feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949669313502882
    Format: 1 online resource (592 pages)
    Edition: First edition.
    ISBN: 0-443-22216-9
    Note: Front Cover -- Waste Valorization for Bioenergy and Bioproducts: Biofuels, Biogas, and Value-Added Products -- Woodhead Series in Bioenergy -- Waste Valorization for Bioenergy and Bioproducts: Biofuels, Biogas, and Value-Added Products -- Copyright -- Contents -- List of contributors -- Foreword -- Preface -- 1 - Introduction to waste to bioenergy -- 1.1 Introduction -- 1.2 Solid wastes -- 1.3 Agricultural residues -- 1.4 Pulp and paper industry waste -- 1.5 Wood and forest waste -- 1.6 Algae -- 1.7 Mechanisms to convert solid waste to energy -- 1.7.1 Pretreatment technologies -- 1.7.1.1 Physical pretreatment -- 1.7.1.2 Chemical pretreatment -- 1.7.1.3 Biological pretreatment -- 1.7.1.4 Alkaline pretreatment -- 1.7.1.5 Thermal pretreatment -- 1.8 Thermochemical conversion pathway -- 1.8.1 Incineration -- 1.8.2 Gasification -- 1.8.3 Torrefaction -- 1.8.4 Pyrolysis -- 1.9 Biochemical conversion pathway -- 1.9.1 Fermentation -- 1.9.2 Anaerobic digestion -- 1.10 Liquid waste -- 1.10.1 Wastewater treatment technologies -- 1.10.1.1 Conventional treatment -- 1.10.1.2 Algae-based treatment -- 1.11 Chemical pathway -- 1.11.1 Lipid extraction -- 1.11.2 Transesterification process -- 1.12 Biofuel upgradation -- 1.13 Hydrodeoxygenation -- 1.13.1 Catalytic vapor cracking -- 1.13.2 Emulsification -- 1.14 Conclusion -- References -- 2 - Opportunities and challenges in the production of biofuels from waste biomass -- 2.1 Introduction -- 2.2 Classification of biofuels -- 2.3 Types of biofuels produced from organic waste -- 2.4 Biomass waste-to-energy valorization technologies -- 2.5 Pretreatment methods and their influence on the breakdown of biomass structure -- 2.6 Emerging sources of waste streams: opportunities and challenges for a sustainable and clean-energy transition -- 2.7 Types of waste for biofuel production. , 2.8 Technologies for biofuel production from waste -- 2.9 Case studies -- 2.9.1 Anaerobic digestion of food waste -- 2.9.2 Gasification of municipal solid waste -- 2.10 Conclusion -- 2.11 Future prospects of waste-based biofuels -- Acknowledgement -- References -- Further reading -- 3 - Advanced biological pretreatment technologies for the deconstruction of agricultural substrates -- 3.1 Introduction -- 3.1.1 Cost -- 3.1.2 Odor -- 3.1.3 Contamination -- 3.1.4 Limited capacity -- 3.2 Biological methods of pretreatment -- 3.2.1 Enzymatic hydrolysis -- 3.2.2 Microbial fermentation -- 3.2.2.1 Feedstock preparation -- 3.2.2.2 Microorganism selection -- 3.2.2.3 Inoculation -- 3.2.2.4 Fermentation -- 3.2.25 Product recovery -- 3.2.2.6 Purification -- 3.2.2.7 Product analysis -- 3.2.3 Consolidated bioprocessing -- 3.2.3.1 Identifying microorganisms that can perform both enzymatic hydrolysis and fermentation -- 3.2.3.2 Improving the efficiency of the process -- 3.2.3.3 Scalability -- 3.2.3.4 Handling the byproducts -- 3.2.4 Metabolic engineering -- 3.2.4.1 Identification of metabolic pathways -- 3.2.4.2 Modification of metabolic pathways -- 3.2.4.3 Selection and screening of the modified microorganisms -- 3.2.4.4 Optimization and scale-up -- 3.3 Advantages and disadvantages of biological methods of pretreatment -- 3.3.1 Environmentally friendly -- 3.3.2 Low cost -- 3.3.3 High conversion rate -- 3.3.4 Flexibility -- 3.3.5 Reduced environmental impact -- 3.3.6 Selectivity -- 3.3.7 Biocatalysts -- 3.3.8 Product diversity -- 3.3.9 Low efficiency -- 3.3.10 Scalability -- 3.3.11 Microorganism selection -- 3.3.12 Complexity -- 3.3.13 Dependence on microorganisms -- 3.3.14 Longer time -- 3.3.15 Feedstock-specific -- 3.3.16 High cost -- 3.4 Conclusion and future perspective -- References -- 4 - Technologies to convert waste to bio-oil, biochar, and biogas. , 4.1 Introduction -- 4.2 Technologies for converting waste to bio-oil -- 4.2.1 Pyrolysis process -- 4.2.2 Feedstocks used in pyrolysis -- 4.2.3 Applications of bio-oil -- 4.3 Technologies for converting waste to biochar -- 4.3.1 Pyrolysis process -- 4.3.2 Feedstocks used in pyrolysis -- 4.3.3 Agricultural waste -- 4.3.4 Forestry residues -- 4.3.5 Energy crops -- 4.3.6 Municipal solid waste -- 4.3.7 Applications of biochar -- 4.3.8 Soil amendment -- 4.3.9 Water treatment -- 4.3.10 Animal feed -- 4.3.11 Energy production -- 4.3.12 Other applications -- 4.4 Technologies for converting waste to biogas -- 4.4.1 Anaerobic digestion process -- 4.4.2 Feedstocks used in anaerobic digestion -- 4.4.3 Applications of biogas -- 4.5 Environmental benefits of waste-to-energy technologies -- 4.5.1 Reducing waste in landfills -- 4.5.2 Reducing greenhouse gas emissions -- 4.5.3 Reducing reliance on nonrenewable energy sources -- 4.6 Life cycle assessment and technoeconomic analysis of waste-to-energy technologies -- 4.7 Challenges and opportunities in waste-to-energy technologies -- 4.8 Conclusion -- Abbreviations -- References -- 5 - Energy recovery from waste biomass through gasification -- 5.1 Introduction -- 5.2 Gasification -- 5.2.1 Definition -- 5.2.2 Reaction mechanism -- 5.2.3 Gasifiers -- 5.2.3.1 Fixed-bed gasifier -- 5.2.3.2 Entrained-flow gasifier -- 5.2.3.3 Fluidized-bed gasifier -- 5.2.3.4 Plasma gasifier -- 5.2.3.5 Rotary kiln gasifier -- 5.2.4 Biomass characteristics -- 5.2.5 Operating conditions -- 5.2.5.1 Temperature -- 5.2.5.2 Pressure -- 5.2.5.3 Gasifying agents -- 5.2.5.4 Catalysts -- 5.2.6 End products -- 5.2.6.1 Heat and electricity -- 5.2.6.2 Hydrogen -- 5.2.6.3 Chemicals and biofuels -- 5.3 Commercialization of gasification -- 5.3.1 Current status -- 5.3.2 Techno-economic analysis of gasification -- 5.3.3 Life-cycle assessment of gasification. , 5.4 Challenges and future prospects of gasification -- 5.5 Conclusions -- References -- 6 - Bio-oil production from waste and waste plastics -- 6.1 Introduction -- 6.2 Biomass waste as pyrolysis feed -- 6.2.1 Characteristics -- 6.2.2 Pretreatment -- 6.2.3 Particle size -- 6.3 Plastic waste as pyrolysis feed -- 6.3.1 Common types -- 6.3.2 Important properties -- 6.4 Pyrolysis -- 6.4.1 Pyrolysis process -- 6.4.2 Pyrolysis reactor -- 6.4.2.1 Batch and semibatch -- 6.4.2.2 Fixed and fluidized bed -- 6.4.3 Catalyst -- 6.4.4 Pyrolysis products -- 6.4.4.1 Char -- 6.4.4.2 Gas -- 6.4.4.3 Bio-oil -- 6.5 Critical factors in pyrolysis -- 6.5.1 Temperature -- 6.5.2 Reactor types -- 6.5.3 Residence time and pressure -- 6.5.4 Catalyst types for biomass waste pyrolysis -- 6.5.5 Catalyst for plastic pyrolysis -- 6.6 Conclusions and future perspectives -- References -- 7 - Bio-oil production from plastics and microplastics wastes -- 7.1 Introduction -- 7.2 Classification of plastics -- 7.2.1 Technologies for plastic management -- 7.2.2 Landfill -- 7.2.3 Incineration -- 7.2.4 Recycling -- 7.2.5 Pyrolysis -- 7.2.6 Gasification -- 7.2.7 Hydrogenation -- 7.2.8 Biodegradation of plastics -- 7.3 Pyrolysis of plastic waste -- 7.4 Factors affecting pyrolysis -- 7.4.1 Feedstock selection -- 7.4.2 Effect of catalyst -- 7.4.3 Effect of temperature -- 7.4.4 Reactor consideration -- 7.5 Liquefaction -- 7.6 Conclusions -- References -- 8 - Syngas from residual biogenic waste -- 8.1 Introduction -- 8.2 Conversion technologies -- 8.2.1 Gasification -- 8.2.2 Solar-driven gasification -- 8.2.3 Chemical looping gasification -- 8.2.4 Carbon dioxide gasification -- 8.2.5 Supercritical water gasification -- 8.2.6 Thermal arc plasma gasification -- 8.2.7 Staged gasifier -- 8.2.8 Entrained bed gasifier -- 8.2.9 Fixed-bed gasifier -- 8.2.10 Updraft fixed-bed gasifier. , 8.2.11 Downdraft gasifier -- 8.2.12 Fluidized-bed gasifier -- 8.2.13 Circulating fluidized-bed gasifier -- 8.2.14 Bubbling fluidized-bed gasifier -- 8.3 Upgradation of syngas -- 8.3.1 Conversion of raw syngas to pure syngas -- 8.3.2 Conversion of tar to hydrogen -- 8.3.3 Conversion of syngas to liquid hydrocarbons -- 8.3.4 Conversion of anthropogenic carbon dioxide into tunable syngas -- 8.3.5 Conversion of syngas into clean diesel production -- 8.3.6 Conversion of syngas into liquefied petroleum gas -- 8.3.7 Conversion of syngas into hydrogen-rich syngas -- 8.3.8 Conversion of syngas into alcohol -- 8.4 Properties of syngas -- 8.4.1 Laminar explosion properties of syngas -- 8.4.2 Flammability limits of syngas -- 8.4.3 Laminar flame velocity of syngas -- 8.4.4 Composition and heating value of syngas -- 8.5 Computational fluid dynamics employed in a combustion chamber to generate syngas -- 8.6 Conclusions -- References -- 9 - Fermentable sugars from agricultural wastes -- 9.1 Introduction -- 9.2 Fruit and vegetable industry wastes as prebiotic source -- 9.3 Use of residues for the production of fructooligosaccharides -- 9.3.1 Microbial production of fructooligosaccharides -- 9.4 Pretreatment technologies of lignocellulosic biomass for the production of fermentable sugars: Biotransformation of biofuel ... -- 9.4.1 Lignocellulosic residues -- 9.4.2 Sugarcane by-products -- 9.4.3 Coffee by-products -- 9.4.4 Agrifood residues -- 9.5 Conclusions -- References -- 10 - Bioethanol production from residues and waste -- 10.1 Introduction -- 10.2 Bioethanol feedstock and fuel properties -- 10.3 Handling and pretreatment of biomass and biowaste -- 10.4 Enzymatic hydrolysis and fermentation -- 10.5 Distillation and dehydration -- 10.6 Environmental assessment of bioethanol in comparison with fossil fuels -- 10.7 Conclusion -- References. , 11 - Butanol production from lignocellulosic biomass wastes.
    Additional Edition: Print version: Ong, Hwai Chyuan Waste Valorization for Bioenergy and Bioproducts San Diego : Elsevier Science & Technology,c2024 ISBN 9780443191718
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Basel ; Beijing ; Wuhan ; Barcelona ; Belgrade ; Manchester ; Tokyo ; Cluj ; Tianjin : MDPI
    UID:
    b3kat_BV046849313
    Format: 1 Online-Ressource
    ISBN: 9783039289103
    Additional Edition: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-3-03928-909-7
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    b3kat_BV048317593
    Format: 1 Online-Ressource
    ISBN: 9783036523972
    Additional Edition: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-3-0365-2396-5
    Language: English
    Keywords: Aufsatzsammlung
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Basel ; Beijing ; Wuhan ; Barcelona ; Belgrade : MDPI
    UID:
    b3kat_BV045523918
    Format: 1 Online-Ressource
    ISBN: 9783038975977
    Note: This is a reprint of articles from the special issue published online in the open access journal Energies (ISSN 1996-1073) from 2017 to 2019 (available at: https://www.mdpi.com/journal/energies/special_issues/biofuel_bioenergy).
    Additional Edition: Erscheint auch als Druck-Ausgabe, paperback ISBN 978-3-03897-596-0
    Language: English
    Keywords: Biokraftstoff ; Nachwachsender Rohstoff ; Aufsatzsammlung
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages