3  Constitutive Equations -- 10.3.1  Boltzmann Revisited -- 10.3.2  Integral Constitutive Equations -- 10.3.3  Differential Constitutive Equations -- 10.4  Nonlinear Stress Relaxation -- 10.4.1  Doi and Edwards Predictions of the Damping Function -- 10.4.2  Estimating the Rouse Time of an Entangled Chain -- 10.4.3  Damping Functions of Typical Polymers. , 10.4.4  Normal Stress Relaxation.
    Additional Edition: ISBN 1-56990-611-4
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    edocfu_9961089624102883
    Format: 1 online resource (613 pages)
    Edition: Second edition.
    ISBN: 1-5231-1540-8 , 1-56990-612-2
    Content: Includes new and updated material on developments in polymer synthesis and characterization, computational algorithms for linear and nonlinear rheology prediction, measurement of nonlinear viscoelasticity, entanglement detection algorithms in molecular dynamics, nonlinear constitutive equations, and instabilities.
    Note: Intro -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- 1 Introduction -- 1.1  Melt Structure and Its Effect on Rheology -- 1.2  Overview of This Book -- 1.3  Applications of the Information Presented -- 1.4  Supplementary Sources of Information -- References -- 2 Structure of Polymers -- 2.1  Molecular Size -- 2.1.1  The Freely-Jointed Chain -- 2.1.2  The Gaussian Size Distribution -- 2.1.2.1  Linear Molecules -- 2.1.2.2  Branched Molecules -- 2.1.3  The Dilute Solution and the Theta State -- 2.1.4  Polymer Molecules in the Melt -- 2.2  Molecular Weight Distribution -- 2.2.1  Monodisperse Polymers -- 2.2.2  Average Molecular Weights and Moments of the Distribution -- 2.2.3  Continuous Molecular Weight Distribution -- 2.2.4  Distribution Functions -- 2.2.5  Narrow Distribution Samples -- 2.2.6  Bimodality -- 2.3  Tacticity -- 2.4  Branching -- 2.5  Intrinsic Viscosity -- 2.5.1  Introduction -- 2.5.2  Rigid Sphere Models -- 2.5.3  The Free-Draining Molecule -- 2.5.4  Non-Theta Conditions and the Mark-Houwink-Sakurada Equation -- 2.5.5  Effect of Polydispersity -- 2.5.6  Effect of Long-Chain Branching -- 2.5.7  Effects of Short-Chain Branching -- 2.5.8  Determination of Intrinsic Viscosity-Extrapolation Methods -- 2.5.9  Effect of Shear Rate -- 2.6  Other Structure Characterization Methods -- 2.6.1  Membrane Osmometry -- 2.6.2  Light Scattering -- 2.6.3  Gel Permeation Chromatography -- 2.6.3.1  MWD of Linear Polymers -- 2.6.3.2  GPC with Branched Polymers -- 2.6.3.3  GPC with LDPE -- 2.6.3.4  Interactive Chromatography -- 2.6.3.5  Field Flow Fractionation -- 2.6.4  Mass Spectrometry (MALDI-TOF) -- 2.6.5  Nuclear Magnetic Resonance -- 2.6.6  Separations Based on Crystallizability: TREF, CRYSTAF, and CEF -- 2.6.7  Bivariate (Two-Dimensional) Characterizations -- 2.6.8  Molecular Structure from Rheology -- 2.7  Summary. , References -- 3 Polymerization Reactions and Processes -- 3.1  Introduction -- 3.2  Classifications of Polymers and Polymerization Reactions -- 3.3  Structural Characteristics of Polymers -- 3.3.1  Introduction -- 3.3.2  Chemical Composition-Role of Backbone Bonds in Chain Flexibility -- 3.3.3  Chemical Composition-Copolymers -- 3.3.4  Tacticity -- 3.3.5  Branching -- 3.4  Living Polymers Having Prescribed Structures -- 3.4.1  Anionic Polymerization -- 3.4.2  Living Free-Radical Polymerization (Reversible Deactivation Radical Polymerization-RDRP) -- 3.4.3  Model Polyethylenes for Research -- 3.5  Industrial Polymerization Processes -- 3.6  Free-Radical Polymerization of Low‑Density Polyethylene (LDPE) -- 3.6.1  Shear Modification -- 3.7  Linear Polyethylene via Complex Coordination Catalysts -- 3.7.1  Catalyst Systems -- 3.7.2  Branching in High-Density Polyethylene -- 3.7.3  Ultrahigh Molecular Weight Polyethylene -- 3.8  Linear Low-Density Polyethylene via Ziegler‑Natta Catalysts -- 3.9  Single-Site Catalysts -- 3.9.1  Metallocene Catalysts -- 3.9.2  Long-Chain Branching in Metallocene Polyethylenes -- 3.9.3  Post-Metallocene Catalysts -- 3.10  Polypropylene -- 3.11  Reactors for Polyolefins -- 3.12  Polystyrene -- 3.13  Summary -- References -- 4 Linear Viscoelasticity-Fundamentals -- 4.1  Stress Relaxation and the Relaxation Modulus -- 4.1.1  The Boltzmann Superposition Principle -- 4.1.2  The Maxwell Model for the Relaxation Modulus -- 4.1.3  The Generalized Maxwell Model and the Discrete Relaxation Spectrum -- 4.1.4  The Continuous Relaxation Spectrum -- 4.2  The Creep Compliance and the Retardation Spectrum -- 4.3  Experimental Characterization of Linear Viscoelastic Behavior -- 4.3.1  Oscillatory Shear -- 4.3.2  Experimental Determination of the Storage and Loss Moduli -- 4.3.3  Creep Measurements. , 4.3.4  Other Methods for Monitoring Relaxation Processes -- 4.4  Calculation of Relaxation Spectra from Experimental Data -- 4.4.1  Discrete Spectra -- 4.4.2  Continuous Spectra -- 4.5  Time-Temperature Superposition -- 4.5.1  Time/Frequency (Horizontal) Shifting -- 4.5.2  The Modulus (Vertical) Shift Factor -- 4.5.3  Validity of Time-Temperature Superposition -- 4.6  Time-Pressure Superposition -- 4.7  Alternative Plots of Linear Viscoelastic Data -- 4.7.1  Van Gurp-Palmen Plot of Loss Angle Versus Complex Modulus -- 4.7.2  Cole-Cole Plots -- 4.8  Summary -- References -- 5 Linear Viscoelasticity-Behavior of Molten Polymers -- 5.1  Introduction -- 5.2  Zero-Shear Viscosity of Linear Polymers -- 5.2.1  Effect of Molecular Weight -- 5.2.2  Effect of Polydispersity -- 5.3  The Relaxation Modulus -- 5.3.1  General Features -- 5.3.2  How Can a Melt Act like a Rubber? -- 5.4  The Storage and Loss Moduli -- 5.5  The Creep and Recoverable Compliances -- 5.6  The Steady-State Compliance -- 5.7  The Plateau Modulus -- 5.7.1  Determination of GN0 -- 5.7.2  Effects of Short Branches and Tacticity -- 5.8  The Molecular Weight between Entanglements, Me -- 5.8.1  Definitions of Me -- 5.8.2  Molecular Weight between Entanglements (Me) Based on Molecular Theory -- 5.9  Rheological Behavior of Copolymers -- 5.10  Effect of Long-Chain Branching on Linear Viscoelastic Behavior -- 5.10.1  Introduction -- 5.10.2  Ideal Branched Polymers -- 5.10.2.1  Zero-Shear Viscosity of Ideal Stars and Combs -- 5.10.2.2  Steady-State Compliance of Model Star Polymers -- 5.10.3  Storage and Loss Moduli of Model Branched Systems -- 5.10.4  Randomly Branched Polymers -- 5.10.5  Low-Density Polyethylene -- 5.11  Use of Linear Viscoelastic Data to Determine Branching Level -- 5.11.1  Introduction -- 5.11.2  Correlations Based on the Zero-Shear Viscosity -- 5.12  Summary -- References. , 6 Tube Models for Linear Polymers-Fundamentals -- 6.1  Introduction -- 6.2  The Rouse-Bueche Model for Unentangled Polymers -- 6.2.1  Introduction -- 6.2.2  The Rouse Model for the Viscoelasticity of a Dilute Polymer Solution -- 6.2.3  Bueche's Modification for an Unentangled Melt -- 6.3  Entanglements and the Tube Model -- 6.3.1  The Critical Molecular Weight for Entanglement MC -- 6.3.2  The Plateau Modulus GN0 -- 6.3.3  The Molecular Weight Between Entanglements Me -- 6.3.4  The Tube Diameter a -- 6.3.5  The Equilibration Time τe -- 6.3.6  Identification of Entanglements and Tubes in Computer Simulation -- 6.4  Modes of Relaxation -- 6.4.1  Reptation -- 6.4.2  Primitive Path Fluctuations -- 6.4.3  Reptation Combined with Primitive Path Fluctuations -- 6.4.4  Constraint Release-Double Reptation -- 6.4.4.1  Monodisperse Melts -- 6.4.4.2  Bidisperse Melts -- 6.4.4.3  Polydisperse Melts -- 6.4.5  Rouse Relaxation within the Tube -- 6.5  An Alternative Picture for Entangled Polymers: Slip-Links -- 6.6  Summary -- References -- 7 Tube Models for Linear Polymers-Advanced Topics -- 7.1  Introduction -- 7.2  Limitations of Double Reptation Theory -- 7.3  Constraint-Release Rouse Relaxation in Bidisperse Melts -- 7.3.1  Non-Self-Entangled Long Chains in a Short-Chain Matrix -- 7.3.2  Self-Entangled Long Chains in a Short-Chain Matrix -- 7.3.3  Thin Tubes, Fat Tubes, and the Viovy Diagram -- 7.4  Polydisperse Melts and "Dynamic Dilution" -- 7.4.1  Polydisperse Chains -- 7.4.2  Tube Dilation or "Dynamic Dilution" -- 7.5  Input Parameters for Tube Models -- 7.6  Summary -- References -- 8 Determination of Molecular Weight Distribution Using Rheology -- 8.1  Introduction -- 8.2  Viscosity Methods -- 8.3  Empirical Correlations Based on the Elastic Modulus -- 8.4  Methods Based on Double Reptation -- 8.5  Generalization of Double Reptation. , 8.6  Dealing with the Rouse Modes -- 8.7  Models that Account for Additional Relaxation Processes -- 8.8  Determination of Polydispersity Indexes -- 8.9  Summary -- References -- 9 Tube Models for Branched Polymers -- 9.1  Introduction -- 9.2  General Effect of LCB on Rheology -- 9.2.1  Qualitative Description of Relaxation Mechanisms in Long‑Chain‑Branched Polymers -- 9.3  Star Polymers -- 9.3.1  Deep Primitive Path Fluctuations -- 9.3.2  Dynamic Dilution -- 9.3.3  Comparison of Milner-McLeish Theory to Linear Viscoelastic Data -- 9.3.3.1  Monodisperse Stars -- 9.3.3.2  Bidisperse Stars -- 9.3.3.3  Star/Linear Blends -- 9.4  Multiply Branched Polymers -- 9.4.1  Dynamic Dilution for Polymers with Backbones -- 9.4.2  Branch Point Motion -- 9.4.3  Backbone Relaxation -- 9.5  Tube Model Algorithms for Polydisperse Branched Polymers -- 9.5.1  "Hierarchical" and "BoB" Dynamic Dilution Models -- 9.5.2  The "Time-Marching" Algorithm -- 9.5.3  Data and Predictions for Model Polymers and Randomly Branched Polymers -- 9.6  Slip-Link Models for Branched Polymers -- 9.6.1  Symmetric Star Polymers and Blends with Linear Polymers -- 9.6.2  Branch Point Hopping in Slip-Link Simulations -- 9.7  Summary -- References -- 10 Nonlinear Viscoelasticity -- 10.1  Introduction -- 10.2  Nonlinear Phenomena-A Tube Model Interpretation -- 10.2.1  Large Scale Orientation-The Need for a Finite Strain Tensor -- 10.2.2  Chain Retraction and the Damping Function -- 10.2.3  Convective Constraint Release and Shear Thinning -- 10.3  Constitutive Equations -- 10.3.1  Boltzmann Revisited -- 10.3.2  Integral Constitutive Equations -- 10.3.3  Differential Constitutive Equations -- 10.4  Nonlinear Stress Relaxation -- 10.4.1  Doi and Edwards Predictions of the Damping Function -- 10.4.2  Estimating the Rouse Time of an Entangled Chain -- 10.4.3  Damping Functions of Typical Polymers. , 10.4.4  Normal Stress Relaxation.
    Additional Edition: ISBN 1-56990-611-4
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Book
    Book
    New York [u.a.] : Oxford University Press
    UID:
    gbv_252984773
    Format: XXI, 663 S , Ill., graph. Darst
    ISBN: 019512197X , 9780195121971
    Series Statement: Topics in chemical engineering
    Note: Literaturangaben
    Language: English
    Subjects: Physics
    RVK:
    Keywords: Komplexe Flüssigkeit ; Rheologie ; Lehrbuch
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages