feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Amsterdam ; : Elsevier,
    UID:
    almahu_9948026802702882
    Format: 1 online resource (573 p.)
    Edition: 1st ed.
    ISBN: 1-280-74724-2 , 9786610747245 , 0-08-046800-4
    Content: Molecular biology operates at three levels - genes, proteins and metabolites. This book is unique in that it provides a comprehensive description of an approach (metabonomics) to characterise the endogenous metabolites in a living system, complementing gene and protein studies (genomics and proteomics). These ""omics"" methods form the basis for understanding biology at a systems level. The Handbook of Metabonomics and Metabolomics aims to be the definitive work on the rapidly expanding subjects of metabolic profiling, metabolite and biomarker identification, encompassing the fields
    Note: Includes bibliographical references and index. , Front Cover; The Handbook of Metabonomics and Metabolomics; Copyright Page; Table of Contents; Foreword; Preface; Chapter 1 Metabonomics and Metabolomics Techniques and Their Applications in Mammalian Systems; 1.1. Metabonomics and metabolomics in relation to other "omics" approaches; 1.2. The concept of global systems biology; 1.3. Interactions between host and other genomes; 1.4. Time-scales of "-omics" events; 1.5. Samples for metabonomics and metabolomics; 1.6. Analytical technologies; 1.7. Chemometric methods; 1.8. New approaches to biomarker identification using chemometrics , 1.9. Standardisation of metabolic experiments and their reporting1.10. Overview of applications of metabonomics and metabolomics to mammalian systems; 1.11. Concluding remarks; References; Chapter 2 Cellular Metabolomics: The Quest for Pathway Structure; 2.1. Introduction; 2.2. How large is the metabolome?; 2.3. Metabolite identification; 2.4. Pathway identification; 2.5. "Omics" data integration; 2.6. Metabolic fluxes; 2.7. Metabolic networks; Acknowledgments; References; Chapter 3 NMR Spectroscopy Techniques for Application to Metabonomics; 3.1. Introduction; 3.2. Principles of NMR , 3.3. Hardware requirements and automation3.4. Sample handling; 3.5. NMR Experiments and their processing; 3.6. Data pre-processing; 3.7. Outlook; References; Chapter 4 High-Resolution Magic Angle Spinning NMR Spectroscopy; 4.1. Introduction; 4.2. Nuclear spin Hamiltonian; 4.3. Coherence averaging by magic angle spinning; 4.4. MAS NMR experiments; 4.5. Pulse sequences; 4.6. Applications; Acknowledgements; References; Chapter 5 Chromatographic and Electrophoretic Separations Combined with Mass Spectrometry for Metabonomics; Abstract; 5.1. Introduction; 5.2. Gas Chromatography-Mass Spectrometry , 5.3. Liquid Chromatography-Mass Spectrometry5.4. HPLC-MS for metabonomics; 5.5. Capillary LC-MS; 5.6. Ultra performance Liquid Chromatography-Mass Spectrometry; 5.7. Capillary zone electrophoresis-Mass Spectrometry; 5.8. GC-, LC- and CE-MS for metabonomics: A perspective; 5.9. Conclusions; References; Chapter 6 Chemometrics Techniques for Metabonomics; 6.1. Introduction; 6.2. Chemometric approaches to metabonomic studies; 6.3. Summary; 6.4. Extensions and future outlook; References; Chapter 7 Non-linear Methods for the Analysis of Metabolic Profiles; 7.1. Introduction , 7.2. Unsupervised methods7.3. Supervised methods; 7.4. Other methods; 7.5. Conclusions; Acknowledgements; References; Chapter 8 Databases and Standardisation of Reporting Methods for Metabolic Studies; 8.1. Introduction: The challenges; 8.2. Tackling the challenges; 8.3. Standards in action - a working example; 8.4. Final remarks; References; Chapter 9 Metabonomics in Preclinical Pharmaceutical Discovery and Development; 9.1. Introduction; 9.2. Background; 9.3. Methods; 9.4. Preclinical efficacy; 9.5. Preclinical toxicity; 9.6. Conclusions; References , Chapter 10 Applications of Metabonomics in Clinical Pharmaceutical R&D , English
    Additional Edition: ISBN 0-444-52841-5
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9948025480002882
    Format: 1 online resource (622 pages)
    ISBN: 0-12-812294-3 , 0-12-812293-5
    Note: Front Cover -- The Handbook of Metabolic Phenotyping -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- Chapter 1: An Overview of Metabolic Phenotyping and Its Role in Systems Biology -- 1. The History and Evolution of Metabolic Profiling -- 1.1. The Early Years -- 1.2. Modern Metabolic Profiling Using NMR Spectroscopy -- 1.3. Modern Metabolic Profiling Using Mass Spectrometry -- 1.4. Definition of the Field and Efforts in Standardization -- 1.5. Development of Computational Technologies -- 1.5.1. Multivariate Statistics -- 1.5.2. Statistical Spectroscopy -- 1.5.3. Databases -- 2. Application Areas -- 2.1. Drug Metabolism and Toxicology -- 2.2. Plant-Based Metabolomics -- 2.3. Human Disease -- 2.3.1. Hepatology and Gastroenterology -- 2.3.2. Neuropathologies -- 2.3.3. Cancer -- 2.3.4. Cardiometabolic Disease -- 2.3.5. Organ Transplantation -- 2.3.6. Renal Diseases -- 2.3.7. Infectious Diseases -- 2.3.8. Epidemiology & MWAS -- 2.3.9. Nutrition -- 2.4. Mechanistic Studies of Disease Models -- 2.4.1. In Vivo Models -- 2.4.2. In Vitro Models -- 2.5. Predictive Metabolic Phenotyping (Pharmacometabonomics) -- 2.6. Emerging Metabolic Profiling Technologies -- 3. Concluding Remarks -- References -- Chapter 2: NMR Spectroscopy Methods in Metabolic Phenotyping -- 1. The Nature of NMR Spectroscopy -- 2. NMR and the Complex Mixture Problem -- 3. NMR Sample Storage and Preparation -- 4. Initial 1H NMR Analysis, High-Throughput Screening, and Basic Editing Techniques -- 4.1. Solvent Signal Suppression -- 4.2. Editing of Basic 1D 1H NMR Spectra -- 5. Higher Dimensional NMR: The Quest for Resolution, Correlation, and Component Identity -- 5.1. ``Go-to´´ Techniques: Basic 2D NMR Methods -- 5.1.1. Heteronuclear Single Quantum Coherence -- 5.1.2. HSQC-TOCSY -- 5.1.3. TOCSY -- 5.1.4. J-Resolved. , 5.2. Diffusion-Ordered Methods for Self-Diffusion Coefficient Measurement -- 5.2.1. 2D Correlations With Diffusion Encoding by 3D NMR -- 5.2.2. Pureshift and Diffusion Encoding: A Resolution Revolution -- 6. Improving 2D Resolution Without Cost: Experimental Methods and Data Treatments -- 6.1. PSYCHE-Based 2D Correlations With Covariance Processing -- 6.2. Pure Shift 2D Heteronuclear Correlations -- 6.3. Nonuniform Sampling -- 7. Substantially Boosting Signal Sensitivity -- 7.1. Dissolution Dynamic Nuclear Polarization -- 7.2. Signal Amplification by Reversible Exchange -- 8. Quantitation -- 8.1. HSQC0 -- 9. Preparation of Data for Chemometric Analysis -- 10. Conclusion, Perspective, and Outlook -- References -- Chapter 3: The Role of Ultra Performance Liquid Chromatography-Mass Spectrometry in Metabolic Phenotyping -- 1. Introduction -- 2. The Emergence and Requirements of Ultra Performance Liquid Chromatography for Metabolic Phenotyping -- 3. The Requirements of Mass Spectrometers for Metabolic Phenotyping -- 4. Types of Data Acquired in UPLC-MS Studies -- 5. Quality Assurance and Quality Control in UPLC-MS-Based Metabolic Phenotyping -- 5.1. System Suitability Test Solution [10, 35] -- 5.2. Isotopically Labeled Internal Standards [10, 17, 80] -- 5.3. Within-Study Pooled Quality Control Sample [10, 17, 82] -- 5.4. Long-Term Reference Material [17, 85] -- 5.5. Extraction Blank Samples -- 6. Analytical Robustness for Small-Scale and Large-Scale Studies -- 7. Data Processing -- 8. Metabolite Annotation and Identification -- 9. Exemplar Applications -- Acknowledgments -- References -- Chapter 4: GC-MS-Based Metabolic Phenotyping -- 1. Introduction -- 2. GC-MS as an Analytical Technique -- 3. GC-MS Metabolic Phenotyping Workflow -- 4. Sample Preparation for GC-MS-Based Metabolic Phenotyping -- 5. Data Processing -- 6. Statistical Evaluation. , 7. Biochemical Interpretation -- 8. GC-MS Troubleshooting -- 9. Clinical Applications -- 10. Conclusion -- References -- Chapter 5: Metabolic Phenotyping Using Capillary Electrophoresis Mass Spectrometry -- 1. Introduction -- 1.1. Instrumentation -- 1.2. Principles of Capillary Zone Electrophoresis -- 1.3. Conditions That Can Be Modified to Optimize the Separation and Limitations When Coupled to MS -- 1.4. Strengths -- 1.5. Weaknesses -- 1.6. Coupling to MS -- 2. Workflow -- 2.1. Design -- 2.2. Sample -- 2.3. Separation and Detection -- 2.3.1. Materials -- 2.3.2. Capillary Preparation -- 2.3.3. CE-MS Method -- 2.4. Data -- 2.5. Statistics -- 2.6. Identification -- 2.7. Meaning -- 3. Applications -- 3.1. Cancer -- 3.2. Metabolic Disorders -- 3.3. Neurodegenerative Diseases and Brain Disorders -- 3.4. Others -- 3.4.1. Infectious Diseases -- 3.4.2. Alcohol Abuse -- 3.4.3. Clinical Approaches -- 4. Conclusions and Future Trends -- References -- Chapter 6: Supercritical Fluid Chromatography for Metabolic Phenotyping: Potential and Applications -- 1. Introduction -- 2. Application of SFC to Nonpolar Metabolite Analysis -- 2.1. Lipids -- 2.2. Bile and Bile Acids -- 2.3. Applications of SFC to Polar Metabolite Analysis -- 3. Conclusion -- References -- Chapter 7: The iKnife: Development and Clinical Applications of Rapid Evaporative Ionization Mass Spectrometry -- Abbreviations -- 1. Introduction -- 2. Basic Principles of Mass Spectrometry -- 3. Nonambient and Ambient Mass Spectrometry -- 4. Development of Rapid Evaporative Ionization Mass Spectrometry (REIMS) (the iKnife) -- 5. Model Generation: The Concept of Profiling -- 6. Clinical Applications -- 6.1. Oncological Surgery: Introduction -- 6.2. Breast Cancer: The iKnife as a Diagnostic and Margin Assessment Tool -- 6.3. Brain Tumors: The iKnife as a Diagnostic and Extent of Resection Assessment Tool. , 6.4. Gastroenterology: The iEndoscope -- 7. Microbiology Applications -- 8. Conclusions -- References -- Chapter 8: Univariate Statistical Modeling, Multiple Testing Correction, and Visualization in Metabolome-Wide Association ... -- 1. Metabolic Phenotyping: Opportunities and Challenges -- 1.1. Application to Public Health Studies -- 1.2. Overview of the Analytical Pipeline in Metabolic Phenotyping -- 2. Metabolome-Wide Association Study: Univariate Approaches -- 2.1. Imputation and Normalization -- 2.2. Statistical Analyses Using Univariate Approaches -- 2.3. Linear and Generalized Linear Models -- 2.4. (Generalized) Linear Mixed Models -- 2.5. Meta-Analyses -- 3. Metabolome-Wide Significance Level -- 3.1. FWER and FDR Control -- 3.2. Defining the Metabolome-Wide Significance Level -- 4. Results Prioritization and Visualization -- 5. Conclusions -- Acknowledgment -- References -- Chapter 9: Multivariate Statistical Methods for Metabolic Phenotyping -- 1. Introduction -- 1.1. Mathematical Notations -- 1.2. Data Transformations -- 1.2.1. Mean Centering -- 1.2.2. Autoscaling -- 1.2.3. Generalized Equation for Scaling -- 1.3. Data Set Partitioning -- 2. Unsupervised Pattern Recognition -- 2.1. Unsupervised Methods for Dimension Reduction and Multivariate Projections -- 2.1.1. Principal Component Analysis -- 2.1.2. Projection Pursuit and Independent Component Analysis -- 2.1.3. Kernel Principal Component Analysis -- 2.1.4. Sparse Principal Component Analysis -- 2.2. Outlier Detection -- 2.2.1. Hotelling's T2 -- 2.2.2. Quality Control Samples -- 2.2.3. Robust Principal Component Analysis -- 2.3. Other Data Exploration Approaches for Specific Experimental Designs and Multiway Analysis -- 2.3.1. Multiway Methods -- 2.3.2. Multivariate Curve Resolution -- 2.3.3. Nonnegative Principal Component Analysis and Nonnegative Matrix Factorization. , 3. Supervised Pattern Recognition and Multivariate Regression -- 3.1. Discriminant and Cluster Analysis -- 3.1.1. Linear Discriminant Analysis -- 3.1.2. Quadratic Discriminant Analysis -- 3.1.3. k-Nearest Neighbors -- 3.1.4. k-Means, k-Medoids, and Fuzzy Alternatives -- 3.2. Multivariate Regression -- 3.2.1. Multiple Linear Regression -- 3.2.2. Principal Component Regression -- 3.2.3. Partial Least Squares -- 3.2.4. Kernel Partial Least Squares -- 3.2.5. Orthogonal Signal Correction-Filtered Partial Least Squares and Orthogonal Projections to Latent Structures -- 3.2.6. Two-Block Orthogonal Projections to Latent Structures -- 3.2.7. Kernel Orthogonal Projections to Latent Structures -- 3.3. Penalized Regression -- 3.3.1. Ridge Regression and Kernel Ridge Regression -- 3.3.2. Sparse Penalized Regression Using the Lasso -- 3.3.3. The Elastic Net, a Weighted Average of Lasso and Ridge Regression -- 3.4. Nonparametric Machine Learning and Recursive Partitioning Methods -- 3.4.1. Support Vector Machines -- 3.4.2. Variable Importance in Linear Support Vector Machines -- 3.4.3. Uncovering Variable Importance for Nonlinear Kernel-Based Models -- 3.4.4. Decision Trees for Classification -- 3.4.5. Random Forests -- 3.5. Prediction Error Rates and Model Fits -- 3.6. Other Supervised Methods and Those for Specific Experimental Designs -- 3.6.1. ANOVA-Based Decompositions -- 3.6.2. Bayesian Approaches -- 3.6.3. Deep Learning Algorithms -- 4. Statistical Approaches for Biomarker Identification -- 4.1. Statistical Total Correlation Spectroscopy -- 4.2. Correlation Networks of Biological Coregulation -- 4.3. Subset Optimization by Reference Matching and the Statistical Use of Second Dimension Data -- 4.4. Statistical Hetero Spectroscopy and Data Fusion -- 5. Conclusion -- References -- Chapter 10: Data-Driven Visualizations in Metabolic Phenotyping. , 1. Visualizing Metabolic Phenotyping Data and Analysis.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Book
    Book
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_BV045484315
    Format: xxii, 597 Seiten : , Illustrationen, Diagramme.
    ISBN: 978-0-12-812293-8
    Note: Includes bibliographical references and index
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-0-12-812294-5
    Language: English
    Subjects: Biology
    RVK:
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    edocfu_9961089901202883
    Format: 1 online resource (622 pages)
    ISBN: 0-12-812294-3 , 0-12-812293-5
    Note: Front Cover -- The Handbook of Metabolic Phenotyping -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- Chapter 1: An Overview of Metabolic Phenotyping and Its Role in Systems Biology -- 1. The History and Evolution of Metabolic Profiling -- 1.1. The Early Years -- 1.2. Modern Metabolic Profiling Using NMR Spectroscopy -- 1.3. Modern Metabolic Profiling Using Mass Spectrometry -- 1.4. Definition of the Field and Efforts in Standardization -- 1.5. Development of Computational Technologies -- 1.5.1. Multivariate Statistics -- 1.5.2. Statistical Spectroscopy -- 1.5.3. Databases -- 2. Application Areas -- 2.1. Drug Metabolism and Toxicology -- 2.2. Plant-Based Metabolomics -- 2.3. Human Disease -- 2.3.1. Hepatology and Gastroenterology -- 2.3.2. Neuropathologies -- 2.3.3. Cancer -- 2.3.4. Cardiometabolic Disease -- 2.3.5. Organ Transplantation -- 2.3.6. Renal Diseases -- 2.3.7. Infectious Diseases -- 2.3.8. Epidemiology & MWAS -- 2.3.9. Nutrition -- 2.4. Mechanistic Studies of Disease Models -- 2.4.1. In Vivo Models -- 2.4.2. In Vitro Models -- 2.5. Predictive Metabolic Phenotyping (Pharmacometabonomics) -- 2.6. Emerging Metabolic Profiling Technologies -- 3. Concluding Remarks -- References -- Chapter 2: NMR Spectroscopy Methods in Metabolic Phenotyping -- 1. The Nature of NMR Spectroscopy -- 2. NMR and the Complex Mixture Problem -- 3. NMR Sample Storage and Preparation -- 4. Initial 1H NMR Analysis, High-Throughput Screening, and Basic Editing Techniques -- 4.1. Solvent Signal Suppression -- 4.2. Editing of Basic 1D 1H NMR Spectra -- 5. Higher Dimensional NMR: The Quest for Resolution, Correlation, and Component Identity -- 5.1. ``Go-to´´ Techniques: Basic 2D NMR Methods -- 5.1.1. Heteronuclear Single Quantum Coherence -- 5.1.2. HSQC-TOCSY -- 5.1.3. TOCSY -- 5.1.4. J-Resolved. , 5.2. Diffusion-Ordered Methods for Self-Diffusion Coefficient Measurement -- 5.2.1. 2D Correlations With Diffusion Encoding by 3D NMR -- 5.2.2. Pureshift and Diffusion Encoding: A Resolution Revolution -- 6. Improving 2D Resolution Without Cost: Experimental Methods and Data Treatments -- 6.1. PSYCHE-Based 2D Correlations With Covariance Processing -- 6.2. Pure Shift 2D Heteronuclear Correlations -- 6.3. Nonuniform Sampling -- 7. Substantially Boosting Signal Sensitivity -- 7.1. Dissolution Dynamic Nuclear Polarization -- 7.2. Signal Amplification by Reversible Exchange -- 8. Quantitation -- 8.1. HSQC0 -- 9. Preparation of Data for Chemometric Analysis -- 10. Conclusion, Perspective, and Outlook -- References -- Chapter 3: The Role of Ultra Performance Liquid Chromatography-Mass Spectrometry in Metabolic Phenotyping -- 1. Introduction -- 2. The Emergence and Requirements of Ultra Performance Liquid Chromatography for Metabolic Phenotyping -- 3. The Requirements of Mass Spectrometers for Metabolic Phenotyping -- 4. Types of Data Acquired in UPLC-MS Studies -- 5. Quality Assurance and Quality Control in UPLC-MS-Based Metabolic Phenotyping -- 5.1. System Suitability Test Solution [10, 35] -- 5.2. Isotopically Labeled Internal Standards [10, 17, 80] -- 5.3. Within-Study Pooled Quality Control Sample [10, 17, 82] -- 5.4. Long-Term Reference Material [17, 85] -- 5.5. Extraction Blank Samples -- 6. Analytical Robustness for Small-Scale and Large-Scale Studies -- 7. Data Processing -- 8. Metabolite Annotation and Identification -- 9. Exemplar Applications -- Acknowledgments -- References -- Chapter 4: GC-MS-Based Metabolic Phenotyping -- 1. Introduction -- 2. GC-MS as an Analytical Technique -- 3. GC-MS Metabolic Phenotyping Workflow -- 4. Sample Preparation for GC-MS-Based Metabolic Phenotyping -- 5. Data Processing -- 6. Statistical Evaluation. , 7. Biochemical Interpretation -- 8. GC-MS Troubleshooting -- 9. Clinical Applications -- 10. Conclusion -- References -- Chapter 5: Metabolic Phenotyping Using Capillary Electrophoresis Mass Spectrometry -- 1. Introduction -- 1.1. Instrumentation -- 1.2. Principles of Capillary Zone Electrophoresis -- 1.3. Conditions That Can Be Modified to Optimize the Separation and Limitations When Coupled to MS -- 1.4. Strengths -- 1.5. Weaknesses -- 1.6. Coupling to MS -- 2. Workflow -- 2.1. Design -- 2.2. Sample -- 2.3. Separation and Detection -- 2.3.1. Materials -- 2.3.2. Capillary Preparation -- 2.3.3. CE-MS Method -- 2.4. Data -- 2.5. Statistics -- 2.6. Identification -- 2.7. Meaning -- 3. Applications -- 3.1. Cancer -- 3.2. Metabolic Disorders -- 3.3. Neurodegenerative Diseases and Brain Disorders -- 3.4. Others -- 3.4.1. Infectious Diseases -- 3.4.2. Alcohol Abuse -- 3.4.3. Clinical Approaches -- 4. Conclusions and Future Trends -- References -- Chapter 6: Supercritical Fluid Chromatography for Metabolic Phenotyping: Potential and Applications -- 1. Introduction -- 2. Application of SFC to Nonpolar Metabolite Analysis -- 2.1. Lipids -- 2.2. Bile and Bile Acids -- 2.3. Applications of SFC to Polar Metabolite Analysis -- 3. Conclusion -- References -- Chapter 7: The iKnife: Development and Clinical Applications of Rapid Evaporative Ionization Mass Spectrometry -- Abbreviations -- 1. Introduction -- 2. Basic Principles of Mass Spectrometry -- 3. Nonambient and Ambient Mass Spectrometry -- 4. Development of Rapid Evaporative Ionization Mass Spectrometry (REIMS) (the iKnife) -- 5. Model Generation: The Concept of Profiling -- 6. Clinical Applications -- 6.1. Oncological Surgery: Introduction -- 6.2. Breast Cancer: The iKnife as a Diagnostic and Margin Assessment Tool -- 6.3. Brain Tumors: The iKnife as a Diagnostic and Extent of Resection Assessment Tool. , 6.4. Gastroenterology: The iEndoscope -- 7. Microbiology Applications -- 8. Conclusions -- References -- Chapter 8: Univariate Statistical Modeling, Multiple Testing Correction, and Visualization in Metabolome-Wide Association ... -- 1. Metabolic Phenotyping: Opportunities and Challenges -- 1.1. Application to Public Health Studies -- 1.2. Overview of the Analytical Pipeline in Metabolic Phenotyping -- 2. Metabolome-Wide Association Study: Univariate Approaches -- 2.1. Imputation and Normalization -- 2.2. Statistical Analyses Using Univariate Approaches -- 2.3. Linear and Generalized Linear Models -- 2.4. (Generalized) Linear Mixed Models -- 2.5. Meta-Analyses -- 3. Metabolome-Wide Significance Level -- 3.1. FWER and FDR Control -- 3.2. Defining the Metabolome-Wide Significance Level -- 4. Results Prioritization and Visualization -- 5. Conclusions -- Acknowledgment -- References -- Chapter 9: Multivariate Statistical Methods for Metabolic Phenotyping -- 1. Introduction -- 1.1. Mathematical Notations -- 1.2. Data Transformations -- 1.2.1. Mean Centering -- 1.2.2. Autoscaling -- 1.2.3. Generalized Equation for Scaling -- 1.3. Data Set Partitioning -- 2. Unsupervised Pattern Recognition -- 2.1. Unsupervised Methods for Dimension Reduction and Multivariate Projections -- 2.1.1. Principal Component Analysis -- 2.1.2. Projection Pursuit and Independent Component Analysis -- 2.1.3. Kernel Principal Component Analysis -- 2.1.4. Sparse Principal Component Analysis -- 2.2. Outlier Detection -- 2.2.1. Hotelling's T2 -- 2.2.2. Quality Control Samples -- 2.2.3. Robust Principal Component Analysis -- 2.3. Other Data Exploration Approaches for Specific Experimental Designs and Multiway Analysis -- 2.3.1. Multiway Methods -- 2.3.2. Multivariate Curve Resolution -- 2.3.3. Nonnegative Principal Component Analysis and Nonnegative Matrix Factorization. , 3. Supervised Pattern Recognition and Multivariate Regression -- 3.1. Discriminant and Cluster Analysis -- 3.1.1. Linear Discriminant Analysis -- 3.1.2. Quadratic Discriminant Analysis -- 3.1.3. k-Nearest Neighbors -- 3.1.4. k-Means, k-Medoids, and Fuzzy Alternatives -- 3.2. Multivariate Regression -- 3.2.1. Multiple Linear Regression -- 3.2.2. Principal Component Regression -- 3.2.3. Partial Least Squares -- 3.2.4. Kernel Partial Least Squares -- 3.2.5. Orthogonal Signal Correction-Filtered Partial Least Squares and Orthogonal Projections to Latent Structures -- 3.2.6. Two-Block Orthogonal Projections to Latent Structures -- 3.2.7. Kernel Orthogonal Projections to Latent Structures -- 3.3. Penalized Regression -- 3.3.1. Ridge Regression and Kernel Ridge Regression -- 3.3.2. Sparse Penalized Regression Using the Lasso -- 3.3.3. The Elastic Net, a Weighted Average of Lasso and Ridge Regression -- 3.4. Nonparametric Machine Learning and Recursive Partitioning Methods -- 3.4.1. Support Vector Machines -- 3.4.2. Variable Importance in Linear Support Vector Machines -- 3.4.3. Uncovering Variable Importance for Nonlinear Kernel-Based Models -- 3.4.4. Decision Trees for Classification -- 3.4.5. Random Forests -- 3.5. Prediction Error Rates and Model Fits -- 3.6. Other Supervised Methods and Those for Specific Experimental Designs -- 3.6.1. ANOVA-Based Decompositions -- 3.6.2. Bayesian Approaches -- 3.6.3. Deep Learning Algorithms -- 4. Statistical Approaches for Biomarker Identification -- 4.1. Statistical Total Correlation Spectroscopy -- 4.2. Correlation Networks of Biological Coregulation -- 4.3. Subset Optimization by Reference Matching and the Statistical Use of Second Dimension Data -- 4.4. Statistical Hetero Spectroscopy and Data Fusion -- 5. Conclusion -- References -- Chapter 10: Data-Driven Visualizations in Metabolic Phenotyping. , 1. Visualizing Metabolic Phenotyping Data and Analysis.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    edoccha_9961089901202883
    Format: 1 online resource (622 pages)
    ISBN: 0-12-812294-3 , 0-12-812293-5
    Note: Front Cover -- The Handbook of Metabolic Phenotyping -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- Chapter 1: An Overview of Metabolic Phenotyping and Its Role in Systems Biology -- 1. The History and Evolution of Metabolic Profiling -- 1.1. The Early Years -- 1.2. Modern Metabolic Profiling Using NMR Spectroscopy -- 1.3. Modern Metabolic Profiling Using Mass Spectrometry -- 1.4. Definition of the Field and Efforts in Standardization -- 1.5. Development of Computational Technologies -- 1.5.1. Multivariate Statistics -- 1.5.2. Statistical Spectroscopy -- 1.5.3. Databases -- 2. Application Areas -- 2.1. Drug Metabolism and Toxicology -- 2.2. Plant-Based Metabolomics -- 2.3. Human Disease -- 2.3.1. Hepatology and Gastroenterology -- 2.3.2. Neuropathologies -- 2.3.3. Cancer -- 2.3.4. Cardiometabolic Disease -- 2.3.5. Organ Transplantation -- 2.3.6. Renal Diseases -- 2.3.7. Infectious Diseases -- 2.3.8. Epidemiology & MWAS -- 2.3.9. Nutrition -- 2.4. Mechanistic Studies of Disease Models -- 2.4.1. In Vivo Models -- 2.4.2. In Vitro Models -- 2.5. Predictive Metabolic Phenotyping (Pharmacometabonomics) -- 2.6. Emerging Metabolic Profiling Technologies -- 3. Concluding Remarks -- References -- Chapter 2: NMR Spectroscopy Methods in Metabolic Phenotyping -- 1. The Nature of NMR Spectroscopy -- 2. NMR and the Complex Mixture Problem -- 3. NMR Sample Storage and Preparation -- 4. Initial 1H NMR Analysis, High-Throughput Screening, and Basic Editing Techniques -- 4.1. Solvent Signal Suppression -- 4.2. Editing of Basic 1D 1H NMR Spectra -- 5. Higher Dimensional NMR: The Quest for Resolution, Correlation, and Component Identity -- 5.1. ``Go-to´´ Techniques: Basic 2D NMR Methods -- 5.1.1. Heteronuclear Single Quantum Coherence -- 5.1.2. HSQC-TOCSY -- 5.1.3. TOCSY -- 5.1.4. J-Resolved. , 5.2. Diffusion-Ordered Methods for Self-Diffusion Coefficient Measurement -- 5.2.1. 2D Correlations With Diffusion Encoding by 3D NMR -- 5.2.2. Pureshift and Diffusion Encoding: A Resolution Revolution -- 6. Improving 2D Resolution Without Cost: Experimental Methods and Data Treatments -- 6.1. PSYCHE-Based 2D Correlations With Covariance Processing -- 6.2. Pure Shift 2D Heteronuclear Correlations -- 6.3. Nonuniform Sampling -- 7. Substantially Boosting Signal Sensitivity -- 7.1. Dissolution Dynamic Nuclear Polarization -- 7.2. Signal Amplification by Reversible Exchange -- 8. Quantitation -- 8.1. HSQC0 -- 9. Preparation of Data for Chemometric Analysis -- 10. Conclusion, Perspective, and Outlook -- References -- Chapter 3: The Role of Ultra Performance Liquid Chromatography-Mass Spectrometry in Metabolic Phenotyping -- 1. Introduction -- 2. The Emergence and Requirements of Ultra Performance Liquid Chromatography for Metabolic Phenotyping -- 3. The Requirements of Mass Spectrometers for Metabolic Phenotyping -- 4. Types of Data Acquired in UPLC-MS Studies -- 5. Quality Assurance and Quality Control in UPLC-MS-Based Metabolic Phenotyping -- 5.1. System Suitability Test Solution [10, 35] -- 5.2. Isotopically Labeled Internal Standards [10, 17, 80] -- 5.3. Within-Study Pooled Quality Control Sample [10, 17, 82] -- 5.4. Long-Term Reference Material [17, 85] -- 5.5. Extraction Blank Samples -- 6. Analytical Robustness for Small-Scale and Large-Scale Studies -- 7. Data Processing -- 8. Metabolite Annotation and Identification -- 9. Exemplar Applications -- Acknowledgments -- References -- Chapter 4: GC-MS-Based Metabolic Phenotyping -- 1. Introduction -- 2. GC-MS as an Analytical Technique -- 3. GC-MS Metabolic Phenotyping Workflow -- 4. Sample Preparation for GC-MS-Based Metabolic Phenotyping -- 5. Data Processing -- 6. Statistical Evaluation. , 7. Biochemical Interpretation -- 8. GC-MS Troubleshooting -- 9. Clinical Applications -- 10. Conclusion -- References -- Chapter 5: Metabolic Phenotyping Using Capillary Electrophoresis Mass Spectrometry -- 1. Introduction -- 1.1. Instrumentation -- 1.2. Principles of Capillary Zone Electrophoresis -- 1.3. Conditions That Can Be Modified to Optimize the Separation and Limitations When Coupled to MS -- 1.4. Strengths -- 1.5. Weaknesses -- 1.6. Coupling to MS -- 2. Workflow -- 2.1. Design -- 2.2. Sample -- 2.3. Separation and Detection -- 2.3.1. Materials -- 2.3.2. Capillary Preparation -- 2.3.3. CE-MS Method -- 2.4. Data -- 2.5. Statistics -- 2.6. Identification -- 2.7. Meaning -- 3. Applications -- 3.1. Cancer -- 3.2. Metabolic Disorders -- 3.3. Neurodegenerative Diseases and Brain Disorders -- 3.4. Others -- 3.4.1. Infectious Diseases -- 3.4.2. Alcohol Abuse -- 3.4.3. Clinical Approaches -- 4. Conclusions and Future Trends -- References -- Chapter 6: Supercritical Fluid Chromatography for Metabolic Phenotyping: Potential and Applications -- 1. Introduction -- 2. Application of SFC to Nonpolar Metabolite Analysis -- 2.1. Lipids -- 2.2. Bile and Bile Acids -- 2.3. Applications of SFC to Polar Metabolite Analysis -- 3. Conclusion -- References -- Chapter 7: The iKnife: Development and Clinical Applications of Rapid Evaporative Ionization Mass Spectrometry -- Abbreviations -- 1. Introduction -- 2. Basic Principles of Mass Spectrometry -- 3. Nonambient and Ambient Mass Spectrometry -- 4. Development of Rapid Evaporative Ionization Mass Spectrometry (REIMS) (the iKnife) -- 5. Model Generation: The Concept of Profiling -- 6. Clinical Applications -- 6.1. Oncological Surgery: Introduction -- 6.2. Breast Cancer: The iKnife as a Diagnostic and Margin Assessment Tool -- 6.3. Brain Tumors: The iKnife as a Diagnostic and Extent of Resection Assessment Tool. , 6.4. Gastroenterology: The iEndoscope -- 7. Microbiology Applications -- 8. Conclusions -- References -- Chapter 8: Univariate Statistical Modeling, Multiple Testing Correction, and Visualization in Metabolome-Wide Association ... -- 1. Metabolic Phenotyping: Opportunities and Challenges -- 1.1. Application to Public Health Studies -- 1.2. Overview of the Analytical Pipeline in Metabolic Phenotyping -- 2. Metabolome-Wide Association Study: Univariate Approaches -- 2.1. Imputation and Normalization -- 2.2. Statistical Analyses Using Univariate Approaches -- 2.3. Linear and Generalized Linear Models -- 2.4. (Generalized) Linear Mixed Models -- 2.5. Meta-Analyses -- 3. Metabolome-Wide Significance Level -- 3.1. FWER and FDR Control -- 3.2. Defining the Metabolome-Wide Significance Level -- 4. Results Prioritization and Visualization -- 5. Conclusions -- Acknowledgment -- References -- Chapter 9: Multivariate Statistical Methods for Metabolic Phenotyping -- 1. Introduction -- 1.1. Mathematical Notations -- 1.2. Data Transformations -- 1.2.1. Mean Centering -- 1.2.2. Autoscaling -- 1.2.3. Generalized Equation for Scaling -- 1.3. Data Set Partitioning -- 2. Unsupervised Pattern Recognition -- 2.1. Unsupervised Methods for Dimension Reduction and Multivariate Projections -- 2.1.1. Principal Component Analysis -- 2.1.2. Projection Pursuit and Independent Component Analysis -- 2.1.3. Kernel Principal Component Analysis -- 2.1.4. Sparse Principal Component Analysis -- 2.2. Outlier Detection -- 2.2.1. Hotelling's T2 -- 2.2.2. Quality Control Samples -- 2.2.3. Robust Principal Component Analysis -- 2.3. Other Data Exploration Approaches for Specific Experimental Designs and Multiway Analysis -- 2.3.1. Multiway Methods -- 2.3.2. Multivariate Curve Resolution -- 2.3.3. Nonnegative Principal Component Analysis and Nonnegative Matrix Factorization. , 3. Supervised Pattern Recognition and Multivariate Regression -- 3.1. Discriminant and Cluster Analysis -- 3.1.1. Linear Discriminant Analysis -- 3.1.2. Quadratic Discriminant Analysis -- 3.1.3. k-Nearest Neighbors -- 3.1.4. k-Means, k-Medoids, and Fuzzy Alternatives -- 3.2. Multivariate Regression -- 3.2.1. Multiple Linear Regression -- 3.2.2. Principal Component Regression -- 3.2.3. Partial Least Squares -- 3.2.4. Kernel Partial Least Squares -- 3.2.5. Orthogonal Signal Correction-Filtered Partial Least Squares and Orthogonal Projections to Latent Structures -- 3.2.6. Two-Block Orthogonal Projections to Latent Structures -- 3.2.7. Kernel Orthogonal Projections to Latent Structures -- 3.3. Penalized Regression -- 3.3.1. Ridge Regression and Kernel Ridge Regression -- 3.3.2. Sparse Penalized Regression Using the Lasso -- 3.3.3. The Elastic Net, a Weighted Average of Lasso and Ridge Regression -- 3.4. Nonparametric Machine Learning and Recursive Partitioning Methods -- 3.4.1. Support Vector Machines -- 3.4.2. Variable Importance in Linear Support Vector Machines -- 3.4.3. Uncovering Variable Importance for Nonlinear Kernel-Based Models -- 3.4.4. Decision Trees for Classification -- 3.4.5. Random Forests -- 3.5. Prediction Error Rates and Model Fits -- 3.6. Other Supervised Methods and Those for Specific Experimental Designs -- 3.6.1. ANOVA-Based Decompositions -- 3.6.2. Bayesian Approaches -- 3.6.3. Deep Learning Algorithms -- 4. Statistical Approaches for Biomarker Identification -- 4.1. Statistical Total Correlation Spectroscopy -- 4.2. Correlation Networks of Biological Coregulation -- 4.3. Subset Optimization by Reference Matching and the Statistical Use of Second Dimension Data -- 4.4. Statistical Hetero Spectroscopy and Data Fusion -- 5. Conclusion -- References -- Chapter 10: Data-Driven Visualizations in Metabolic Phenotyping. , 1. Visualizing Metabolic Phenotyping Data and Analysis.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages