feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almafu_BV044449977
    Format: xiii, 556 Seiten : , Illustrationen, Diagramme, Karten.
    ISBN: 978-3-319-57851-4
    Series Statement: Springer geology
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-3-319-57852-1
    Language: English
    Subjects: Geography
    RVK:
    RVK:
    Keywords: Geomorphologie ; Meereskunde ; Meeresboden ; Meeresgeologie ; Aufsatzsammlung ; Aufsatzsammlung
    Author information: Krastel, Sebastian 1967-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    b3kat_BV043211923
    Format: 1 Online Ressource (xiii, 621 Seiten) , Illustrationen
    ISBN: 9783319209791
    Series Statement: Advances in Natural and Technological Hazards Research Volume 41
    Additional Edition: Erscheint auch als Druckausgabe ISBN 978-3-319-20978-4
    Language: English
    Subjects: Geography
    RVK:
    Keywords: Submarine Gleitung ; Konferenzschrift
    Author information: Wölz, Susanne 1966-
    Author information: Krastel, Sebastian 1967-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    kobvindex_GFZ894072528
    Format: 1 Online-Ressource (xxiii, 556 Seiten) , Illustrationen
    Edition: corrected publication 2018
    ISBN: 9783319578521 , 978-3-319-57852-1
    ISSN: 2197-9545 , 2197-9553
    Series Statement: Springer geology
    Content: This book on the current state of knowledge of submarine geomorphology aims to achieve the goalsof the Submarine Geomorphology working group, set up in 2013, byestablishing submarine geomorphology as a field of research, disseminating its concepts and techniques among earth scientists and professionals, and encouraging students to develop their skills and knowledge in this field.Editors have invited 30 experts from around the world to contribute chapters to this book, which is divided into 4 sections - (i) Introduction history, (ii) Data methods, (ii) Submarine landforms processes and (iv) Conclusions future directions. Each chapter provides a review of a topic, establishes the state-of-the-art, identifies the key research questions that need to be addressed, and delineates a strategy on how to achieve this.Submarine geomorphology is a priority for many research institutions, government authorities and industries globally.The book is useful for undergraduate and graduate students, and professionals with limited training in this field.
    Note: Contents Introduction / Aaron Micallef, Sebastian Krastel and Alessandra Savini Part I Data and Methods in Submarine Geomorphology Sidescan Sonar / Ingo Klaucke Multibeam Echosounders / John E. Hughes Clarke Reflection and Refraction Seismic Methods / Gareth J. Crutchley and Heidrun Kopp Quantitative Analyses of Morphological Data / Philippe Blondel Seafloor Sediment and Rock Sampling / Aggeliki Georgiopoulou ROVs and AUVs / Veerle A.I. Huvenne, Katleen Robert, Leigh Marsh, Claudio Lo Iacono, Tim Le Bas and Russell B. Wynn Part II Submarine Landforms and Processes Origin and Geomorphic Characteristics of Ocean Basins / Peter T. Harris and Miles Macmillan-Lawler Drivers of Seafloor Geomorphic Change / Angelo Camerlenghi Shallow Coastal Landforms / Fantina Madricardo and Federica Rizzetto Continental Shelf Landforms / Ruth Durán and Jorge Guillén Submarine Glacial Landforms / Christine L. Batchelor, Julian A. Dowdeswell and Dag Ottesen Submarine Landslides / Joshu Mountjoy and Aaron Micallef Submarine Canyons and Gullies / David Amblas, Silvia Ceramicola, Thomas P. Gerber, Miquel Canals, Francesco L. Chiocci, Julian A. Dowdeswell, Peter T. Harris, Veerle A.I. Huvenne, Steven Y.J. Lai, Galderic Lastras, Claudio Lo Iacono, Aaron Micallef, Joshu J. Mountjoy, Charles K. Paull, Pere Puig and Anna Sanchez-Vidal Submarine Fans and Their Channels, Levees, and Lobes / Mark E. Deptuck and Zoltán Sylvester Contourite Drifts and Associated Bedforms / Ibimina Esentia, Dorrik Stow and Zeinab Smillie Volcanic Islands and Seamounts / Daniele Casalbore Mid-ocean Ridges / Neil C. Mitchell Cold Seep Systems / Silvia Ceramicola, Stéphanie Dupré, Luis Somoza and John Woodside Abyssal Hills and Abyssal Plains / Marie-Helene Cormier and Heather Sloan Oceanic Trenches / Jacob Geersen, David Voelker and Jan H. Behrmann Cold-Water Carbonate Bioconstructions / Claudio Lo Iacono, Alessandra Savini and Daniela Basso Part III Applied Submarine Geomorphology Applied Geomorphology and Geohazard Assessment for Deepwater Development / Roger Moore, Geoff Davis and Oliver Dabson Seabed Mining / Anne Peukert, Sven Petersen, Jens Greinert and François Charlot Fishing Activities / Ferdinand K.J. Oberle, Pere Puig and Jacobo Martín National Programmes: Geomorphological Mapping at Multiple Scales for Multiple Purposes / Terje Thorsnes, Lilja R. Bjarnadóttir, Alexandra Jarna, Nicole Baeten, Gill Scott, Janine Guinan, Xavier Monteys, Dayton Dove, Sophie Green, Joana Gafeira and Alan Stevenson Part IV Conclusion Conclusion / Aaron Micallef, Sebastian Krastel and Alessandra Savini Erratum to: Submarine Geomorphology / Aaron Micallef, Sebastian Krastel and Alessandra Savini
    Language: English
    Keywords: Electronic books ; Aufsatzsammlung
    Author information: Krastel, Sebastian
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almahu_9947409099302882
    Format: XIII, 556 p. 195 illus., 55 illus. in color. , online resource.
    ISBN: 9783319578521
    Series Statement: Springer Geology,
    Content: This book on the current state of knowledge of submarine geomorphology aims to achieve the goals of the Submarine Geomorphology working group, set up in 2013, by establishing submarine geomorphology as a field of research, disseminating its concepts and techniques among earth scientists and professionals, and encouraging students to develop their skills and knowledge in this field. Editors have invited 30 experts from around the world to contribute chapters to this book, which is divided into 4 sections – (i) Introduction & history, (ii) Data & methods, (ii) Submarine landforms & processes and (iv) Conclusions & future directions. Each chapter provides a review of a topic, establishes the state-of-the-art, identifies the key research questions that need to be addressed, and delineates a strategy on how to achieve this. Submarine geomorphology is a priority for many research institutions, government authorities and industries globally. The book is useful for undergraduate and graduate students, and professionals with limited training in this field.
    Note: Data and methods in submarine geomorphology -- Submarine landforms and processes -- Applied submarine geomorphology -- Conclusion.
    In: Springer eBooks
    Additional Edition: Printed edition: ISBN 9783319578514
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almahu_9947362544302882
    Format: XIII, 621 p. 256 illus., 219 illus. in color. , online resource.
    Edition: 1st ed. 2016.
    ISBN: 9783319209791
    Series Statement: Advances in Natural and Technological Hazards Research, 41
    Content: This book is a comprehensive collection of state-of-the-art studies of seafloor slope instability and their societal implications. The volume captures the most recent and exciting scientific progress made in this research field. As the world’s climate and energy needs change, the conditions under which slope instability occurs, and needs to be considered, are also changing. The science and engineering of submarine – or more widely subaqueous – mass movements is greatly benefiting from advances in seafloor and sub-seafloor surveying technologies. Ultra-high-resolution seafloor mapping and 3D seismic reflection cubes are becoming commonly available datasets that are dramatically increasing our knowledge of the mechanisms and controls of subaqueous slope failure. Monitoring of slope deformation, repeat surveying and deep drilling, on the other hand, are emerging as important new techniques for understanding the temporal scales of slope instability. In essence, rapid advances in technology are being readily incorporated into scientific research and as a result, our understanding of submarine mass movements is increasing at a very fast rate.  The volume also marks the beginning of the third IGCP project for the submarine mass movement research community, IGCP-640 S4SLIDE (Significance of Modern and Ancient Submarine Slope LandSLIDEs). The Submarine Mass Movements and Their Consequences symposium is the biannual meeting under the IGCP umbrella.
    Note: 1. Submarine Mass Movements and Their Consequences: Progress and Challenges -- Part  I Submarine Mass Movement in Margin Construction and Economic Significance2. The Role of Submarine Landslides in the Law of the Sea -- 3. Fabric Development and Pore-Throat Reduction in a Mass-Transport Deposit in the Jubilee Gas Field, Eastern Gulf of Mexico: Consequences for the Sealing Capacity of MTDs -- 4. Seismic geomorphology of the Israel Slump Complex in the central Levant Basin (SE Mediterranean) -- 5. Multiple Megaslide Complexes and their Significance for the Miocene stratigraphic evolution of the offshore Amazon Basin -- 6. Kinematics of submarine slope failures in the deepwater Taranaki Basin, New Zealand -- Part II Failure dynamics from landslide geomorphology -- 7. Postglacial Mass Failures in the Inner Hardangerfjorden System, Western Norway -- 8. Onshore and offshore geomorphological features of the El Golfo debris avalanche (El Hierro, Canary Islands) -- 9. New insights on failure and post-failure dynamics of submarine landslides on the intra-slope Palmarola ridge (Central Tyrrhenian Sea) -- 10. Assessment of Canyon Wall Failure Process from Multibeam Bathymetry and Remotely Operated Vehicle (ROV) Observations, U.S. Atlantic Continental Margin -- 11. The Chuí Megaslide Complex: regional-scale submarine landslides on the Southern Brazilian Margin -- 12. Submarine landslides and incised canyons of the southeast Queensland continental margin -- 13. Novel method to map the morphology of submarine landslide headwall scarps using Remotely Operated Vehicles -- 14. Flow behaviour of a giant landslide and debris flow entering Agadir Canyon, NW Africa -- 15. Fine-Scale Morphology of Tubeworm Slump, Monterey Canyon -- 16. Submarine slide topography and the Distribution of Vulnerable Marine Ecosystems: A Case Study in the Ionian Sea (Eastern Mediterranean) -- Part III Geotechnical aspects of mass movement -- 17. Shear Strength of Siliciclastic Sediments from Passive and Active Margins (0-100 meters below seafloor): Insights into Seismic Strengthening -- 18. A small volume calibration chamber for cone penetration testing (CPT) on submarine soils -- 19. Underwater Mass Movements in Lake Mjøsa, Norway -- 20. In situ cyclic softening of marine silts by vibratory CPTU at Orkdalsfjord test site, mid Norway -- 21. First results of the geotechnical in situ investigation for soil characterisation along the upper slope off Vesterålen - Northern Norway -- 22. A novel micro-shear tester for failure analysis of fine and cohesive granular matter -- 23. Knickpoint migration induced by landslide: Evidence from laboratory to field observations in Wabush Lake -- 24. Multiple flow slide experiment in the Westerschelde Estuary, The Netherlands -- Part IV Multidisciplinary case studies -- 25. Submarine mass wasting on Hovgaard Ridge, Fram Strait, European Arctic -- 26. 3D seismic investigations of Pleistocene Mass Transport Deposits and Glacigenic Debris Flows on the North Sea Fan, NE Atlantic Margin -- 27. Do embedded volcaniclastic layers serve as potential glide planes? – An integrated analysis from the Gela Basin offshore southern Sicily -- 28. Sediment failure affecting muddy contourites on the continental slope offshore northern Norway – lessons learned and some outstanding issues -- 29. Mass Wasting History within Lake Ohrid Basin (Albania/Macedonia) over the last 600ka -- 30. Implications of Sediment Dynamics in Mass Transport along the Pianosa Ridge (Northern Tyrrhenian Sea) -- 31. Late-Holocene Mass Movements in High Arctic East Lake, Melville Island (Western Canadian Arctic Archipelago) -- 32. Pleistocene Mass Transport Complexes off Barbados accretionary prism (Lesser Antilles) -- 33. Exploring the Influence of Deepwater Currents as Potential Triggers for Slope Instability -- Part V Tectonics and mass movements -- 34. French alpine foreland Holocene paleoseismicity revealed by coeval mass wasting deposits in glacial lakes -- 35. Spatial and temporal relation of submarine landslides and faults along the Israeli continental slope, eastern Mediterranean -- 36. Earthquake induced landslides in Lake Éternité, Québec, Canada -- 37. Large Mass Transport Deposits in Kumano Basin, Nankai Trough, Japan -- 38. Insights into Effectiveness of Simplified Seismic Displacement Procedures to Evaluate Earthquake Behavior of a Deepwater Slope -- Part VI Fluid flow and gas hydrates -- 39. Deriving the Rate of Salt Rise at the Cape Fear Slide Using New Seismic Data -- 40. Submarine slope instabilities coincident with shallow gas hydrate systems: insights from New Zealand examples -- 41. Eel Canyon Slump Scar and Associated Fluid Venting -- 42. Shallow gas and the development of a weak layer in submarine spreading, Hikurangi margin (New Zealand) -- 43. Stability of fine-grained sediments subject to gas hydrate dissociation in the Arctic continental margin -- Part VII Mass transport deposits in modern and outcrop sedimentology -- 44. Soft-sediment deformation associated with mass transport deposits of the aAnsa basin (Spanish Pyrenees) -- 45. Synsedimentary tectonics and mass wasting along the Alpine margin in Liassic time -- 46. Meso-scale kinematic indicators in exhumed mass transport deposits: definitions and implications -- 47. Morphodynamics of supercritical turbidity currents in the channel-lobe transition zone -- 48. Tiny fossils, big impact: the role of foraminifera-enriched condensed section in arresting the movement of a large retrogressive submarine landslide in the Gulf of Mexico -- 49. Inclusion of substrate blocks within a mass transport deposit: A case study from Cerro Bola, Argentina -- Part VIII Numerical and statistical analysis -- 50. GIS catalogue of submarine landslides in the Spanish Continental Shelf: potential and difficulties for susceptibility assessment -- 51. Tempo and triggering of large submarine landslides – Statistical analysis for hazard assessment -- 52. Morphological controls on submarine slab failures -- 53. Incorporating Correlated Variables into GIS-Based Probabilistic Submarine Slope Stability Assessments -- 54. Quantifying the key role of slope material peak strength – using Discrete Element simulations -- 55. Correction Factors for 1-D Runout Analyses of Selected Submarine Slides -- Part IX Tsunami generation from slope failure -- 56. Volcanic generation of tsunamis: Two New Zealand palaeo-events -- 57. Tsunami-genesis due to retrogressive landslides on an inclined seabed -- 58. Geothermal System as the Cause of the 1979 Landslide Tsunami in Lembata Island, Indonesia -- 59. Towards a spatial probabilistic submarine landslide hazard model for submarine canyons -- 60. Coupled modelling of the failure and tsunami of a submarine debris avalanche offshore central New Zealand -- 61. Observations of coastal landslide-generated tsunami under an ice cover: the case of Lac-des-Seize-Îles, Québec, Canada -- Index.
    In: Springer eBooks
    Additional Edition: Printed edition: ISBN 9783319209784
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    UID:
    edoccha_9958349474502883
    Format: 1 online resource (XV, 556 p. 195 illus., 55 illus. in color.)
    Edition: 1st ed. 2018.
    ISBN: 3-319-57852-9
    Series Statement: Springer Geology,
    Content: This book on the current state of knowledge of submarine geomorphology aims to achieve the goals of the Submarine Geomorphology working group, set up in 2013, by establishing submarine geomorphology as a field of research, disseminating its concepts and techniques among earth scientists and professionals, and encouraging students to develop their skills and knowledge in this field. Editors have invited 30 experts from around the world to contribute chapters to this book, which is divided into 4 sections – (i) Introduction & history, (ii) Data & methods, (ii) Submarine landforms & processes and (iv) Conclusions & future directions. Each chapter provides a review of a topic, establishes the state-of-the-art, identifies the key research questions that need to be addressed, and delineates a strategy on how to achieve this. Submarine geomorphology is a priority for many research institutions, government authorities and industries globally. The book is useful for undergraduate and graduate students, and professionals with limited training in this field.
    Note: Data and methods in submarine geomorphology -- Submarine landforms and processes -- Applied submarine geomorphology -- Conclusion.
    Additional Edition: ISBN 3-319-57851-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edoccha_9958132439602883
    Format: 1 online resource (599 p.)
    Edition: 1st ed. 2016.
    ISBN: 3-319-20979-5
    Series Statement: Advances in Natural and Technological Hazards Research, 41
    Content: This book is a comprehensive collection of state-of-the-art studies of seafloor slope instability and their societal implications. The volume captures the most recent and exciting scientific progress made in this research field. As the world’s climate and energy needs change, the conditions under which slope instability occurs, and needs to be considered, are also changing. The science and engineering of submarine – or more widely subaqueous – mass movements is greatly benefiting from advances in seafloor and sub-seafloor surveying technologies. Ultra-high-resolution seafloor mapping and 3D seismic reflection cubes are becoming commonly available datasets that are dramatically increasing our knowledge of the mechanisms and controls of subaqueous slope failure. Monitoring of slope deformation, repeat surveying and deep drilling, on the other hand, are emerging as important new techniques for understanding the temporal scales of slope instability. In essence, rapid advances in technology are being readily incorporated into scientific research and as a result, our understanding of submarine mass movements is increasing at a very fast rate.  The volume also marks the beginning of the third IGCP project for the submarine mass movement research community, IGCP-640 S4SLIDE (Significance of Modern and Ancient Submarine Slope LandSLIDEs). The Submarine Mass Movements and Their Consequences symposium is the biannual meeting under the IGCP umbrella.
    Note: Description based upon print version of record. , 1. Submarine Mass Movements and Their Consequences: Progress and Challenges -- Part  I Submarine Mass Movement in Margin Construction and Economic Significance2. The Role of Submarine Landslides in the Law of the Sea -- 3. Fabric Development and Pore-Throat Reduction in a Mass-Transport Deposit in the Jubilee Gas Field, Eastern Gulf of Mexico: Consequences for the Sealing Capacity of MTDs -- 4. Seismic geomorphology of the Israel Slump Complex in the central Levant Basin (SE Mediterranean) -- 5. Multiple Megaslide Complexes and their Significance for the Miocene stratigraphic evolution of the offshore Amazon Basin -- 6. Kinematics of submarine slope failures in the deepwater Taranaki Basin, New Zealand -- Part II Failure dynamics from landslide geomorphology -- 7. Postglacial Mass Failures in the Inner Hardangerfjorden System, Western Norway -- 8. Onshore and offshore geomorphological features of the El Golfo debris avalanche (El Hierro, Canary Islands) -- 9. New insights on failure and post-failure dynamics of submarine landslides on the intra-slope Palmarola ridge (Central Tyrrhenian Sea) -- 10. Assessment of Canyon Wall Failure Process from Multibeam Bathymetry and Remotely Operated Vehicle (ROV) Observations, U.S. Atlantic Continental Margin -- 11. The Chuí Megaslide Complex: regional-scale submarine landslides on the Southern Brazilian Margin -- 12. Submarine landslides and incised canyons of the southeast Queensland continental margin -- 13. Novel method to map the morphology of submarine landslide headwall scarps using Remotely Operated Vehicles -- 14. Flow behaviour of a giant landslide and debris flow entering Agadir Canyon, NW Africa -- 15. Fine-Scale Morphology of Tubeworm Slump, Monterey Canyon -- 16. Submarine slide topography and the Distribution of Vulnerable Marine Ecosystems: A Case Study in the Ionian Sea (Eastern Mediterranean) -- Part III Geotechnical aspects of mass movement -- 17. Shear Strength of Siliciclastic Sediments from Passive and Active Margins (0-100 meters below seafloor): Insights into Seismic Strengthening -- 18. A small volume calibration chamber for cone penetration testing (CPT) on submarine soils -- 19. Underwater Mass Movements in Lake Mjøsa, Norway -- 20. In situ cyclic softening of marine silts by vibratory CPTU at Orkdalsfjord test site, mid Norway -- 21. First results of the geotechnical in situ investigation for soil characterisation along the upper slope off Vesterålen - Northern Norway -- 22. A novel micro-shear tester for failure analysis of fine and cohesive granular matter -- 23. Knickpoint migration induced by landslide: Evidence from laboratory to field observations in Wabush Lake -- 24. Multiple flow slide experiment in the Westerschelde Estuary, The Netherlands -- Part IV Multidisciplinary case studies -- 25. Submarine mass wasting on Hovgaard Ridge, Fram Strait, European Arctic -- 26. 3D seismic investigations of Pleistocene Mass Transport Deposits and Glacigenic Debris Flows on the North Sea Fan, NE Atlantic Margin -- 27. Do embedded volcaniclastic layers serve as potential glide planes? – An integrated analysis from the Gela Basin offshore southern Sicily -- 28. Sediment failure affecting muddy contourites on the continental slope offshore northern Norway – lessons learned and some outstanding issues -- 29. Mass Wasting History within Lake Ohrid Basin (Albania/Macedonia) over the last 600ka -- 30. Implications of Sediment Dynamics in Mass Transport along the Pianosa Ridge (Northern Tyrrhenian Sea) -- 31. Late-Holocene Mass Movements in High Arctic East Lake, Melville Island (Western Canadian Arctic Archipelago) -- 32. Pleistocene Mass Transport Complexes off Barbados accretionary prism (Lesser Antilles) -- 33. Exploring the Influence of Deepwater Currents as Potential Triggers for Slope Instability -- Part V Tectonics and mass movements -- 34. French alpine foreland Holocene paleoseismicity revealed by coeval mass wasting deposits in glacial lakes -- 35. Spatial and temporal relation of submarine landslides and faults along the Israeli continental slope, eastern Mediterranean -- 36. Earthquake induced landslides in Lake Éternité, Québec, Canada -- 37. Large Mass Transport Deposits in Kumano Basin, Nankai Trough, Japan -- 38. Insights into Effectiveness of Simplified Seismic Displacement Procedures to Evaluate Earthquake Behavior of a Deepwater Slope -- Part VI Fluid flow and gas hydrates -- 39. Deriving the Rate of Salt Rise at the Cape Fear Slide Using New Seismic Data -- 40. Submarine slope instabilities coincident with shallow gas hydrate systems: insights from New Zealand examples -- 41. Eel Canyon Slump Scar and Associated Fluid Venting -- 42. Shallow gas and the development of a weak layer in submarine spreading, Hikurangi margin (New Zealand) -- 43. Stability of fine-grained sediments subject to gas hydrate dissociation in the Arctic continental margin -- Part VII Mass transport deposits in modern and outcrop sedimentology -- 44. Soft-sediment deformation associated with mass transport deposits of the aAnsa basin (Spanish Pyrenees) -- 45. Synsedimentary tectonics and mass wasting along the Alpine margin in Liassic time -- 46. Meso-scale kinematic indicators in exhumed mass transport deposits: definitions and implications -- 47. Morphodynamics of supercritical turbidity currents in the channel-lobe transition zone -- 48. Tiny fossils, big impact: the role of foraminifera-enriched condensed section in arresting the movement of a large retrogressive submarine landslide in the Gulf of Mexico -- 49. Inclusion of substrate blocks within a mass transport deposit: A case study from Cerro Bola, Argentina -- Part VIII Numerical and statistical analysis -- 50. GIS catalogue of submarine landslides in the Spanish Continental Shelf: potential and difficulties for susceptibility assessment -- 51. Tempo and triggering of large submarine landslides – Statistical analysis for hazard assessment -- 52. Morphological controls on submarine slab failures -- 53. Incorporating Correlated Variables into GIS-Based Probabilistic Submarine Slope Stability Assessments -- 54. Quantifying the key role of slope material peak strength – using Discrete Element simulations -- 55. Correction Factors for 1-D Runout Analyses of Selected Submarine Slides -- Part IX Tsunami generation from slope failure -- 56. Volcanic generation of tsunamis: Two New Zealand palaeo-events -- 57. Tsunami-genesis due to retrogressive landslides on an inclined seabed -- 58. Geothermal System as the Cause of the 1979 Landslide Tsunami in Lembata Island, Indonesia -- 59. Towards a spatial probabilistic submarine landslide hazard model for submarine canyons -- 60. Coupled modelling of the failure and tsunami of a submarine debris avalanche offshore central New Zealand -- 61. Observations of coastal landslide-generated tsunami under an ice cover: the case of Lac-des-Seize-Îles, Québec, Canada -- Index. , English
    Additional Edition: ISBN 3-319-20978-7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    almafu_9958132439602883
    Format: 1 online resource (599 p.)
    Edition: 1st ed. 2016.
    ISBN: 3-319-20979-5
    Series Statement: Advances in Natural and Technological Hazards Research, 41
    Content: This book is a comprehensive collection of state-of-the-art studies of seafloor slope instability and their societal implications. The volume captures the most recent and exciting scientific progress made in this research field. As the world’s climate and energy needs change, the conditions under which slope instability occurs, and needs to be considered, are also changing. The science and engineering of submarine – or more widely subaqueous – mass movements is greatly benefiting from advances in seafloor and sub-seafloor surveying technologies. Ultra-high-resolution seafloor mapping and 3D seismic reflection cubes are becoming commonly available datasets that are dramatically increasing our knowledge of the mechanisms and controls of subaqueous slope failure. Monitoring of slope deformation, repeat surveying and deep drilling, on the other hand, are emerging as important new techniques for understanding the temporal scales of slope instability. In essence, rapid advances in technology are being readily incorporated into scientific research and as a result, our understanding of submarine mass movements is increasing at a very fast rate.  The volume also marks the beginning of the third IGCP project for the submarine mass movement research community, IGCP-640 S4SLIDE (Significance of Modern and Ancient Submarine Slope LandSLIDEs). The Submarine Mass Movements and Their Consequences symposium is the biannual meeting under the IGCP umbrella.
    Note: Description based upon print version of record. , 1. Submarine Mass Movements and Their Consequences: Progress and Challenges -- Part  I Submarine Mass Movement in Margin Construction and Economic Significance2. The Role of Submarine Landslides in the Law of the Sea -- 3. Fabric Development and Pore-Throat Reduction in a Mass-Transport Deposit in the Jubilee Gas Field, Eastern Gulf of Mexico: Consequences for the Sealing Capacity of MTDs -- 4. Seismic geomorphology of the Israel Slump Complex in the central Levant Basin (SE Mediterranean) -- 5. Multiple Megaslide Complexes and their Significance for the Miocene stratigraphic evolution of the offshore Amazon Basin -- 6. Kinematics of submarine slope failures in the deepwater Taranaki Basin, New Zealand -- Part II Failure dynamics from landslide geomorphology -- 7. Postglacial Mass Failures in the Inner Hardangerfjorden System, Western Norway -- 8. Onshore and offshore geomorphological features of the El Golfo debris avalanche (El Hierro, Canary Islands) -- 9. New insights on failure and post-failure dynamics of submarine landslides on the intra-slope Palmarola ridge (Central Tyrrhenian Sea) -- 10. Assessment of Canyon Wall Failure Process from Multibeam Bathymetry and Remotely Operated Vehicle (ROV) Observations, U.S. Atlantic Continental Margin -- 11. The Chuí Megaslide Complex: regional-scale submarine landslides on the Southern Brazilian Margin -- 12. Submarine landslides and incised canyons of the southeast Queensland continental margin -- 13. Novel method to map the morphology of submarine landslide headwall scarps using Remotely Operated Vehicles -- 14. Flow behaviour of a giant landslide and debris flow entering Agadir Canyon, NW Africa -- 15. Fine-Scale Morphology of Tubeworm Slump, Monterey Canyon -- 16. Submarine slide topography and the Distribution of Vulnerable Marine Ecosystems: A Case Study in the Ionian Sea (Eastern Mediterranean) -- Part III Geotechnical aspects of mass movement -- 17. Shear Strength of Siliciclastic Sediments from Passive and Active Margins (0-100 meters below seafloor): Insights into Seismic Strengthening -- 18. A small volume calibration chamber for cone penetration testing (CPT) on submarine soils -- 19. Underwater Mass Movements in Lake Mjøsa, Norway -- 20. In situ cyclic softening of marine silts by vibratory CPTU at Orkdalsfjord test site, mid Norway -- 21. First results of the geotechnical in situ investigation for soil characterisation along the upper slope off Vesterålen - Northern Norway -- 22. A novel micro-shear tester for failure analysis of fine and cohesive granular matter -- 23. Knickpoint migration induced by landslide: Evidence from laboratory to field observations in Wabush Lake -- 24. Multiple flow slide experiment in the Westerschelde Estuary, The Netherlands -- Part IV Multidisciplinary case studies -- 25. Submarine mass wasting on Hovgaard Ridge, Fram Strait, European Arctic -- 26. 3D seismic investigations of Pleistocene Mass Transport Deposits and Glacigenic Debris Flows on the North Sea Fan, NE Atlantic Margin -- 27. Do embedded volcaniclastic layers serve as potential glide planes? – An integrated analysis from the Gela Basin offshore southern Sicily -- 28. Sediment failure affecting muddy contourites on the continental slope offshore northern Norway – lessons learned and some outstanding issues -- 29. Mass Wasting History within Lake Ohrid Basin (Albania/Macedonia) over the last 600ka -- 30. Implications of Sediment Dynamics in Mass Transport along the Pianosa Ridge (Northern Tyrrhenian Sea) -- 31. Late-Holocene Mass Movements in High Arctic East Lake, Melville Island (Western Canadian Arctic Archipelago) -- 32. Pleistocene Mass Transport Complexes off Barbados accretionary prism (Lesser Antilles) -- 33. Exploring the Influence of Deepwater Currents as Potential Triggers for Slope Instability -- Part V Tectonics and mass movements -- 34. French alpine foreland Holocene paleoseismicity revealed by coeval mass wasting deposits in glacial lakes -- 35. Spatial and temporal relation of submarine landslides and faults along the Israeli continental slope, eastern Mediterranean -- 36. Earthquake induced landslides in Lake Éternité, Québec, Canada -- 37. Large Mass Transport Deposits in Kumano Basin, Nankai Trough, Japan -- 38. Insights into Effectiveness of Simplified Seismic Displacement Procedures to Evaluate Earthquake Behavior of a Deepwater Slope -- Part VI Fluid flow and gas hydrates -- 39. Deriving the Rate of Salt Rise at the Cape Fear Slide Using New Seismic Data -- 40. Submarine slope instabilities coincident with shallow gas hydrate systems: insights from New Zealand examples -- 41. Eel Canyon Slump Scar and Associated Fluid Venting -- 42. Shallow gas and the development of a weak layer in submarine spreading, Hikurangi margin (New Zealand) -- 43. Stability of fine-grained sediments subject to gas hydrate dissociation in the Arctic continental margin -- Part VII Mass transport deposits in modern and outcrop sedimentology -- 44. Soft-sediment deformation associated with mass transport deposits of the aAnsa basin (Spanish Pyrenees) -- 45. Synsedimentary tectonics and mass wasting along the Alpine margin in Liassic time -- 46. Meso-scale kinematic indicators in exhumed mass transport deposits: definitions and implications -- 47. Morphodynamics of supercritical turbidity currents in the channel-lobe transition zone -- 48. Tiny fossils, big impact: the role of foraminifera-enriched condensed section in arresting the movement of a large retrogressive submarine landslide in the Gulf of Mexico -- 49. Inclusion of substrate blocks within a mass transport deposit: A case study from Cerro Bola, Argentina -- Part VIII Numerical and statistical analysis -- 50. GIS catalogue of submarine landslides in the Spanish Continental Shelf: potential and difficulties for susceptibility assessment -- 51. Tempo and triggering of large submarine landslides – Statistical analysis for hazard assessment -- 52. Morphological controls on submarine slab failures -- 53. Incorporating Correlated Variables into GIS-Based Probabilistic Submarine Slope Stability Assessments -- 54. Quantifying the key role of slope material peak strength – using Discrete Element simulations -- 55. Correction Factors for 1-D Runout Analyses of Selected Submarine Slides -- Part IX Tsunami generation from slope failure -- 56. Volcanic generation of tsunamis: Two New Zealand palaeo-events -- 57. Tsunami-genesis due to retrogressive landslides on an inclined seabed -- 58. Geothermal System as the Cause of the 1979 Landslide Tsunami in Lembata Island, Indonesia -- 59. Towards a spatial probabilistic submarine landslide hazard model for submarine canyons -- 60. Coupled modelling of the failure and tsunami of a submarine debris avalanche offshore central New Zealand -- 61. Observations of coastal landslide-generated tsunami under an ice cover: the case of Lac-des-Seize-Îles, Québec, Canada -- Index. , English
    Additional Edition: ISBN 3-319-20978-7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    UID:
    almafu_9958349474502883
    Format: 1 online resource (XV, 556 p. 195 illus., 55 illus. in color.)
    Edition: 1st ed. 2018.
    ISBN: 3-319-57852-9
    Series Statement: Springer Geology,
    Content: This book on the current state of knowledge of submarine geomorphology aims to achieve the goals of the Submarine Geomorphology working group, set up in 2013, by establishing submarine geomorphology as a field of research, disseminating its concepts and techniques among earth scientists and professionals, and encouraging students to develop their skills and knowledge in this field. Editors have invited 30 experts from around the world to contribute chapters to this book, which is divided into 4 sections – (i) Introduction & history, (ii) Data & methods, (ii) Submarine landforms & processes and (iv) Conclusions & future directions. Each chapter provides a review of a topic, establishes the state-of-the-art, identifies the key research questions that need to be addressed, and delineates a strategy on how to achieve this. Submarine geomorphology is a priority for many research institutions, government authorities and industries globally. The book is useful for undergraduate and graduate students, and professionals with limited training in this field.
    Note: Data and methods in submarine geomorphology -- Submarine landforms and processes -- Applied submarine geomorphology -- Conclusion.
    Additional Edition: ISBN 3-319-57851-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    gbv_57185009X
    ISSN: 1872-6151
    Content: This study documents the fractal characteristics of submarine mass movement statistics and morphology within the Storegga Slide. Geomorphometric mapping is used to identify one hundred and fifteen mass movements from within the Storegga Slide scar and to extract morphological information about their headwalls. Analyses of this morphological information reveal the occurrence of spatial scale invariance within the Storegga Slide. Non-cumulative frequency-area distribution of mass movements within the Storegga Slide satisfies an inverse power law with an exponent of 1.52. The headwalls exhibit geometric similarity at a wide range of scales and the lengths of headwalls scale with mass movement areas. Composite headwalls are self-similar. One of the explanations of the observed spatial scale invariance is that the Storegga Slide is a geomorphological system that may exhibit self-organized criticality. In such a system, the input of sediment is in the form of hemipelagic sedimentation and glacial sediment deposition, and the output is represented by mass movements that are spatially scale invariant. In comparison to subaerial mass movements, the aggregate behavior of the Storegga Slide mass movements is more comparable to that of the theoretical ‘sandpile’ model. The origin of spatial scale invariance may also be linked to the retrogressive nature of the Storegga Slide. The geometric similarity in headwall morphology implies that the slope failure processes are active on a range of scales, and that modeling of slope failures and geohazard assessment can extrapolate the properties of small landslides to those of larger landslides, within the limits of power law behavior. The results also have implications for the morphological classification of submarine mass movements, because headwall shape can be used as a proxy for the type of mass movement, which can otherwise only be detected with very high resolution acoustic data that are not commonly available.
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 247(2008), 1/2, Seite 46-60, 1872-6151
    In: volume:247
    In: year:2008
    In: number:1/2
    In: pages:46-60
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages