feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949697920702882
    Format: 1 online resource (387 pages)
    Edition: First edition.
    ISBN: 9780323952125
    Content: Renewable Energy - Volume 2: Wave, Geothermal, and Bioenergy: Definitions, Developments, Applications, Case Studies, and Modelling and Simulation is the next volume in this comprehensive resource for those wanting an extensive reference on these specialized technologies. Providing a structured approach to the emerging technologies and advances in implementation of Geothermal and Biofuels systems, this reference addresses geothermal and biofuel coverage in a logical and accessible arrangement. From definitions to developments in technology and applications, to case studies, modelling examples and lifecycle analysis, this book considers the most requested and desirable practical elements of geothermal and biofuel technologies from an applied perspective.
    Note: Front Cover -- Renewable Energy-Volume 2: Wave, Geothermal, and Bioenergy -- Copyright Page -- Contents -- List of contributors -- 1 Wave energy -- 1.1 Introduction and definition of wave energy -- 1.1.1 Introduction -- 1.1.2 Overview of wave energy resource -- 1.1.3 Harnessing energy from waves -- 1.1.4 Steps involved in harnessing wave energy -- 1.1.5 Challenges associated with evaluating wave energy converter performance -- 1.1.5.1 Capacity in the capture of energy -- 1.1.5.2 Dependability of concept -- 1.1.5.3 Zero harmful environmental impact -- 1.1.6 Conclusions -- References -- 1.2 Recent progress in wave energy -- 1.2.1 Introduction -- 1.2.2 Wave energy conversion systems -- 1.2.3 Power takeoff systems -- 1.2.4 Control systems -- 1.2.5 Energy storage systems -- 1.2.6 Conclusions -- References -- 1.3 Wave energy extraction technologies -- 1.3.1 Introduction -- 1.3.2 Wave energy converters -- 1.3.2.1 Point absorber -- 1.3.2.2 Overtopping -- 1.3.2.3 Attenuator -- 1.3.2.4 Oscillating wave surge -- 1.3.2.5 Oscillating water column -- 1.3.2.6 Submerged pressure differential -- 1.3.2.7 Rotating mass -- 1.3.3 Conclusions -- References -- 1.4 Case studies of wave energy -- 1.4.1 Introduction -- 1.4.2 Case studies -- 1.4.2.1 Asia -- 1.4.2.2 Australia -- 1.4.2.3 Africa -- 1.4.2.4 Europe -- 1.4.2.5 North America -- 1.4.2.6 South America -- 1.4.3 Conclusions -- References -- 1.5 Strengths, weaknesses, opportunities, and threats analysis of wave energy -- 1.5.1 Introduction -- 1.5.2 Strengths of wave energy -- 1.5.3 Weaknesses of wave energy -- 1.5.4 Opportunities related to wave energy -- 1.5.5 Threats -- 1.5.6 Conclusions -- References -- 1.6 Modeling and simulation of wave energy -- 1.6.1 Introduction -- 1.6.2 Wave energy converter simulator -- 1.6.3 WAMIT -- 1.6.4 NEMOH -- 1.6.5 ANSYS Fluent -- 1.6.6 ANSYS CFX -- 1.6.7 MATLAB® -- 1.6.8 Conclusions. , References -- 2 Geothermal energy -- 2.1 Introduction and definition of geothermal energy -- Nomenclature -- 2.1.1 Introduction -- 2.1.2 Ground loop systems -- 2.1.2.1 Closed loop system -- 2.1.2.2 Open loop system -- 2.1.3 Ground-coupled heat exchangers -- 2.1.3.1 Ground source heat pump -- 2.1.3.2 Earth air heat exchanger -- 2.1.4 Geothermal power plant -- 2.1.5 Hybrid geothermal energy systems -- 2.1.6 Conclusions -- References -- 2.2 Shallow geothermal energy ground loop systems -- Nomenclature -- 2.2.1 Introduction -- 2.2.2 Open ground loop systems -- 2.2.3 Closed ground loop systems -- 2.2.3.1 Vertical ground heat exchanger -- 2.2.3.2 Horizontal ground heat exchanger -- 2.2.3.3 Coiled ground heat exchanger -- 2.2.4 Conclusions -- References -- 2.3 Ground source heat pumps -- Abbreviations -- 2.3.1 Introduction -- 2.3.2 Types of ground source heat pumps -- 2.3.3 Performance -- 2.3.4 Economic aspect -- 2.3.5 Environmental aspect -- 2.3.6 Conclusions -- References -- 2.4 Earth air heat exchangers -- Abbreviations -- 2.4.1 Introduction -- 2.4.2 Types of earth air heat exchangers -- 2.4.3 Performance -- 2.4.4 Economic aspect -- 2.4.5 Environmental aspect -- 2.4.6 Conclusions -- References -- 2.5 Geothermal power plants -- Abbreviations -- 2.5.1 Introduction -- 2.5.2 Types of geothermal power plants -- 2.5.2.1 Dry steam power plant -- 2.5.2.2 Flash steam power plant -- 2.5.2.3 Binary cycle power plant -- 2.5.3 Developments of geothermal power plants -- 2.5.4 Conclusions -- References -- 2.6 Modeling and simulation of geothermal energy systems -- Abbreviations -- 2.6.1 Introduction -- 2.6.2 Software tools -- 2.6.2.1 GEOPHIRES -- 2.6.2.1.1 Leapfrog Geothermal -- 2.6.2.1.2 COMSOL -- 2.6.2.1.3 ANSYS Fluent -- 2.6.2.1.4 FEFLOW -- 2.6.2.1.5 MODFLOW -- 2.6.2.1.6 OpenGeoSys -- 2.6.2.1.7 Engineering equation solver -- 2.6.2.1.8 Ground loop design. , 2.6.2.1.9 Ground loop heat exchanger design -- 2.6.2.1.10 Earth energy designer -- 2.6.2.1.11 TRNSYS -- 2.6.3 eQuest -- 2.6.3.1 EnergyPlus -- 2.6.4 Conclusions -- References -- 3 Bioenergy -- 3.1 Definition of bioenergy -- 3.1.1 Introduction -- 3.1.2 Biomass cycle -- 3.1.3 Biomass sources and feedstocks -- 3.1.4 Pretreatment of biomass -- 3.1.5 Biomass characterization -- 3.1.5.1 Heating value -- 3.1.5.2 Moisture content -- 3.1.5.3 Chemical composition -- 3.1.5.4 Size and density of particles -- 3.1.6 Conversion processes and products -- 3.1.6.1 Biological conversion processes -- 3.1.6.1.1 Ethanol production by fermentation process -- 3.1.6.1.2 Biogas production by anaerobic digestion process -- 3.1.6.2 Chemical conversion processes -- 3.1.6.2.1 Biodiesel production -- 3.1.6.3 Thermal conversions -- 3.1.6.3.1 Torrefaction -- 3.1.6.3.2 Pyrolysis -- 3.1.6.3.3 Gasification -- 3.1.6.3.4 Combustion -- 3.1.6.4 Hybrid conversion processes -- 3.1.7 Conclusions -- References -- 3.2 Developments of bioenergy -- 3.2.1 Introduction -- 3.2.2 Developments in biofuels -- 3.2.2.1 Bioethanol -- 3.2.2.2 Biodiesel -- 3.2.2.3 Biomethane and biogas -- 3.2.2.4 Biomethanol -- 3.2.2.5 Biobutanol -- 3.2.2.6 Bio dimethyl ether -- 3.2.2.7 Biopropanol -- 3.2.3 Developments in biomass thermal conversion technologies -- 3.2.3.1 Gasification -- 3.2.3.2 Pyrolysis -- 3.2.3.3 Liquefaction -- 3.2.3.4 Fermentation -- 3.2.3.5 Transesterification -- 3.2.3.6 Anaerobic digestion -- 3.2.4 Conclusions -- References -- 3.3 Applications of bioenergy -- 3.3.1 Introduction -- 3.3.2 Applications of biofuels from thermal and nonthermal conversion processes -- 3.3.2.1 Thermal conversion products and applications -- 3.3.2.1.1 Uses of biochar -- 3.3.2.1.2 Uses of bio-oils -- 3.3.2.1.3 Uses of syngas -- 3.3.2.2 Nonthermal conversion products and applications -- 3.3.2.2.1 Uses of biogas and biomethane. , 3.3.2.2.2 Uses of bioethanol -- 3.3.2.2.3 Uses of biodiesel -- 3.3.2.2.4 Uses of biomethanol -- 3.3.2.2.5 Uses of biobutanol -- 3.3.2.2.6 Uses of biodimethyl ether -- 3.3.2.2.7 Uses of biopropanol -- 3.3.3 Conclusions -- References -- 3.4 Review of bioenergy systems -- 3.4.1 Introduction -- 3.4.2 Examples of bioenergy systems -- 3.4.2.1 Stand-alone biomass gasification system -- 3.4.2.2 Anaerobic digestion-pyrolysis system -- 3.4.2.3 Intermediate pyrolysis-combined heat and power system -- 3.4.2.4 Microalgae-based bioenergy systems -- 3.4.2.5 Bioenergy systems coupled with carbon capture and storage -- 3.4.3 Performance optimization -- 3.4.3.1 Life cycle assessment -- 3.4.3.2 Exergo-environmental analysis -- 3.4.3.3 Global integrated assessment models -- 3.4.3.4 Artificial intelligence -- 3.4.3.5 Data-driven global projected scenarios -- 3.4.4 Cost assessment -- 3.4.5 Environmental impacts -- 3.4.6 Conclusions -- References -- 3.5 Case studies and analyses of bioenergy systems -- 3.5.1 Introduction -- 3.5.2 Case study 1: Adjustments to technical operation parameters in a full-scale plant that has a high degree of substrate... -- 3.5.2.1 Impact of increased organic loading rate on volatile fatty acids to alkalinity -- 3.5.2.2 Impact of increased volatile fatty acids on bacterial populations -- 3.5.3 Case study 2: Analysis of a full-scale anaerobic digestion plant powered by olive by-products -- 3.5.3.1 Impact of inlet biomass flow rate on biogas flow rate -- 3.5.3.2 Impact of pH and volatile fatty acids to alkalinity on process stability -- 3.5.3.3 Impact of the variation of total volatile solids on biomass conversion -- 3.5.3.4 Effect of Inhibitory substances on biogas evolution -- 3.5.4 Case study 3: Characterization of process upsets in a full-scale anaerobic digestion plant -- 3.5.4.1 Proposed early warning indicators -- 3.5.5 Conclusions. , References -- 3.6 Simulation and modeling of bioenergy systems -- 3.6.1 Introduction -- 3.6.2 Simulation models for biomass production -- 3.6.3 Development of a novel software tool for anaerobic digestion -- 3.6.4 Application of multicriteria decision-making in bioenergy systems -- 3.6.5 Artificial intelligence-based modeling -- 3.6.5.1 Major types of artificial intelligence and biomass characterization -- 3.6.5.2 Applications of artificial intelligence -- 3.6.6 Conclusions -- References -- Index -- Back Cover.
    Additional Edition: Print version: Olabi, Abdul Ghani Renewable Energy - Volume 2: Wave, Geothermal, and Bioenergy San Diego : Elsevier Science & Technology,c2023 ISBN 9780323952118
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9949491653302882
    Format: 1 online resource (580 pages)
    ISBN: 0-323-99569-1
    Content: Renewable Energy - Volume 1: Solar, Wind, and Hydropower: Definitions, Developments, Applications, Case Studies, and Modelling and Simulation is a comprehensive resource for those wanting an authoritative volume on the significant aspects of these rapidly growing renewable technologies. Providing a structured approach to the emerging technologies and advances in the implementation of solar, wind and hydro energy, the book offers the most requested and desirable practical elements for the renewable industry. Sections cover definitions, applications, modeling and analysis through case study and example. This coordinated approach allows for standalone, accessible, and functioning chapters dedicated to a particular energy source, giving researchers and engineers an important and unique consolidated source of information on all aspects of these state-of-the-art fields. Includes in-depth and up-to-date explanations for the latest developments in Solar, Wind and Hydropower Presents a uniquely, thematically arranged book with structured content that is easily accessible and usable Provides extensively illustrated and supported content, including multimedia components like short videos and slideshows for greater examples and case studies.
    Note: Front Cover -- Renewable Energy-Volume 1: Solar, Wind, and Hydropower -- Copyright Page -- Contents -- List of contributors -- 1 Solar thermal energy -- 1.1 Sun composition, solar angles, and estimation of solar radiation -- 1.1.1 Sun composition and nature of sunlight -- 1.1.2 Solar radiation nomenclature -- 1.1.3 Solar time -- 1.1.4 Solar angles -- 1.1.5 Sun path diagram -- 1.1.6 Extraterrestrial solar radiation -- 1.1.7 Atmospheric attenuation -- 1.1.8 Terrestrial solar radiation -- 1.1.9 Total radiation on a tilted surface -- 1.1.10 Estimation of daily and hourly beam and diffuse radiation on tilted surface -- 1.1.11 Conclusion -- References -- 1.2 Development of solar thermal energy systems -- 1.2.1 Historical background -- 1.2.2 Solar thermal energy systems -- 1.2.2.1 Non-concentrating solar collector -- 1.2.2.1.1 Flat-plate collector -- 1.2.2.1.2 Evacuated tube collector -- 1.2.2.2 Concentrating solar collector -- 1.2.2.2.1 Compound parabolic collector -- 1.2.2.2.2 Parabolic trough -- 1.2.2.2.3 Linear Fresnel collectors -- 1.2.2.2.4 Solar tower (heliostat solar field) -- 1.2.2.2.5 Parabolic dish -- 1.2.3 Conclusion -- References -- 1.3 Solar thermal energy applications -- 1.3.1 Introduction -- 1.3.2 Applications of solar thermal energy -- 1.3.2.1 Solar thermal energy for domestic water heating -- 1.3.2.2 Solar thermal energy for drying processes -- 1.3.2.2.1 Open sun drying -- 1.3.2.2.2 Direct solar drying -- 1.3.2.2.3 Indirect solar drying -- 1.3.2.3 Solar energy for hybrid heat and electricity generation in photovoltaic thermal collectors -- 1.3.2.3.1 Solar thermal energy for direct and indirect electric power generation -- 1.3.2.4 Thermoelectric generators -- 1.3.2.5 Concentrator solar power concentrated solar power -- 1.3.2.6 Solar thermal energy for desalination -- 1.3.2.7 Solar thermal energy for cooling purposes. , 1.3.2.8 Other applications -- 1.3.3 Conclusions -- References -- 1.4 Case studies and analysis of solar thermal energy systems -- Nomenclature -- Abbreviations -- Subscriptions -- 1.4.1 Introduction -- 1.4.2 Case Study #1-relative sun location -- 1.4.2.1 Solar altitude angle -- 1.4.2.2 Solar azimuth angle -- 1.4.2.3 Day length -- 1.4.3 Case Study #2-performance assessment -- 1.4.3.1 Overall efficiency -- 1.4.3.2 Steam power cycle analysis -- 1.4.4 Case Study #3-thermal energy storage -- 1.4.4.1 Storage volume -- 1.4.4.2 Discharging mode -- 1.4.4.3 Capacity enlargement -- 1.4.5 Case Study #4-solar collector -- 1.4.5.1 Fin efficiency factor -- 1.4.5.2 Collector efficiency factor -- 1.4.5.3 Collector heat removal factor -- 1.4.5.4 Collector efficiency -- 1.4.6 Conclusions -- References -- 1.5 Thermal analysis of solar collectors -- 1.5.1 Thermal performance of non-concentrating solar collectors -- 1.5.1.1 Thermal analysis of liquid solar collector -- 1.5.1.1.1 Absorbed radiation -- 1.5.1.1.2 Collector thermal losses -- 1.5.1.1.3 Internal energy balance of the absorber -- 1.5.1.1.4 Fin efficiency and collector efficiency factor -- 1.5.1.1.5 Heat removal factor -- 1.5.1.1.6 Useful energy output of solar collector -- 1.5.1.1.7 Thermal efficiency of solar collector -- 1.5.1.1.8 Critical radiation level and stagnation temperature -- 1.5.1.2 Solar air heaters -- 1.5.1.2.1 Thermal analysis of air solar collector -- 1.5.1.3 Collector tests: performance measurements, efficiency, and incident angle modifier -- 1.5.1.3.1 Performance measurements and characteristic curve -- 1.5.1.3.2 Incident angle modifier -- 1.5.1.3.3 Collector time constant -- 1.5.2 Thermal performance of concentrating solar collectors -- 1.5.2.1 Concentration ratio -- 1.5.2.2 Optical efficiency -- 1.5.2.3 Local concentration ratio -- 1.5.2.4 Thermal analysis -- 1.5.3 Conclusion -- References. , 1.6 Energy and exergy analyses of a photovoltaic/thermal (PV/T) air collector -- 1.6.1 Introduction -- 1.6.2 PV modules and factors affecting the PV module performance -- 1.6.3 Thermal modeling of PV/T module using ANSYS Fluent -- 1.6.3.1 Physical domains and model description -- 1.6.3.2 Model governing equations -- 1.6.3.3 Solution steps and methodology applied in ANSYS Fluent software -- 1.6.3.4 Problem setup in Fluent -- 1.6.3.5 Energy evaluation results at various operating conditions -- 1.6.3.6 Exergy analysis of the PV/T air collectors under different operating conditions -- 1.6.4 Conclusions -- References -- 2 Solar photovoltaics "PV" energy -- 2.1 Introduction and definition of solar energy -- 2.1.1 Introduction -- 2.1.2 Factors affecting the solar radiation energy -- 2.1.3 Characteristics of solar radiation energy -- 2.1.4 Earth radiation budget -- 2.1.5 The diffuse radiation -- 2.1.6 Factors affecting solar radiation intensity -- 2.1.7 Conclusion -- References -- 2.2 Developments of solar photovoltaics -- 2.2.1 Introduction -- 2.2.2 First-generation solar photovoltaic cells -- 2.2.2.1 Single-crystalline silicon -- 2.2.2.2 Multicrystalline silicon -- 2.2.3 Second-generation solar photovoltaic cells -- 2.2.3.1 Amorphous silicon thin-film photovoltaic technology -- 2.2.3.2 Gallium arsenide -- 2.2.3.3 Cadmium telluride (thin-film photovoltaic technology) -- 2.2.3.4 Copper indium gallium selenide (thin-film photovoltaic technology) -- 2.2.4 Third-generation solar photovoltaic cells and future trends -- 2.2.4.1 Perovskite solar cells -- 2.2.4.2 Dye-sensitized solar cells -- 2.2.4.3 Organic photovoltaic solar cells -- 2.2.4.4 Quantum dot technology -- 2.2.5 Advanced modules' architectural structures -- 2.2.5.1 Tandem solar cells -- 2.2.5.2 Passivated emitter and rear cell and the half-cut cells -- 2.2.5.3 Bifacial solar cells. , 2.2.5.4 Multibusbars technology -- 2.2.5.5 Solar shingles -- 2.2.5.6 Concentrating photovoltaic solar cells -- 2.2.5.7 Transparent photovoltaic technologies -- 2.2.6 Conclusion -- References -- 2.3 Solar photovoltaics: challenges and applications -- 2.3.1 Introduction -- 2.3.2 Background -- 2.3.2.1 Working principles of solar photovoltaics cells -- 2.3.3 Challenges -- 2.3.3.1 Irradiance variation effect -- 2.3.3.2 Temperature effect -- 2.3.3.3 Shading effect -- 2.3.4 Applications of solar photovoltaics -- 2.3.4.1 Desalination -- 2.3.4.2 Residential applications -- 2.3.4.3 Power plants -- 2.3.4.4 Green hydrogen -- 2.3.5 Conclusions -- References -- 2.4 Technical review on solar photovoltaics -- Abbreviations -- 2.4.1 Introduction -- 2.4.2 Electron-hole recombination -- 2.4.3 Interconnections and degradation of performance -- 2.4.3.1 Multibusbars -- 2.4.3.2 Bypass diodes -- 2.4.4 Capturing solar irradiance -- 2.4.4.1 Solar tracking systems -- 2.4.4.2 Tandem photovoltaics -- 2.4.4.3 Concentrated photovoltaics -- 2.4.4.4 Bifacial photovoltaics -- 2.4.5 Cleaning and cooling methods for photovoltaics -- 2.4.5.1 Photovoltaics cleaning methods -- 2.4.5.2 Photovoltaics cooling methods -- 2.4.6 Environmental impacts -- 2.4.7 Conclusions -- References -- 2.5 Case studies and analysis of solar photovoltaics -- 2.5.1 Introduction -- 2.5.2 Solar irradiance and photovoltaic characteristics -- 2.5.2.1 Solution -- 2.5.3 Photovoltaic system design -- 2.5.3.1 Solution -- 2.5.4 Photovoltaic's life cycle economic analysis -- 2.5.4.1 Solution -- 2.5.5 Photovoltaic's statistical data analysis -- 2.5.5.1 Solution -- 2.5.6 Conclusion -- Appendix -- References -- 2.6 Modeling and simulation of solar photovoltaic energy systems -- Abbreviations -- 2.6.1 Introduction -- 2.6.2 Hybrid Optimization Model for Electric Renewables (HOMER) software -- 2.6.2.1 Advantages of HOMER. , 2.6.2.2 Disadvantages of HOMER -- 2.6.3 System Advisor Model (SAM) -- 2.6.3.1 Advantages of SAM -- 2.6.3.2 Disadvantages of SAM -- 2.6.4 Photovoltaic systems (PVsyst) -- 2.6.4.1 Advantages of PVsyst -- 2.6.4.2 Disadvantages of PVsyst -- 2.6.5 Photovoltaic Solar (PV-SOL) -- 2.6.5.1 Advantages of PV-SOL -- 2.6.5.2 Disadvantages of PV-SOL -- 2.6.6 Renewable Energy Technologies Screen (RETScreen) -- 2.6.6.1 Advantages of RETScreen -- 2.6.6.2 Disadvantages of RETScreen -- 2.6.7 Solar Pro -- 2.6.7.1 Advantages of Solar Pro -- 2.6.7.2 Disadvantages of Solar Pro -- 2.6.8 PV F-Chart -- 2.6.8.1 Advantages of PV F-Chart -- 2.6.8.2 Disadvantages of PV F-Chart -- 2.6.9 Conclusions -- References -- 3 Wind energy -- 3.1 Introduction and definition of wind energy -- Nomenclature -- Abbreviations -- 3.1.1 Introduction -- 3.1.2 Wind energy -- 3.1.3 Windmill -- 3.1.4 Wind turbines -- 3.1.4.1 Horizontal-axis wind turbine -- 3.1.4.2 Vertical-axis wind turbine -- 3.1.4.3 Combined horizontal- and vertical-axis wind turbine -- 3.1.5 Wind farm -- 3.1.6 Conclusions -- References -- 3.2 Developments of wind energy systems -- Abbreviations -- 3.2.1 Introduction -- 3.2.2 Wind turbine scale -- 3.2.2.1 Large-scale wind turbines -- 3.2.2.2 Small-scale wind turbines -- 3.2.3 Noise reduction -- 3.2.3.1 Aerodynamic noise reduction -- 3.2.3.2 Mechanical noise reduction -- 3.2.4 Wind turbine vibration control -- 3.2.5 Flexible wind turbine blades -- 3.2.6 Conclusions -- References -- 3.3 Applications of wind energy -- Nomenclature -- Abbreviations -- Subscripts -- 3.3.1 Introduction -- 3.3.2 Wind energy applications -- 3.3.2.1 Transportation -- 3.3.2.2 Grinding grain -- 3.3.2.3 Pumping water -- 3.3.2.4 Power generation -- 3.3.2.5 Hydrogen production -- 3.3.2.6 Sports -- 3.3.3 Summary -- 3.3.4 Conclusions -- References -- 3.4 Review on wind energy systems -- Abbreviations. , 3.4.1 Introduction.
    Additional Edition: Print version: Olabi, Abdul Ghani Renewable Energy - Volume 1: Solar, Wind, and Hydropower San Diego : Elsevier Science & Technology,c2023 ISBN 9780323995689
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    b3kat_BV049091974
    Format: 1 Online-Ressource (xviii, 560 Seiten) , Illustrationen, Diagramme
    ISBN: 9780323995696
    Additional Edition: ISBN 9780323995689
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9780323995689
    Language: English
    Keywords: Solarthermie ; Fotovoltaik ; Windenergie ; Wasserkraft
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier,
    UID:
    almahu_BV047439920
    Format: 1 Online-Ressource (5 Bände).
    ISBN: 978-0-12-815733-6
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-815732-9
    Language: English
    Subjects: Chemistry/Pharmacy
    RVK:
    Keywords: Intelligenter Werkstoff ; Enzyklopädie ; Enzyklopädie
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almahu_BV047674571
    Format: xxviii, 838 Seiten : , Illustrationen, Diagramme (überwiegend farbig).
    ISBN: 978-0-323-91362-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edoccha_9961090187102883
    Format: 1 online resource (580 pages)
    ISBN: 0-323-99569-1
    Content: Renewable Energy - Volume 1: Solar, Wind, and Hydropower: Definitions, Developments, Applications, Case Studies, and Modelling and Simulation is a comprehensive resource for those wanting an authoritative volume on the significant aspects of these rapidly growing renewable technologies. Providing a structured approach to the emerging technologies and advances in the implementation of solar, wind and hydro energy, the book offers the most requested and desirable practical elements for the renewable industry. Sections cover definitions, applications, modeling and analysis through case study and example. This coordinated approach allows for standalone, accessible, and functioning chapters dedicated to a particular energy source, giving researchers and engineers an important and unique consolidated source of information on all aspects of these state-of-the-art fields. Includes in-depth and up-to-date explanations for the latest developments in Solar, Wind and Hydropower Presents a uniquely, thematically arranged book with structured content that is easily accessible and usable Provides extensively illustrated and supported content, including multimedia components like short videos and slideshows for greater examples and case studies.
    Note: Front Cover -- Renewable Energy-Volume 1: Solar, Wind, and Hydropower -- Copyright Page -- Contents -- List of contributors -- 1 Solar thermal energy -- 1.1 Sun composition, solar angles, and estimation of solar radiation -- 1.1.1 Sun composition and nature of sunlight -- 1.1.2 Solar radiation nomenclature -- 1.1.3 Solar time -- 1.1.4 Solar angles -- 1.1.5 Sun path diagram -- 1.1.6 Extraterrestrial solar radiation -- 1.1.7 Atmospheric attenuation -- 1.1.8 Terrestrial solar radiation -- 1.1.9 Total radiation on a tilted surface -- 1.1.10 Estimation of daily and hourly beam and diffuse radiation on tilted surface -- 1.1.11 Conclusion -- References -- 1.2 Development of solar thermal energy systems -- 1.2.1 Historical background -- 1.2.2 Solar thermal energy systems -- 1.2.2.1 Non-concentrating solar collector -- 1.2.2.1.1 Flat-plate collector -- 1.2.2.1.2 Evacuated tube collector -- 1.2.2.2 Concentrating solar collector -- 1.2.2.2.1 Compound parabolic collector -- 1.2.2.2.2 Parabolic trough -- 1.2.2.2.3 Linear Fresnel collectors -- 1.2.2.2.4 Solar tower (heliostat solar field) -- 1.2.2.2.5 Parabolic dish -- 1.2.3 Conclusion -- References -- 1.3 Solar thermal energy applications -- 1.3.1 Introduction -- 1.3.2 Applications of solar thermal energy -- 1.3.2.1 Solar thermal energy for domestic water heating -- 1.3.2.2 Solar thermal energy for drying processes -- 1.3.2.2.1 Open sun drying -- 1.3.2.2.2 Direct solar drying -- 1.3.2.2.3 Indirect solar drying -- 1.3.2.3 Solar energy for hybrid heat and electricity generation in photovoltaic thermal collectors -- 1.3.2.3.1 Solar thermal energy for direct and indirect electric power generation -- 1.3.2.4 Thermoelectric generators -- 1.3.2.5 Concentrator solar power concentrated solar power -- 1.3.2.6 Solar thermal energy for desalination -- 1.3.2.7 Solar thermal energy for cooling purposes. , 1.3.2.8 Other applications -- 1.3.3 Conclusions -- References -- 1.4 Case studies and analysis of solar thermal energy systems -- Nomenclature -- Abbreviations -- Subscriptions -- 1.4.1 Introduction -- 1.4.2 Case Study #1-relative sun location -- 1.4.2.1 Solar altitude angle -- 1.4.2.2 Solar azimuth angle -- 1.4.2.3 Day length -- 1.4.3 Case Study #2-performance assessment -- 1.4.3.1 Overall efficiency -- 1.4.3.2 Steam power cycle analysis -- 1.4.4 Case Study #3-thermal energy storage -- 1.4.4.1 Storage volume -- 1.4.4.2 Discharging mode -- 1.4.4.3 Capacity enlargement -- 1.4.5 Case Study #4-solar collector -- 1.4.5.1 Fin efficiency factor -- 1.4.5.2 Collector efficiency factor -- 1.4.5.3 Collector heat removal factor -- 1.4.5.4 Collector efficiency -- 1.4.6 Conclusions -- References -- 1.5 Thermal analysis of solar collectors -- 1.5.1 Thermal performance of non-concentrating solar collectors -- 1.5.1.1 Thermal analysis of liquid solar collector -- 1.5.1.1.1 Absorbed radiation -- 1.5.1.1.2 Collector thermal losses -- 1.5.1.1.3 Internal energy balance of the absorber -- 1.5.1.1.4 Fin efficiency and collector efficiency factor -- 1.5.1.1.5 Heat removal factor -- 1.5.1.1.6 Useful energy output of solar collector -- 1.5.1.1.7 Thermal efficiency of solar collector -- 1.5.1.1.8 Critical radiation level and stagnation temperature -- 1.5.1.2 Solar air heaters -- 1.5.1.2.1 Thermal analysis of air solar collector -- 1.5.1.3 Collector tests: performance measurements, efficiency, and incident angle modifier -- 1.5.1.3.1 Performance measurements and characteristic curve -- 1.5.1.3.2 Incident angle modifier -- 1.5.1.3.3 Collector time constant -- 1.5.2 Thermal performance of concentrating solar collectors -- 1.5.2.1 Concentration ratio -- 1.5.2.2 Optical efficiency -- 1.5.2.3 Local concentration ratio -- 1.5.2.4 Thermal analysis -- 1.5.3 Conclusion -- References. , 1.6 Energy and exergy analyses of a photovoltaic/thermal (PV/T) air collector -- 1.6.1 Introduction -- 1.6.2 PV modules and factors affecting the PV module performance -- 1.6.3 Thermal modeling of PV/T module using ANSYS Fluent -- 1.6.3.1 Physical domains and model description -- 1.6.3.2 Model governing equations -- 1.6.3.3 Solution steps and methodology applied in ANSYS Fluent software -- 1.6.3.4 Problem setup in Fluent -- 1.6.3.5 Energy evaluation results at various operating conditions -- 1.6.3.6 Exergy analysis of the PV/T air collectors under different operating conditions -- 1.6.4 Conclusions -- References -- 2 Solar photovoltaics "PV" energy -- 2.1 Introduction and definition of solar energy -- 2.1.1 Introduction -- 2.1.2 Factors affecting the solar radiation energy -- 2.1.3 Characteristics of solar radiation energy -- 2.1.4 Earth radiation budget -- 2.1.5 The diffuse radiation -- 2.1.6 Factors affecting solar radiation intensity -- 2.1.7 Conclusion -- References -- 2.2 Developments of solar photovoltaics -- 2.2.1 Introduction -- 2.2.2 First-generation solar photovoltaic cells -- 2.2.2.1 Single-crystalline silicon -- 2.2.2.2 Multicrystalline silicon -- 2.2.3 Second-generation solar photovoltaic cells -- 2.2.3.1 Amorphous silicon thin-film photovoltaic technology -- 2.2.3.2 Gallium arsenide -- 2.2.3.3 Cadmium telluride (thin-film photovoltaic technology) -- 2.2.3.4 Copper indium gallium selenide (thin-film photovoltaic technology) -- 2.2.4 Third-generation solar photovoltaic cells and future trends -- 2.2.4.1 Perovskite solar cells -- 2.2.4.2 Dye-sensitized solar cells -- 2.2.4.3 Organic photovoltaic solar cells -- 2.2.4.4 Quantum dot technology -- 2.2.5 Advanced modules' architectural structures -- 2.2.5.1 Tandem solar cells -- 2.2.5.2 Passivated emitter and rear cell and the half-cut cells -- 2.2.5.3 Bifacial solar cells. , 2.2.5.4 Multibusbars technology -- 2.2.5.5 Solar shingles -- 2.2.5.6 Concentrating photovoltaic solar cells -- 2.2.5.7 Transparent photovoltaic technologies -- 2.2.6 Conclusion -- References -- 2.3 Solar photovoltaics: challenges and applications -- 2.3.1 Introduction -- 2.3.2 Background -- 2.3.2.1 Working principles of solar photovoltaics cells -- 2.3.3 Challenges -- 2.3.3.1 Irradiance variation effect -- 2.3.3.2 Temperature effect -- 2.3.3.3 Shading effect -- 2.3.4 Applications of solar photovoltaics -- 2.3.4.1 Desalination -- 2.3.4.2 Residential applications -- 2.3.4.3 Power plants -- 2.3.4.4 Green hydrogen -- 2.3.5 Conclusions -- References -- 2.4 Technical review on solar photovoltaics -- Abbreviations -- 2.4.1 Introduction -- 2.4.2 Electron-hole recombination -- 2.4.3 Interconnections and degradation of performance -- 2.4.3.1 Multibusbars -- 2.4.3.2 Bypass diodes -- 2.4.4 Capturing solar irradiance -- 2.4.4.1 Solar tracking systems -- 2.4.4.2 Tandem photovoltaics -- 2.4.4.3 Concentrated photovoltaics -- 2.4.4.4 Bifacial photovoltaics -- 2.4.5 Cleaning and cooling methods for photovoltaics -- 2.4.5.1 Photovoltaics cleaning methods -- 2.4.5.2 Photovoltaics cooling methods -- 2.4.6 Environmental impacts -- 2.4.7 Conclusions -- References -- 2.5 Case studies and analysis of solar photovoltaics -- 2.5.1 Introduction -- 2.5.2 Solar irradiance and photovoltaic characteristics -- 2.5.2.1 Solution -- 2.5.3 Photovoltaic system design -- 2.5.3.1 Solution -- 2.5.4 Photovoltaic's life cycle economic analysis -- 2.5.4.1 Solution -- 2.5.5 Photovoltaic's statistical data analysis -- 2.5.5.1 Solution -- 2.5.6 Conclusion -- Appendix -- References -- 2.6 Modeling and simulation of solar photovoltaic energy systems -- Abbreviations -- 2.6.1 Introduction -- 2.6.2 Hybrid Optimization Model for Electric Renewables (HOMER) software -- 2.6.2.1 Advantages of HOMER. , 2.6.2.2 Disadvantages of HOMER -- 2.6.3 System Advisor Model (SAM) -- 2.6.3.1 Advantages of SAM -- 2.6.3.2 Disadvantages of SAM -- 2.6.4 Photovoltaic systems (PVsyst) -- 2.6.4.1 Advantages of PVsyst -- 2.6.4.2 Disadvantages of PVsyst -- 2.6.5 Photovoltaic Solar (PV-SOL) -- 2.6.5.1 Advantages of PV-SOL -- 2.6.5.2 Disadvantages of PV-SOL -- 2.6.6 Renewable Energy Technologies Screen (RETScreen) -- 2.6.6.1 Advantages of RETScreen -- 2.6.6.2 Disadvantages of RETScreen -- 2.6.7 Solar Pro -- 2.6.7.1 Advantages of Solar Pro -- 2.6.7.2 Disadvantages of Solar Pro -- 2.6.8 PV F-Chart -- 2.6.8.1 Advantages of PV F-Chart -- 2.6.8.2 Disadvantages of PV F-Chart -- 2.6.9 Conclusions -- References -- 3 Wind energy -- 3.1 Introduction and definition of wind energy -- Nomenclature -- Abbreviations -- 3.1.1 Introduction -- 3.1.2 Wind energy -- 3.1.3 Windmill -- 3.1.4 Wind turbines -- 3.1.4.1 Horizontal-axis wind turbine -- 3.1.4.2 Vertical-axis wind turbine -- 3.1.4.3 Combined horizontal- and vertical-axis wind turbine -- 3.1.5 Wind farm -- 3.1.6 Conclusions -- References -- 3.2 Developments of wind energy systems -- Abbreviations -- 3.2.1 Introduction -- 3.2.2 Wind turbine scale -- 3.2.2.1 Large-scale wind turbines -- 3.2.2.2 Small-scale wind turbines -- 3.2.3 Noise reduction -- 3.2.3.1 Aerodynamic noise reduction -- 3.2.3.2 Mechanical noise reduction -- 3.2.4 Wind turbine vibration control -- 3.2.5 Flexible wind turbine blades -- 3.2.6 Conclusions -- References -- 3.3 Applications of wind energy -- Nomenclature -- Abbreviations -- Subscripts -- 3.3.1 Introduction -- 3.3.2 Wind energy applications -- 3.3.2.1 Transportation -- 3.3.2.2 Grinding grain -- 3.3.2.3 Pumping water -- 3.3.2.4 Power generation -- 3.3.2.5 Hydrogen production -- 3.3.2.6 Sports -- 3.3.3 Summary -- 3.3.4 Conclusions -- References -- 3.4 Review on wind energy systems -- Abbreviations. , 3.4.1 Introduction.
    Additional Edition: Print version: Olabi, Abdul Ghani Renewable Energy - Volume 1: Solar, Wind, and Hydropower San Diego : Elsevier Science & Technology,c2023 ISBN 9780323995689
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edocfu_9961090187102883
    Format: 1 online resource (580 pages)
    ISBN: 0-323-99569-1
    Content: Renewable Energy - Volume 1: Solar, Wind, and Hydropower: Definitions, Developments, Applications, Case Studies, and Modelling and Simulation is a comprehensive resource for those wanting an authoritative volume on the significant aspects of these rapidly growing renewable technologies. Providing a structured approach to the emerging technologies and advances in the implementation of solar, wind and hydro energy, the book offers the most requested and desirable practical elements for the renewable industry. Sections cover definitions, applications, modeling and analysis through case study and example. This coordinated approach allows for standalone, accessible, and functioning chapters dedicated to a particular energy source, giving researchers and engineers an important and unique consolidated source of information on all aspects of these state-of-the-art fields. Includes in-depth and up-to-date explanations for the latest developments in Solar, Wind and Hydropower Presents a uniquely, thematically arranged book with structured content that is easily accessible and usable Provides extensively illustrated and supported content, including multimedia components like short videos and slideshows for greater examples and case studies.
    Note: Front Cover -- Renewable Energy-Volume 1: Solar, Wind, and Hydropower -- Copyright Page -- Contents -- List of contributors -- 1 Solar thermal energy -- 1.1 Sun composition, solar angles, and estimation of solar radiation -- 1.1.1 Sun composition and nature of sunlight -- 1.1.2 Solar radiation nomenclature -- 1.1.3 Solar time -- 1.1.4 Solar angles -- 1.1.5 Sun path diagram -- 1.1.6 Extraterrestrial solar radiation -- 1.1.7 Atmospheric attenuation -- 1.1.8 Terrestrial solar radiation -- 1.1.9 Total radiation on a tilted surface -- 1.1.10 Estimation of daily and hourly beam and diffuse radiation on tilted surface -- 1.1.11 Conclusion -- References -- 1.2 Development of solar thermal energy systems -- 1.2.1 Historical background -- 1.2.2 Solar thermal energy systems -- 1.2.2.1 Non-concentrating solar collector -- 1.2.2.1.1 Flat-plate collector -- 1.2.2.1.2 Evacuated tube collector -- 1.2.2.2 Concentrating solar collector -- 1.2.2.2.1 Compound parabolic collector -- 1.2.2.2.2 Parabolic trough -- 1.2.2.2.3 Linear Fresnel collectors -- 1.2.2.2.4 Solar tower (heliostat solar field) -- 1.2.2.2.5 Parabolic dish -- 1.2.3 Conclusion -- References -- 1.3 Solar thermal energy applications -- 1.3.1 Introduction -- 1.3.2 Applications of solar thermal energy -- 1.3.2.1 Solar thermal energy for domestic water heating -- 1.3.2.2 Solar thermal energy for drying processes -- 1.3.2.2.1 Open sun drying -- 1.3.2.2.2 Direct solar drying -- 1.3.2.2.3 Indirect solar drying -- 1.3.2.3 Solar energy for hybrid heat and electricity generation in photovoltaic thermal collectors -- 1.3.2.3.1 Solar thermal energy for direct and indirect electric power generation -- 1.3.2.4 Thermoelectric generators -- 1.3.2.5 Concentrator solar power concentrated solar power -- 1.3.2.6 Solar thermal energy for desalination -- 1.3.2.7 Solar thermal energy for cooling purposes. , 1.3.2.8 Other applications -- 1.3.3 Conclusions -- References -- 1.4 Case studies and analysis of solar thermal energy systems -- Nomenclature -- Abbreviations -- Subscriptions -- 1.4.1 Introduction -- 1.4.2 Case Study #1-relative sun location -- 1.4.2.1 Solar altitude angle -- 1.4.2.2 Solar azimuth angle -- 1.4.2.3 Day length -- 1.4.3 Case Study #2-performance assessment -- 1.4.3.1 Overall efficiency -- 1.4.3.2 Steam power cycle analysis -- 1.4.4 Case Study #3-thermal energy storage -- 1.4.4.1 Storage volume -- 1.4.4.2 Discharging mode -- 1.4.4.3 Capacity enlargement -- 1.4.5 Case Study #4-solar collector -- 1.4.5.1 Fin efficiency factor -- 1.4.5.2 Collector efficiency factor -- 1.4.5.3 Collector heat removal factor -- 1.4.5.4 Collector efficiency -- 1.4.6 Conclusions -- References -- 1.5 Thermal analysis of solar collectors -- 1.5.1 Thermal performance of non-concentrating solar collectors -- 1.5.1.1 Thermal analysis of liquid solar collector -- 1.5.1.1.1 Absorbed radiation -- 1.5.1.1.2 Collector thermal losses -- 1.5.1.1.3 Internal energy balance of the absorber -- 1.5.1.1.4 Fin efficiency and collector efficiency factor -- 1.5.1.1.5 Heat removal factor -- 1.5.1.1.6 Useful energy output of solar collector -- 1.5.1.1.7 Thermal efficiency of solar collector -- 1.5.1.1.8 Critical radiation level and stagnation temperature -- 1.5.1.2 Solar air heaters -- 1.5.1.2.1 Thermal analysis of air solar collector -- 1.5.1.3 Collector tests: performance measurements, efficiency, and incident angle modifier -- 1.5.1.3.1 Performance measurements and characteristic curve -- 1.5.1.3.2 Incident angle modifier -- 1.5.1.3.3 Collector time constant -- 1.5.2 Thermal performance of concentrating solar collectors -- 1.5.2.1 Concentration ratio -- 1.5.2.2 Optical efficiency -- 1.5.2.3 Local concentration ratio -- 1.5.2.4 Thermal analysis -- 1.5.3 Conclusion -- References. , 1.6 Energy and exergy analyses of a photovoltaic/thermal (PV/T) air collector -- 1.6.1 Introduction -- 1.6.2 PV modules and factors affecting the PV module performance -- 1.6.3 Thermal modeling of PV/T module using ANSYS Fluent -- 1.6.3.1 Physical domains and model description -- 1.6.3.2 Model governing equations -- 1.6.3.3 Solution steps and methodology applied in ANSYS Fluent software -- 1.6.3.4 Problem setup in Fluent -- 1.6.3.5 Energy evaluation results at various operating conditions -- 1.6.3.6 Exergy analysis of the PV/T air collectors under different operating conditions -- 1.6.4 Conclusions -- References -- 2 Solar photovoltaics "PV" energy -- 2.1 Introduction and definition of solar energy -- 2.1.1 Introduction -- 2.1.2 Factors affecting the solar radiation energy -- 2.1.3 Characteristics of solar radiation energy -- 2.1.4 Earth radiation budget -- 2.1.5 The diffuse radiation -- 2.1.6 Factors affecting solar radiation intensity -- 2.1.7 Conclusion -- References -- 2.2 Developments of solar photovoltaics -- 2.2.1 Introduction -- 2.2.2 First-generation solar photovoltaic cells -- 2.2.2.1 Single-crystalline silicon -- 2.2.2.2 Multicrystalline silicon -- 2.2.3 Second-generation solar photovoltaic cells -- 2.2.3.1 Amorphous silicon thin-film photovoltaic technology -- 2.2.3.2 Gallium arsenide -- 2.2.3.3 Cadmium telluride (thin-film photovoltaic technology) -- 2.2.3.4 Copper indium gallium selenide (thin-film photovoltaic technology) -- 2.2.4 Third-generation solar photovoltaic cells and future trends -- 2.2.4.1 Perovskite solar cells -- 2.2.4.2 Dye-sensitized solar cells -- 2.2.4.3 Organic photovoltaic solar cells -- 2.2.4.4 Quantum dot technology -- 2.2.5 Advanced modules' architectural structures -- 2.2.5.1 Tandem solar cells -- 2.2.5.2 Passivated emitter and rear cell and the half-cut cells -- 2.2.5.3 Bifacial solar cells. , 2.2.5.4 Multibusbars technology -- 2.2.5.5 Solar shingles -- 2.2.5.6 Concentrating photovoltaic solar cells -- 2.2.5.7 Transparent photovoltaic technologies -- 2.2.6 Conclusion -- References -- 2.3 Solar photovoltaics: challenges and applications -- 2.3.1 Introduction -- 2.3.2 Background -- 2.3.2.1 Working principles of solar photovoltaics cells -- 2.3.3 Challenges -- 2.3.3.1 Irradiance variation effect -- 2.3.3.2 Temperature effect -- 2.3.3.3 Shading effect -- 2.3.4 Applications of solar photovoltaics -- 2.3.4.1 Desalination -- 2.3.4.2 Residential applications -- 2.3.4.3 Power plants -- 2.3.4.4 Green hydrogen -- 2.3.5 Conclusions -- References -- 2.4 Technical review on solar photovoltaics -- Abbreviations -- 2.4.1 Introduction -- 2.4.2 Electron-hole recombination -- 2.4.3 Interconnections and degradation of performance -- 2.4.3.1 Multibusbars -- 2.4.3.2 Bypass diodes -- 2.4.4 Capturing solar irradiance -- 2.4.4.1 Solar tracking systems -- 2.4.4.2 Tandem photovoltaics -- 2.4.4.3 Concentrated photovoltaics -- 2.4.4.4 Bifacial photovoltaics -- 2.4.5 Cleaning and cooling methods for photovoltaics -- 2.4.5.1 Photovoltaics cleaning methods -- 2.4.5.2 Photovoltaics cooling methods -- 2.4.6 Environmental impacts -- 2.4.7 Conclusions -- References -- 2.5 Case studies and analysis of solar photovoltaics -- 2.5.1 Introduction -- 2.5.2 Solar irradiance and photovoltaic characteristics -- 2.5.2.1 Solution -- 2.5.3 Photovoltaic system design -- 2.5.3.1 Solution -- 2.5.4 Photovoltaic's life cycle economic analysis -- 2.5.4.1 Solution -- 2.5.5 Photovoltaic's statistical data analysis -- 2.5.5.1 Solution -- 2.5.6 Conclusion -- Appendix -- References -- 2.6 Modeling and simulation of solar photovoltaic energy systems -- Abbreviations -- 2.6.1 Introduction -- 2.6.2 Hybrid Optimization Model for Electric Renewables (HOMER) software -- 2.6.2.1 Advantages of HOMER. , 2.6.2.2 Disadvantages of HOMER -- 2.6.3 System Advisor Model (SAM) -- 2.6.3.1 Advantages of SAM -- 2.6.3.2 Disadvantages of SAM -- 2.6.4 Photovoltaic systems (PVsyst) -- 2.6.4.1 Advantages of PVsyst -- 2.6.4.2 Disadvantages of PVsyst -- 2.6.5 Photovoltaic Solar (PV-SOL) -- 2.6.5.1 Advantages of PV-SOL -- 2.6.5.2 Disadvantages of PV-SOL -- 2.6.6 Renewable Energy Technologies Screen (RETScreen) -- 2.6.6.1 Advantages of RETScreen -- 2.6.6.2 Disadvantages of RETScreen -- 2.6.7 Solar Pro -- 2.6.7.1 Advantages of Solar Pro -- 2.6.7.2 Disadvantages of Solar Pro -- 2.6.8 PV F-Chart -- 2.6.8.1 Advantages of PV F-Chart -- 2.6.8.2 Disadvantages of PV F-Chart -- 2.6.9 Conclusions -- References -- 3 Wind energy -- 3.1 Introduction and definition of wind energy -- Nomenclature -- Abbreviations -- 3.1.1 Introduction -- 3.1.2 Wind energy -- 3.1.3 Windmill -- 3.1.4 Wind turbines -- 3.1.4.1 Horizontal-axis wind turbine -- 3.1.4.2 Vertical-axis wind turbine -- 3.1.4.3 Combined horizontal- and vertical-axis wind turbine -- 3.1.5 Wind farm -- 3.1.6 Conclusions -- References -- 3.2 Developments of wind energy systems -- Abbreviations -- 3.2.1 Introduction -- 3.2.2 Wind turbine scale -- 3.2.2.1 Large-scale wind turbines -- 3.2.2.2 Small-scale wind turbines -- 3.2.3 Noise reduction -- 3.2.3.1 Aerodynamic noise reduction -- 3.2.3.2 Mechanical noise reduction -- 3.2.4 Wind turbine vibration control -- 3.2.5 Flexible wind turbine blades -- 3.2.6 Conclusions -- References -- 3.3 Applications of wind energy -- Nomenclature -- Abbreviations -- Subscripts -- 3.3.1 Introduction -- 3.3.2 Wind energy applications -- 3.3.2.1 Transportation -- 3.3.2.2 Grinding grain -- 3.3.2.3 Pumping water -- 3.3.2.4 Power generation -- 3.3.2.5 Hydrogen production -- 3.3.2.6 Sports -- 3.3.3 Summary -- 3.3.4 Conclusions -- References -- 3.4 Review on wind energy systems -- Abbreviations. , 3.4.1 Introduction.
    Additional Edition: Print version: Olabi, Abdul Ghani Renewable Energy - Volume 1: Solar, Wind, and Hydropower San Diego : Elsevier Science & Technology,c2023 ISBN 9780323995689
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    edoccha_9961264439202883
    Format: 1 online resource (387 pages)
    Edition: First edition.
    ISBN: 9780323952125
    Content: Renewable Energy - Volume 2: Wave, Geothermal, and Bioenergy: Definitions, Developments, Applications, Case Studies, and Modelling and Simulation is the next volume in this comprehensive resource for those wanting an extensive reference on these specialized technologies. Providing a structured approach to the emerging technologies and advances in implementation of Geothermal and Biofuels systems, this reference addresses geothermal and biofuel coverage in a logical and accessible arrangement. From definitions to developments in technology and applications, to case studies, modelling examples and lifecycle analysis, this book considers the most requested and desirable practical elements of geothermal and biofuel technologies from an applied perspective.
    Note: Front Cover -- Renewable Energy-Volume 2: Wave, Geothermal, and Bioenergy -- Copyright Page -- Contents -- List of contributors -- 1 Wave energy -- 1.1 Introduction and definition of wave energy -- 1.1.1 Introduction -- 1.1.2 Overview of wave energy resource -- 1.1.3 Harnessing energy from waves -- 1.1.4 Steps involved in harnessing wave energy -- 1.1.5 Challenges associated with evaluating wave energy converter performance -- 1.1.5.1 Capacity in the capture of energy -- 1.1.5.2 Dependability of concept -- 1.1.5.3 Zero harmful environmental impact -- 1.1.6 Conclusions -- References -- 1.2 Recent progress in wave energy -- 1.2.1 Introduction -- 1.2.2 Wave energy conversion systems -- 1.2.3 Power takeoff systems -- 1.2.4 Control systems -- 1.2.5 Energy storage systems -- 1.2.6 Conclusions -- References -- 1.3 Wave energy extraction technologies -- 1.3.1 Introduction -- 1.3.2 Wave energy converters -- 1.3.2.1 Point absorber -- 1.3.2.2 Overtopping -- 1.3.2.3 Attenuator -- 1.3.2.4 Oscillating wave surge -- 1.3.2.5 Oscillating water column -- 1.3.2.6 Submerged pressure differential -- 1.3.2.7 Rotating mass -- 1.3.3 Conclusions -- References -- 1.4 Case studies of wave energy -- 1.4.1 Introduction -- 1.4.2 Case studies -- 1.4.2.1 Asia -- 1.4.2.2 Australia -- 1.4.2.3 Africa -- 1.4.2.4 Europe -- 1.4.2.5 North America -- 1.4.2.6 South America -- 1.4.3 Conclusions -- References -- 1.5 Strengths, weaknesses, opportunities, and threats analysis of wave energy -- 1.5.1 Introduction -- 1.5.2 Strengths of wave energy -- 1.5.3 Weaknesses of wave energy -- 1.5.4 Opportunities related to wave energy -- 1.5.5 Threats -- 1.5.6 Conclusions -- References -- 1.6 Modeling and simulation of wave energy -- 1.6.1 Introduction -- 1.6.2 Wave energy converter simulator -- 1.6.3 WAMIT -- 1.6.4 NEMOH -- 1.6.5 ANSYS Fluent -- 1.6.6 ANSYS CFX -- 1.6.7 MATLAB® -- 1.6.8 Conclusions. , References -- 2 Geothermal energy -- 2.1 Introduction and definition of geothermal energy -- Nomenclature -- 2.1.1 Introduction -- 2.1.2 Ground loop systems -- 2.1.2.1 Closed loop system -- 2.1.2.2 Open loop system -- 2.1.3 Ground-coupled heat exchangers -- 2.1.3.1 Ground source heat pump -- 2.1.3.2 Earth air heat exchanger -- 2.1.4 Geothermal power plant -- 2.1.5 Hybrid geothermal energy systems -- 2.1.6 Conclusions -- References -- 2.2 Shallow geothermal energy ground loop systems -- Nomenclature -- 2.2.1 Introduction -- 2.2.2 Open ground loop systems -- 2.2.3 Closed ground loop systems -- 2.2.3.1 Vertical ground heat exchanger -- 2.2.3.2 Horizontal ground heat exchanger -- 2.2.3.3 Coiled ground heat exchanger -- 2.2.4 Conclusions -- References -- 2.3 Ground source heat pumps -- Abbreviations -- 2.3.1 Introduction -- 2.3.2 Types of ground source heat pumps -- 2.3.3 Performance -- 2.3.4 Economic aspect -- 2.3.5 Environmental aspect -- 2.3.6 Conclusions -- References -- 2.4 Earth air heat exchangers -- Abbreviations -- 2.4.1 Introduction -- 2.4.2 Types of earth air heat exchangers -- 2.4.3 Performance -- 2.4.4 Economic aspect -- 2.4.5 Environmental aspect -- 2.4.6 Conclusions -- References -- 2.5 Geothermal power plants -- Abbreviations -- 2.5.1 Introduction -- 2.5.2 Types of geothermal power plants -- 2.5.2.1 Dry steam power plant -- 2.5.2.2 Flash steam power plant -- 2.5.2.3 Binary cycle power plant -- 2.5.3 Developments of geothermal power plants -- 2.5.4 Conclusions -- References -- 2.6 Modeling and simulation of geothermal energy systems -- Abbreviations -- 2.6.1 Introduction -- 2.6.2 Software tools -- 2.6.2.1 GEOPHIRES -- 2.6.2.1.1 Leapfrog Geothermal -- 2.6.2.1.2 COMSOL -- 2.6.2.1.3 ANSYS Fluent -- 2.6.2.1.4 FEFLOW -- 2.6.2.1.5 MODFLOW -- 2.6.2.1.6 OpenGeoSys -- 2.6.2.1.7 Engineering equation solver -- 2.6.2.1.8 Ground loop design. , 2.6.2.1.9 Ground loop heat exchanger design -- 2.6.2.1.10 Earth energy designer -- 2.6.2.1.11 TRNSYS -- 2.6.3 eQuest -- 2.6.3.1 EnergyPlus -- 2.6.4 Conclusions -- References -- 3 Bioenergy -- 3.1 Definition of bioenergy -- 3.1.1 Introduction -- 3.1.2 Biomass cycle -- 3.1.3 Biomass sources and feedstocks -- 3.1.4 Pretreatment of biomass -- 3.1.5 Biomass characterization -- 3.1.5.1 Heating value -- 3.1.5.2 Moisture content -- 3.1.5.3 Chemical composition -- 3.1.5.4 Size and density of particles -- 3.1.6 Conversion processes and products -- 3.1.6.1 Biological conversion processes -- 3.1.6.1.1 Ethanol production by fermentation process -- 3.1.6.1.2 Biogas production by anaerobic digestion process -- 3.1.6.2 Chemical conversion processes -- 3.1.6.2.1 Biodiesel production -- 3.1.6.3 Thermal conversions -- 3.1.6.3.1 Torrefaction -- 3.1.6.3.2 Pyrolysis -- 3.1.6.3.3 Gasification -- 3.1.6.3.4 Combustion -- 3.1.6.4 Hybrid conversion processes -- 3.1.7 Conclusions -- References -- 3.2 Developments of bioenergy -- 3.2.1 Introduction -- 3.2.2 Developments in biofuels -- 3.2.2.1 Bioethanol -- 3.2.2.2 Biodiesel -- 3.2.2.3 Biomethane and biogas -- 3.2.2.4 Biomethanol -- 3.2.2.5 Biobutanol -- 3.2.2.6 Bio dimethyl ether -- 3.2.2.7 Biopropanol -- 3.2.3 Developments in biomass thermal conversion technologies -- 3.2.3.1 Gasification -- 3.2.3.2 Pyrolysis -- 3.2.3.3 Liquefaction -- 3.2.3.4 Fermentation -- 3.2.3.5 Transesterification -- 3.2.3.6 Anaerobic digestion -- 3.2.4 Conclusions -- References -- 3.3 Applications of bioenergy -- 3.3.1 Introduction -- 3.3.2 Applications of biofuels from thermal and nonthermal conversion processes -- 3.3.2.1 Thermal conversion products and applications -- 3.3.2.1.1 Uses of biochar -- 3.3.2.1.2 Uses of bio-oils -- 3.3.2.1.3 Uses of syngas -- 3.3.2.2 Nonthermal conversion products and applications -- 3.3.2.2.1 Uses of biogas and biomethane. , 3.3.2.2.2 Uses of bioethanol -- 3.3.2.2.3 Uses of biodiesel -- 3.3.2.2.4 Uses of biomethanol -- 3.3.2.2.5 Uses of biobutanol -- 3.3.2.2.6 Uses of biodimethyl ether -- 3.3.2.2.7 Uses of biopropanol -- 3.3.3 Conclusions -- References -- 3.4 Review of bioenergy systems -- 3.4.1 Introduction -- 3.4.2 Examples of bioenergy systems -- 3.4.2.1 Stand-alone biomass gasification system -- 3.4.2.2 Anaerobic digestion-pyrolysis system -- 3.4.2.3 Intermediate pyrolysis-combined heat and power system -- 3.4.2.4 Microalgae-based bioenergy systems -- 3.4.2.5 Bioenergy systems coupled with carbon capture and storage -- 3.4.3 Performance optimization -- 3.4.3.1 Life cycle assessment -- 3.4.3.2 Exergo-environmental analysis -- 3.4.3.3 Global integrated assessment models -- 3.4.3.4 Artificial intelligence -- 3.4.3.5 Data-driven global projected scenarios -- 3.4.4 Cost assessment -- 3.4.5 Environmental impacts -- 3.4.6 Conclusions -- References -- 3.5 Case studies and analyses of bioenergy systems -- 3.5.1 Introduction -- 3.5.2 Case study 1: Adjustments to technical operation parameters in a full-scale plant that has a high degree of substrate... -- 3.5.2.1 Impact of increased organic loading rate on volatile fatty acids to alkalinity -- 3.5.2.2 Impact of increased volatile fatty acids on bacterial populations -- 3.5.3 Case study 2: Analysis of a full-scale anaerobic digestion plant powered by olive by-products -- 3.5.3.1 Impact of inlet biomass flow rate on biogas flow rate -- 3.5.3.2 Impact of pH and volatile fatty acids to alkalinity on process stability -- 3.5.3.3 Impact of the variation of total volatile solids on biomass conversion -- 3.5.3.4 Effect of Inhibitory substances on biogas evolution -- 3.5.4 Case study 3: Characterization of process upsets in a full-scale anaerobic digestion plant -- 3.5.4.1 Proposed early warning indicators -- 3.5.5 Conclusions. , References -- 3.6 Simulation and modeling of bioenergy systems -- 3.6.1 Introduction -- 3.6.2 Simulation models for biomass production -- 3.6.3 Development of a novel software tool for anaerobic digestion -- 3.6.4 Application of multicriteria decision-making in bioenergy systems -- 3.6.5 Artificial intelligence-based modeling -- 3.6.5.1 Major types of artificial intelligence and biomass characterization -- 3.6.5.2 Applications of artificial intelligence -- 3.6.6 Conclusions -- References -- Index -- Back Cover.
    Additional Edition: Print version: Olabi, Abdul Ghani Renewable Energy - Volume 2: Wave, Geothermal, and Bioenergy San Diego : Elsevier Science & Technology,c2023 ISBN 9780323952118
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    edocfu_9961264439202883
    Format: 1 online resource (387 pages)
    Edition: First edition.
    ISBN: 9780323952125
    Content: Renewable Energy - Volume 2: Wave, Geothermal, and Bioenergy: Definitions, Developments, Applications, Case Studies, and Modelling and Simulation is the next volume in this comprehensive resource for those wanting an extensive reference on these specialized technologies. Providing a structured approach to the emerging technologies and advances in implementation of Geothermal and Biofuels systems, this reference addresses geothermal and biofuel coverage in a logical and accessible arrangement. From definitions to developments in technology and applications, to case studies, modelling examples and lifecycle analysis, this book considers the most requested and desirable practical elements of geothermal and biofuel technologies from an applied perspective.
    Note: Front Cover -- Renewable Energy-Volume 2: Wave, Geothermal, and Bioenergy -- Copyright Page -- Contents -- List of contributors -- 1 Wave energy -- 1.1 Introduction and definition of wave energy -- 1.1.1 Introduction -- 1.1.2 Overview of wave energy resource -- 1.1.3 Harnessing energy from waves -- 1.1.4 Steps involved in harnessing wave energy -- 1.1.5 Challenges associated with evaluating wave energy converter performance -- 1.1.5.1 Capacity in the capture of energy -- 1.1.5.2 Dependability of concept -- 1.1.5.3 Zero harmful environmental impact -- 1.1.6 Conclusions -- References -- 1.2 Recent progress in wave energy -- 1.2.1 Introduction -- 1.2.2 Wave energy conversion systems -- 1.2.3 Power takeoff systems -- 1.2.4 Control systems -- 1.2.5 Energy storage systems -- 1.2.6 Conclusions -- References -- 1.3 Wave energy extraction technologies -- 1.3.1 Introduction -- 1.3.2 Wave energy converters -- 1.3.2.1 Point absorber -- 1.3.2.2 Overtopping -- 1.3.2.3 Attenuator -- 1.3.2.4 Oscillating wave surge -- 1.3.2.5 Oscillating water column -- 1.3.2.6 Submerged pressure differential -- 1.3.2.7 Rotating mass -- 1.3.3 Conclusions -- References -- 1.4 Case studies of wave energy -- 1.4.1 Introduction -- 1.4.2 Case studies -- 1.4.2.1 Asia -- 1.4.2.2 Australia -- 1.4.2.3 Africa -- 1.4.2.4 Europe -- 1.4.2.5 North America -- 1.4.2.6 South America -- 1.4.3 Conclusions -- References -- 1.5 Strengths, weaknesses, opportunities, and threats analysis of wave energy -- 1.5.1 Introduction -- 1.5.2 Strengths of wave energy -- 1.5.3 Weaknesses of wave energy -- 1.5.4 Opportunities related to wave energy -- 1.5.5 Threats -- 1.5.6 Conclusions -- References -- 1.6 Modeling and simulation of wave energy -- 1.6.1 Introduction -- 1.6.2 Wave energy converter simulator -- 1.6.3 WAMIT -- 1.6.4 NEMOH -- 1.6.5 ANSYS Fluent -- 1.6.6 ANSYS CFX -- 1.6.7 MATLAB® -- 1.6.8 Conclusions. , References -- 2 Geothermal energy -- 2.1 Introduction and definition of geothermal energy -- Nomenclature -- 2.1.1 Introduction -- 2.1.2 Ground loop systems -- 2.1.2.1 Closed loop system -- 2.1.2.2 Open loop system -- 2.1.3 Ground-coupled heat exchangers -- 2.1.3.1 Ground source heat pump -- 2.1.3.2 Earth air heat exchanger -- 2.1.4 Geothermal power plant -- 2.1.5 Hybrid geothermal energy systems -- 2.1.6 Conclusions -- References -- 2.2 Shallow geothermal energy ground loop systems -- Nomenclature -- 2.2.1 Introduction -- 2.2.2 Open ground loop systems -- 2.2.3 Closed ground loop systems -- 2.2.3.1 Vertical ground heat exchanger -- 2.2.3.2 Horizontal ground heat exchanger -- 2.2.3.3 Coiled ground heat exchanger -- 2.2.4 Conclusions -- References -- 2.3 Ground source heat pumps -- Abbreviations -- 2.3.1 Introduction -- 2.3.2 Types of ground source heat pumps -- 2.3.3 Performance -- 2.3.4 Economic aspect -- 2.3.5 Environmental aspect -- 2.3.6 Conclusions -- References -- 2.4 Earth air heat exchangers -- Abbreviations -- 2.4.1 Introduction -- 2.4.2 Types of earth air heat exchangers -- 2.4.3 Performance -- 2.4.4 Economic aspect -- 2.4.5 Environmental aspect -- 2.4.6 Conclusions -- References -- 2.5 Geothermal power plants -- Abbreviations -- 2.5.1 Introduction -- 2.5.2 Types of geothermal power plants -- 2.5.2.1 Dry steam power plant -- 2.5.2.2 Flash steam power plant -- 2.5.2.3 Binary cycle power plant -- 2.5.3 Developments of geothermal power plants -- 2.5.4 Conclusions -- References -- 2.6 Modeling and simulation of geothermal energy systems -- Abbreviations -- 2.6.1 Introduction -- 2.6.2 Software tools -- 2.6.2.1 GEOPHIRES -- 2.6.2.1.1 Leapfrog Geothermal -- 2.6.2.1.2 COMSOL -- 2.6.2.1.3 ANSYS Fluent -- 2.6.2.1.4 FEFLOW -- 2.6.2.1.5 MODFLOW -- 2.6.2.1.6 OpenGeoSys -- 2.6.2.1.7 Engineering equation solver -- 2.6.2.1.8 Ground loop design. , 2.6.2.1.9 Ground loop heat exchanger design -- 2.6.2.1.10 Earth energy designer -- 2.6.2.1.11 TRNSYS -- 2.6.3 eQuest -- 2.6.3.1 EnergyPlus -- 2.6.4 Conclusions -- References -- 3 Bioenergy -- 3.1 Definition of bioenergy -- 3.1.1 Introduction -- 3.1.2 Biomass cycle -- 3.1.3 Biomass sources and feedstocks -- 3.1.4 Pretreatment of biomass -- 3.1.5 Biomass characterization -- 3.1.5.1 Heating value -- 3.1.5.2 Moisture content -- 3.1.5.3 Chemical composition -- 3.1.5.4 Size and density of particles -- 3.1.6 Conversion processes and products -- 3.1.6.1 Biological conversion processes -- 3.1.6.1.1 Ethanol production by fermentation process -- 3.1.6.1.2 Biogas production by anaerobic digestion process -- 3.1.6.2 Chemical conversion processes -- 3.1.6.2.1 Biodiesel production -- 3.1.6.3 Thermal conversions -- 3.1.6.3.1 Torrefaction -- 3.1.6.3.2 Pyrolysis -- 3.1.6.3.3 Gasification -- 3.1.6.3.4 Combustion -- 3.1.6.4 Hybrid conversion processes -- 3.1.7 Conclusions -- References -- 3.2 Developments of bioenergy -- 3.2.1 Introduction -- 3.2.2 Developments in biofuels -- 3.2.2.1 Bioethanol -- 3.2.2.2 Biodiesel -- 3.2.2.3 Biomethane and biogas -- 3.2.2.4 Biomethanol -- 3.2.2.5 Biobutanol -- 3.2.2.6 Bio dimethyl ether -- 3.2.2.7 Biopropanol -- 3.2.3 Developments in biomass thermal conversion technologies -- 3.2.3.1 Gasification -- 3.2.3.2 Pyrolysis -- 3.2.3.3 Liquefaction -- 3.2.3.4 Fermentation -- 3.2.3.5 Transesterification -- 3.2.3.6 Anaerobic digestion -- 3.2.4 Conclusions -- References -- 3.3 Applications of bioenergy -- 3.3.1 Introduction -- 3.3.2 Applications of biofuels from thermal and nonthermal conversion processes -- 3.3.2.1 Thermal conversion products and applications -- 3.3.2.1.1 Uses of biochar -- 3.3.2.1.2 Uses of bio-oils -- 3.3.2.1.3 Uses of syngas -- 3.3.2.2 Nonthermal conversion products and applications -- 3.3.2.2.1 Uses of biogas and biomethane. , 3.3.2.2.2 Uses of bioethanol -- 3.3.2.2.3 Uses of biodiesel -- 3.3.2.2.4 Uses of biomethanol -- 3.3.2.2.5 Uses of biobutanol -- 3.3.2.2.6 Uses of biodimethyl ether -- 3.3.2.2.7 Uses of biopropanol -- 3.3.3 Conclusions -- References -- 3.4 Review of bioenergy systems -- 3.4.1 Introduction -- 3.4.2 Examples of bioenergy systems -- 3.4.2.1 Stand-alone biomass gasification system -- 3.4.2.2 Anaerobic digestion-pyrolysis system -- 3.4.2.3 Intermediate pyrolysis-combined heat and power system -- 3.4.2.4 Microalgae-based bioenergy systems -- 3.4.2.5 Bioenergy systems coupled with carbon capture and storage -- 3.4.3 Performance optimization -- 3.4.3.1 Life cycle assessment -- 3.4.3.2 Exergo-environmental analysis -- 3.4.3.3 Global integrated assessment models -- 3.4.3.4 Artificial intelligence -- 3.4.3.5 Data-driven global projected scenarios -- 3.4.4 Cost assessment -- 3.4.5 Environmental impacts -- 3.4.6 Conclusions -- References -- 3.5 Case studies and analyses of bioenergy systems -- 3.5.1 Introduction -- 3.5.2 Case study 1: Adjustments to technical operation parameters in a full-scale plant that has a high degree of substrate... -- 3.5.2.1 Impact of increased organic loading rate on volatile fatty acids to alkalinity -- 3.5.2.2 Impact of increased volatile fatty acids on bacterial populations -- 3.5.3 Case study 2: Analysis of a full-scale anaerobic digestion plant powered by olive by-products -- 3.5.3.1 Impact of inlet biomass flow rate on biogas flow rate -- 3.5.3.2 Impact of pH and volatile fatty acids to alkalinity on process stability -- 3.5.3.3 Impact of the variation of total volatile solids on biomass conversion -- 3.5.3.4 Effect of Inhibitory substances on biogas evolution -- 3.5.4 Case study 3: Characterization of process upsets in a full-scale anaerobic digestion plant -- 3.5.4.1 Proposed early warning indicators -- 3.5.5 Conclusions. , References -- 3.6 Simulation and modeling of bioenergy systems -- 3.6.1 Introduction -- 3.6.2 Simulation models for biomass production -- 3.6.3 Development of a novel software tool for anaerobic digestion -- 3.6.4 Application of multicriteria decision-making in bioenergy systems -- 3.6.5 Artificial intelligence-based modeling -- 3.6.5.1 Major types of artificial intelligence and biomass characterization -- 3.6.5.2 Applications of artificial intelligence -- 3.6.6 Conclusions -- References -- Index -- Back Cover.
    Additional Edition: Print version: Olabi, Abdul Ghani Renewable Energy - Volume 2: Wave, Geothermal, and Bioenergy San Diego : Elsevier Science & Technology,c2023 ISBN 9780323952118
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_9949212568802882
    Format: 1 online resource (3020 pages)
    ISBN: 0-12-815733-X
    Note: e9780128157329v1_WEB -- Cover -- ENCYCLOPEDIA OF SMART MATERIALS -- EDITOR BIOGRAPHIES -- LIST OF CONTRIBUTORS FOR VOLUME 1 -- PREFACE -- CONTENT OF ALL VOLUMES -- An Overview of Biosensors and Devices -- 1 Introduction -- 2 Characteristics of Biosensors -- 2.1 Selectivity -- 2.2 Detection Limit -- 2.3 Reversibility -- 2.4 Lifetime -- 2.5 Response Time -- 2.6 Biocompatibility -- 3 Biosensors Classification Based on Biological Component -- 3.1 Enzymes -- 3.2 Antibodies -- 3.3 Receptors -- 3.4 Animal Cells and Plant Tissues -- 4 Classification of Biosensors Based on Transduction Types -- 4.1 Amperometric Biosensor -- 4.1.1 Clark electrode -- 4.1.2 Glucose measurement -- 4.2 Potentiometric Biosensors -- 4.2.1 pH electrode -- 4.2.2 Light addressable potentiometric sensor -- 4.2.3 ISFET -- 4.2.4 ISFET with ion-sensitive membrane (MEMFET) -- 4.2.5 ISFET with ion-blocking membrane (SURFET) -- 4.2.6 Chemically modified FET -- 4.2.7 Reference field effect transistor -- 4.2.8 Enzyme immobilized ISFET -- 4.2.9 Immunologically sensitive field-effect transistors -- 4.2.10 A DNA-modified FET (GenFET) -- 4.2.11 Cell-based ISFET -- 4.2.12 "Beetle/chip" ISFET -- 4.2.13 Chronoamperometric biosensors -- 4.3 Conductometric Biosensor -- 4.4 Surface-Plasmon Resonance (SPR)-Based Biosensor -- 5 Enzyme Immobilization -- 5.1 Advantages of Enzyme Immobilization -- 5.2 Disadvantages of Enzyme Immobilization -- 5.2.1 Adsorption -- 5.2.2 Entrapment -- 5.2.3 Microencapsulation -- 5.2.4 Covalent binding -- 5.2.5 Cross-linking -- 6 Conclusion -- See also -- References -- Further Reading -- Natural Products and Their Role to Combat Microbial Infection -- 1 Microbial Infection -- 2 Antibiotic Resistance -- 3 Natural Products With Antibacterial Activity -- 3.1 Antimicrobials of Plant Origin -- 3.1.1 Alkaloids -- 3.1.2 Coumarins -- 3.1.3 Flavonoids and isoflavonoids. , 3.1.4 Lignans -- 3.1.5 Plant peptides -- 3.1.6 Lectins -- 3.1.7 Quinones -- 3.1.8 Tanins -- 3.1.9 Terpenoids -- 3.1.10 Xanthones -- 3.1.11 Plant by-products -- 3.2 Antimicrobials of Animal Origin -- 3.2.1 Lactoferrin -- 3.2.2 Chitosan -- 3.2.3 Lysozyme -- 3.2.4 Milk-derived peptides -- 3.2.5 Ovotransferrin -- 3.3 Antimicrobials of Bacterial Origin -- 3.3.1 Bacteriocin -- 3.3.2 Reuterin -- 3.4 Algae and Mushrooms -- 4 Conclusions -- See also -- References -- Antibacterial and Nanostructured Sutures for Enhanced Healing and Tissue Regeneration -- Introduction -- Characteristics of Sutures -- Surgical Site Infection (SSI) -- Antibacterial Sutures -- Sutures Coated With Antibiotics -- Sutures Incorporating Nanoparticles -- Sutures Loaded With Natural Extracts -- Drug-Eluting Sutures -- API Encapsulation Techniques -- Nanofibrous Sutures Incorporating Therapeutic Agents via Electrospinning -- Coaxial Electrospinning, a Novel Approach for Drugs Encapsulation -- Nanofibrous Yarns as Sutures -- Concluding Remarks and Future Outlook -- See also -- References -- Antibacterial Biomaterials in Orthopedics -- Introduction -- Bacterial Infection of Orthopedic Implants -- Antibacterial Biomaterials -- Qualifiers for Antibacterial Biomaterials for Orthopedic Application -- Factors Influencing the Antibacterial Performance of a Biomaterial -- Material morphology -- Serum or tissue proteins -- Bactericidal Biomaterials -- Antibacterial metallic biomaterials -- Organic antibacterial biomaterials -- Bactericidal topography -- Bacteria-Repellent Biomaterials -- Future Perspective -- Conclusion -- See also -- References -- Bioinspired Adhesives -- 1 Introduction -- 2 Design Parameters -- 2.1 Material Properties -- 2.2 Contact Radius and Shape -- 2.3 Fiber Aspect Ratio and Orientation -- 2.4 Geometry of Fiber Array -- 2.5 Hierarchy -- 3 Fabrication Methods. , 3.1 Microfabrication -- 3.2 Soft Molding -- 3.3 Capillary Force Lithography -- 3.4 Filling Porous Membranes -- 3.5 Chemical Vapor Deposition (CVD) -- 3.6 Large-Scale Manufacturing Technologies -- 4 Adhesion Tests -- 4.1 Flat Contact -- 4.2 Hemispherical Contact -- 4.3 Shear Measurements or Peel Tests -- 5 Conclusion and Outlook -- See also -- References -- Multifunctional and Smart Tissue Adhesives for Biomedical Applications -- Introduction -- Clinical Requirements for a Tissue Adhesive -- Limitation of Existing Adhesives -- Multifunctional Adhesives -- Adhesive With Antimicrobial Property -- Adhesive With Self-Healing Property -- Moldable Fit-to-Shape Sealant -- Smart Adhesives -- Temperature-Responsive Bioadhesive -- Photoresponsive Bioadhesives -- Adhesives With pH Responsive Property -- Adhesives With Electro-Responsive Property -- Biomolecule-Responsive Bioadhesives -- Summary and Future Outlook -- See also -- References -- Self-Healing Polymers for Biomedical Applications -- Introduction -- Classification of Self-Healing Polymeric Biomaterials -- Autonomous/Non-Autonomous Self-Healing Polymeric Biomaterials -- Intrinsic/Extrinsic Self-Healing Polymeric Biomaterials -- Recovery of Different Functionalities in Self-Healing Polymeric Biomaterials -- Mechanical Properties -- Surface Properties -- Electrical Conductivity -- Hydrophobicity and Hydrophilicity -- Biocompatibility of Self-Healing Polymers -- Biomedical Applications of Self-Healing Polymers -- Tissue Engineering -- Drug Delivery -- Cell Delivery -- Implants -- Orthopedic Implants -- Dental Implants -- Cardiovascular Implants -- Implantable electronic devices -- Cosmetic implants -- Biosensor -- Wound Dressing -- Bioadhesive -- Conclusion -- See also -- References -- Classification of Biomaterial Functionality -- Introduction -- Established Biomaterial Types and Application. , Functional Qualifiers of a Biomaterial -- Biocompatibility -- Porosity and Pore Architecture -- Characteristics of porous biomaterials -- Evolution of porosity as a critical parameter -- Mechanical Performance -- Parameters of importance -- Quasi-static mechanical properties -- Hardness -- Fatigue behavior -- Functional Requirements for Host Tissue Interaction -- Biomaterials and tissue attachment -- Bioactivity -- Bioresorbability -- Infection resistance -- Future Perspective -- Conclusion -- See also -- References -- Tissue Engineering Concept -- Introduction -- Elements of Tissue Engineering -- Cells -- Scaffold -- Bioactive Factors -- Concepts in Tissue Engineering -- Cell-Free Tissue Engineering -- Conventional Tissue Engineering -- Scaffold-Free Tissue Engineering -- Bioprinting as an Emerging Tissue Engineering Concept -- Conclusion -- See also -- References -- Natural and Synthetic Materials in Regenerative Medicine: Progress Over the Past Five Years -- 1 General Introduction -- 2 History of Hydrogels -- 3 Hydrogels -- 3.1 Definition of Hydrogels -- 3.1.1 Natural hydrogels -- 3.1.1.1 Collagen hydrogels -- 3.1.1.2 Agarose gel -- 3.1.1.3 Chitosan gels -- 3.1.1.4 Chitin hydrogels -- 3.1.1.5 Dextran -- 3.1.1.6 Silk hydrogel -- 3.1.1.7 Hyaluronic acid -- 3.1.1.8 Alginate hydrogel -- 3.1.1.9 Matrigel -- 3.1.1.10 Fibrin hydrogel -- 3.1.1.11 Gelatin hydrogels -- 3.1.1.12 Body's hydrogels -- 3.1.2 Synthetic hydrogels -- 3.1.2.1 Poly vinyl alcohol (PVA) hydrogels -- 3.1.2.2 Poly ethylene glycol hydrogels (PEG) -- 3.1.2.3 Poly(2-hydroxy propyl methyl acrylamide) (pHPMAm), Poly(hydroxylethylmethaacrylate)(pHEMA) Gels -- 3.1.2.4 Polyacrylamide gels -- 3.1.2.5 Poly lactic acid (PLA) gels -- 3.1.2.6 Polyurethane (PU) gels -- 3.1.2.7 Poly vinyl pyrrolidine (PVP) gels -- 3.1.3 In situ hydrogels -- 3.1.4 Based on the drug release mechanism. , 3.1.4.1 Diffusion-controlled release -- 3.1.4.2 Environmentally responsive hydrogel release -- 3.1.4.2.1 Biomimetic/stimuli-responsive hydrogels -- 3.1.4.2.1.1 Bioresponsive hydrogels -- 3.1.4.2.1.2 Biofunctional hydrogels -- 3.1.4.2.1.3 Bioactive hydrogels -- 3.1.4.2.2 Temperature mediated release hydrogels -- 3.1.4.2.3 pH-mediated release hydrogels -- 3.1.4.3 Ligand-mediated swelling -- 3.1.4.4 Ionic strength mediated swelling -- 3.1.4.5 Humidity responsive swelling -- 3.1.4.6 Chemically controlled release -- 3.1.4.6.1 Surface eroding system -- 3.1.4.6.2 Prodrug/pendant release system -- 3.1.4.7 Swelling controlled release -- 4 Characteristics of Hydrogels -- 4.1 Elasticity and Swelling of Hydrogels -- 4.2 Biocompatibility -- 4.3 Non-Toxicity -- 4.4 Biodegradability -- 4.5 Moist Nature -- 5 Merits and Demerits of Hydrogels -- 6 Classifications of Hydrogels in Detail -- 6.1 Based on Crosslinking -- 6.1.1 Physical Crosslinking -- 6.1.2 Chemical crosslinking -- 6.2 Preparation Based on Applications -- 6.2.1 Stimuli-responsive hydrogels -- 6.2.2 pH-responsive hydrogels -- 6.2.3 Temperature responsive hydrogels -- 6.2.4 Magnetic responsive hydrogel -- 6.2.5 Electro responsive hydrogels -- 6.2.6 Light responsive hydrogels -- 6.2.6.1 Nanogel -- 6.2.6.2 Xerogel -- 6.2.6.3 Aerogels -- 6.2.6.4 Microgel -- 6.2.6.5 DNA-protein based augured systems -- 6.3 Characterization Techniques of Hydrogel -- 6.3.1 Swelling ratio -- 6.3.2 Porosity -- 6.3.3 Cryo-SEM -- 6.3.4 Rheology -- 6.3.5 Bio/haemocompatibility studies -- 6.3.6 Thermogravimetric analysis -- 7 Hydrogels in Medical Field: Hydrogel:- Biomedical Applications -- 7.1 Drug Delivery (Sustained/Controlled Release) -- 7.2 Dental Applications -- 7.3 Tissue Engineering -- 7.3.1 Design paradigm for hydrogel in tissue engineering -- 7.3.1.1 Surface properties -- 7.3.1.2 Biodegradation. , 7.3.1.3 External geometry and porosity.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages