feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    edoccha_BV048919042
    Format: 1 Online-Ressource (XIV, 457 p. 1 illus).
    Edition: 1st ed. 2023
    ISBN: 978-981-1974-98-4
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1974-97-7
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1974-99-1
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1975-00-4
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edocfu_BV048919042
    Format: 1 Online-Ressource (XIV, 457 p. 1 illus).
    Edition: 1st ed. 2023
    ISBN: 978-981-1974-98-4
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1974-97-7
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1974-99-1
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1975-00-4
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    b3kat_BV048919042
    Format: 1 Online-Ressource (XIV, 457 p. 1 illus)
    Edition: 1st ed. 2023
    ISBN: 9789811974984
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1974-97-7
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1974-99-1
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1975-00-4
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almahu_9949482372702882
    Format: XIV, 457 p. 1 illus. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9789811974984
    Content: This book covers different physiological processes, tools, and their application in crop breeding. Each chapter emphasizes on a specific trait/physiological process and its importance in crop, their phenotyping information and how best it can be employed for crop improvement by projecting on success stories in different crops. It covers wide range of physiological topics including advances in field phenotyping, role of endophytic fungi, metabolomics, application of stable isotopes, high throughput phenomics, transpiration efficiency, root phenotyping and root exudates for improved resource use efficiency, cuticular wax and its application, advances in photosynthetic studies, leaf spectral reflectance and physiological breeding in hardy crops like millets. This book also covers the futuristic research areas like artificial intelligence and machine learning. This contributed volume compiles all application parts of physiological tools along with their advanced research in these areas, which is very much need of the hour for both academics and researchers for ready reference. This book will be of interest to teachers, researchers, climate change scientists, capacity builders, and policy makers. Also, the book serves as additional reading material for undergraduate and graduate students of agriculture, physiology, botany, ecology, and environmental sciences. National and international agricultural scientists will also find this a useful resource.
    Note: 1. Importance of integrating physiological breeding to augment crop breeding -- 2. Stacking of complex traits through physiological pre breeding -- 3. Strategies to develop heat and drought tolerant wheat varieties following physiological breeding -- 4. Developing crop varieties by physiological breeding for improving plant nutrition -- 5. Role of Transpiration in Regulating Leaf Temperature and its Application in Physiological Breeding -- 6. Photosynthesis as a trait for improving yield potential in crops -- 7. Cuticular waxes and its application in crop improvement -- 8. Radiation use efficiency (RUE)-target for improving yield potential: Current status and future prospect -- 9. Application of Stable Isotopes in Crop Improvement -- 10. Root phenotyping for improved resource use efficiency in crops -- 11. Root system architecture and phenotyping for improved resource use efficiency in crops -- 12. Harnessing Root associated traits and Rhizosphere efficiency for Crop improvement -- 13. High throughput phenomics of crops for water and nitrogen stress -- 14. Metabolomics as a selection tool for abiotic stress tolerance in crops -- 15. Remote Sensing Algorithms and their Applications in Plant Phenotyping -- 16. Endophyte mediated crop improvement: Manipulation of abiotic stress‐specific traits -- 17. Impact of high temperature stress on selected food grain crops -- 18. Morpho-physiological basis of finger millet to withstand climatic extremes: A special reference to drought -- 19. Comprehending the physiological efficiency of millets under abiotic stress -- 20. Role of Next-generation sequencing in trait identification, genetic mapping, and crop improvement -- 21. Application of Artificial Intelligence and Machine Learning in Agriculture.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9789811974977
    Additional Edition: Printed edition: ISBN 9789811974991
    Additional Edition: Printed edition: ISBN 9789811975004
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almafu_BV048919042
    Format: 1 Online-Ressource (XIV, 457 p. 1 illus).
    Edition: 1st ed. 2023
    ISBN: 978-981-1974-98-4
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1974-97-7
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1974-99-1
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1975-00-4
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edoccha_9960928136802883
    Format: 1 online resource (416 pages)
    ISBN: 0-323-90285-5
    Content: QTL Mapping in Crop Improvement: Present Progress and Future Perspectives presents advancements in QTL breeding for biotic and abiotic stresses and nutritional improvement in a range of crop plants. The book presents a roadmap for future breeding for resilience to various stresses and improvement in nutritional quality. Crops such as rice, wheat, maize, soybeans, common bean, and pigeon pea are the major staple crops consumed globally, hence fulfilling the nutritional requirements of global populations, particularly in the under-developed world, is extremely important. Sections cover the challenges facing maximized production of these crops, including diseases, insect damage, drought, heat, salinity and mineral toxicity. Covering globally important crops including maize, wheat, rice, barley, soybean, common bean and pigeon pea, this book will be an important reference for those working in agriculture and crop improvement.
    Note: Intro -- QTL Mapping in Crop Improvement: Present Progress and Future Perspectives -- Copyright -- Contents -- Contributors -- Chapter 1: Recent advances in molecular marker technology for QTL mapping in plants -- 1. Introduction -- 2. Advances in marker developments -- 2.1. Sequence-based markers -- 2.2. Next-generation molecular marker technologies -- 3. Trait associations and QTL mapping -- 3.1. Mapping populations -- 3.2. Statistical tools used in QTL mapping -- 3.3. Bulk segregant analysis: Rapid approach for quantitative trait mapping -- 3.4. Advanced approaches for QTL mapping -- 3.5. QTL mapping using high-throughput marker genotyping -- 4. Conclusion -- References -- Chapter 2: A statistical perspective of gene set analysis with trait-specific QTL in molecular crop breeding -- 1. Background -- 2. Structure of gene set analysis -- 2.1. Units of gene set analysis -- 2.2. Hypotheses in gene set analysis -- 2.3. Sampling models in gene set analysis -- 2.3.1. Subject sampling model -- 2.3.2. Gene sampling model -- 3. GSA approaches for high-throughput GE studies -- 4. Statistical approach for gene set analysis with QTLs -- 4.1. Illustration of performance of the GSAQ approach -- 4.2. Distribution of NQhits statistic -- 4.3. Gene sets analysis with QTLs -- 4.4. Performance analysis of gene set selection methods based on GSAQ -- 5. Statistical perspectives of GSAQ -- 6. Limitations and future challenges of GSA -- 6.1. Biological annotation challenges -- 6.2. Methodological challenges -- Acknowledgment -- References -- Chapter 3: Crop improvement againstColletotrichum truncatum using molecular breeding approaches -- 1. Introduction -- 2. Genus Colletotrichum -- 3. The biotrophy-necrotrophy switch -- 4. Colletotrichum truncatum -- 4.1. Infection mode -- 4.2. Genome -- 4.3. Host specificity -- 4.4. Molecular basis for host-pathogen interaction. , 4.5. Genetics and genomics of host plant resistance -- 5. Soybean anthracnose -- 6. Conclusion and future prospects -- References -- Chapter 4: Molecular breeding for drought and heat stress in maize: Revisiting the progress and achievements -- 1. Introduction -- 2. Effects of drought and heat stress and plant response -- 3. Molecular breeding -- 3.1. QTL mapping: Approach and progress -- 3.1.1. Drought stress tolerance -- 3.1.2. Heat stress tolerance -- 3.2. Genome wide association studies/association mapping -- 3.3. Genomic selection -- 4. Conclusion and future perspectives -- References -- Chapter 5: Molecular breeding for improving yield in maize: Recent advances and future perspectives -- 1. Introduction -- 2. Molecular breeding -- 3. Why to use MB? -- 4. Molecular breeding for grain yield: Key considerations -- 5. Molecular breeding for yield improvement: Broad outlines -- 6. Molecular breeding schemes -- 6.1. Marker-assisted backcross breeding -- 6.1.1. Selection for gene/QTL of interest -- 6.1.2. Minimizing linkage drag -- 6.1.3. Selection for the RP -- 6.2. Marker-assisted forward breeding -- 6.3. Marker-assisted gene pyramiding -- 6.3.1. Sequential approach -- 6.3.1.1. Sister line crossing -- 6.3.1.2. Step-wise backcrossing -- 6.3.2. Simultaneous/synchronized approach -- 6.3.3. Convergent backcrossing -- 6.4. Marker-assisted recurrent selection -- 6.5. Genomic selection or genome-wide selection -- 6.5.1. Factors affecting success of GS -- 6.6. Phenotype-integrated MAS -- 7. Perspectives -- References -- Chapter 6: Abiotic stress tolerance in wheat (Triticum aestivum L.): Molecular breeding perspectives -- 1. Introduction -- 2. Impact of abiotic stresses on wheat -- 2.1. Drought stress -- 2.2. Heat stress -- 2.3. Salinity stress -- 3. Genomic regions/QTL associated with abiotic stresses -- 3.1. QTL associated with drought stress. , 3.2. MetaQTL studies in wheat for drought stress -- 3.3. QTL associated with heat stress -- 3.4. QTL associated with salinity stress -- 4. Molecular breeding for abiotic stress tolerance -- 5. High-throughput genotyping platforms: Assist wheat molecular breeding -- 6. Speed breeding for accelerating plant breeding -- 7. Conclusions and future outlook -- 1IntroductionBread wheat (Triticum aestivum L.) is a key staple food crop globally and providing about 20% of the -- References -- Chapter 7: Advances in QTL mapping for biotic stress tolerance in wheat -- 1. Introduction -- 1.1. Wheat breeding -- 1.2. Resistance versus susceptible wheat breeding -- 2. Significant diseases and insect pests of wheat -- 2.1. Powdery mildew -- 2.2. Wheat blast -- 2.3. Tan spot -- 2.4. Septorias -- 2.5. Spot blotch -- 2.6. Fusarium head blight -- 2.7. Downy mildew (Sclerophthora macrospora (Sacc.)) -- 2.8. Loose smut (Ustilago tritici (Pers.) Rostr.) -- 2.9. Flag smut (Urocystis agropyri) -- 2.10. Karnal bunt (Tilletia indica) -- 2.11. Common bunt (Tilletia tritici) and dwarf bunt (Tilletia controversa) -- 2.12. Root rots and nematodes -- 2.13. Viruses -- 2.14. Insects -- 2.15. Aphids -- 2.16. Cereal leaf beetle -- 2.17. Ghujia weevil -- 2.18. Termites -- 2.19. Pink stem borer -- 2.20. White grubs -- 3. QTL approach and its importance in biotic stress improvement in wheat -- 4. QTL mapping on diseases and pests of wheat -- 4.1. Fusarium head blight -- 4.2. Powdery mildew -- 4.3. Wheat blast -- 4.4. Loose smut -- 4.5. Karnal bunt -- 4.6. Flag smut -- 4.7. Insect pests -- 5. Conclusion and future perspectives -- References -- Chapter 8: Drought stress tolerance in wheat: Recent QTL mapping advances -- 1. Introduction: Global importance of wheat -- 2. Climate change effect on wheat -- 3. Physiology of wheat plant -- 4. Drought stress mechanism in wheat. , 5. Advances in molecular breeding techniques -- 6. Wheat QTL mapping for drought tolerance -- References -- Chapter 9: Wheat biofortification: A molecular breeding outlook -- 1. Introduction -- 2. Wheat grain components -- 2.1. Protein -- 2.2. Micronutrients -- 2.3. Pigments: Lutein, yellow pigments, and anthocyanin -- 2.4. Phytic acid -- 3. Strategies for combating hidden hunger -- 3.1. Food supplementation -- 3.2. Diversifying diet -- 3.3. Biofortification -- 4. Biofortification for GPC -- 4.1. GPCB1-Lone contributor of GPC -- 4.2. Identification of different sources of GPC -- 5. Biofortification for grain zinc content -- 5.1. Agronomic biofortification -- 5.2. Nano-fertilization -- 5.3. Exploitation of wild germplasm -- 5.4. QTLs mapped in seed for Zn content -- 5.5. Grain Zn content and transgenics -- 6. Biofortification for grain iron content -- 6.1. Localization of Fe in wheat -- 6.1.1. Conventional breeding -- 6.1.2. Transgenic approaches -- 6.1.3. Understanding gene regulation -- 6.1.4. Combinatorial approach -- 7. Biofortification for grain selenium content -- 7.1. Localization of Se in wheat -- 7.2. Variation for selenium accumulation in plants -- 7.2.1. Agronomic biofortification -- 7.2.2. Nano-fertilization -- 7.2.3. Genetic engineering -- 7.2.4. Exploiting the genetic variation -- 7.2.5. Conventional and molecular breeding approach -- 8. Phytic acid-Culprit for hidden hunger -- 9. Biofortification for pigments -- 9.1. Carotenoids -- 9.2. Anthocyanins -- 9.3. Flavonoids -- 9.4. Color variations in wheat grain -- 9.5. Molecular breeding strategies -- 9.6. Consumer preferences -- 9.7. Environmental effect on color accumulation -- 9.8. Recent progress in breeding of colored wheats -- 10. Conclusion -- References -- Further reading -- Chapter 10: Identification of tolerance for wheat rusts: Insights in recent QTL mapping efforts. , 1. Introduction -- 2. Impact of biotic stresses on wheat production -- 3. Wheat rust diseases -- 4. Insects-pests affecting wheat -- 5. Viral diseases -- 6. Types of rusts attack on wheat and mode of action -- 7. Wheat stem rust -- 8. Wheat stripe rust -- 9. Wheat leaf rust -- 10. Conventional breeding and molecular techniques to control rusts attack -- 11. Stem rust resistance -- 12. Stripe rust resistance in wheat -- 13. Leaf rust resistance in wheat -- 14. QTL mapping for rusts attacks -- 15. Summary -- References -- Chapter 11: Abiotic and biotic stress tolerance in rice: Recent advances in molecular breeding approaches -- 1. Introduction -- 2. QTL mapping approaches -- 2.1. Linkage analysis -- 2.1.1. Biparental mapping populations -- 2.1.2. Multiparent mapping populations -- 3. Statistical techniques used for mapping QTLs -- 3.1. Single marker analysis (SMA) -- 3.2. Simple interval mapping (SIM) -- 3.3. Multiple QTL mapping (MQM) -- 3.3.1. Composite interval mapping (CIM) -- 3.3.2. Multiple interval mapping (MIM) -- 3.3.3. Bayesian mapping -- 3.4. Association analysis -- 4. QTLs/resistance genes identified in rice -- 4.1. Genes identified using a biparental mapping population -- 4.1.1. Biotic stresses -- 4.1.2. Abiotic stress -- 4.2. Genes identified using association mapping -- 5. Conclusion -- References -- Chapter 12: Genetic improvement of rice grain quality -- 1. Introduction -- 2. Rice grain quality evaluation according to consumers preference -- 2.1. Cooking and eating quality -- 2.2. Textural and sensory quality -- 2.3. Nutritional quality -- 3. Genes/QTL for rice grain quality -- 3.1. Milling quality -- 3.2. Appearance quality (shape, size, length, and chalkiness) -- 3.3. Cooking quality -- 3.3.1. Amylose content -- 3.3.2. Gelatinization temperature -- 3.3.3. Gel consistency -- 4. Conclusion -- References. , Chapter 13: Translating genetics into genomics: From QTL identification to candidate gene discovery in rice.
    Additional Edition: Print version: Wani, Shabir Hussain QTL Mapping in Crop Improvement San Diego : Elsevier Science & Technology,c2022 ISBN 9780323852432
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edocfu_9960928136802883
    Format: 1 online resource (416 pages)
    ISBN: 0-323-90285-5
    Content: QTL Mapping in Crop Improvement: Present Progress and Future Perspectives presents advancements in QTL breeding for biotic and abiotic stresses and nutritional improvement in a range of crop plants. The book presents a roadmap for future breeding for resilience to various stresses and improvement in nutritional quality. Crops such as rice, wheat, maize, soybeans, common bean, and pigeon pea are the major staple crops consumed globally, hence fulfilling the nutritional requirements of global populations, particularly in the under-developed world, is extremely important. Sections cover the challenges facing maximized production of these crops, including diseases, insect damage, drought, heat, salinity and mineral toxicity. Covering globally important crops including maize, wheat, rice, barley, soybean, common bean and pigeon pea, this book will be an important reference for those working in agriculture and crop improvement.
    Note: Intro -- QTL Mapping in Crop Improvement: Present Progress and Future Perspectives -- Copyright -- Contents -- Contributors -- Chapter 1: Recent advances in molecular marker technology for QTL mapping in plants -- 1. Introduction -- 2. Advances in marker developments -- 2.1. Sequence-based markers -- 2.2. Next-generation molecular marker technologies -- 3. Trait associations and QTL mapping -- 3.1. Mapping populations -- 3.2. Statistical tools used in QTL mapping -- 3.3. Bulk segregant analysis: Rapid approach for quantitative trait mapping -- 3.4. Advanced approaches for QTL mapping -- 3.5. QTL mapping using high-throughput marker genotyping -- 4. Conclusion -- References -- Chapter 2: A statistical perspective of gene set analysis with trait-specific QTL in molecular crop breeding -- 1. Background -- 2. Structure of gene set analysis -- 2.1. Units of gene set analysis -- 2.2. Hypotheses in gene set analysis -- 2.3. Sampling models in gene set analysis -- 2.3.1. Subject sampling model -- 2.3.2. Gene sampling model -- 3. GSA approaches for high-throughput GE studies -- 4. Statistical approach for gene set analysis with QTLs -- 4.1. Illustration of performance of the GSAQ approach -- 4.2. Distribution of NQhits statistic -- 4.3. Gene sets analysis with QTLs -- 4.4. Performance analysis of gene set selection methods based on GSAQ -- 5. Statistical perspectives of GSAQ -- 6. Limitations and future challenges of GSA -- 6.1. Biological annotation challenges -- 6.2. Methodological challenges -- Acknowledgment -- References -- Chapter 3: Crop improvement againstColletotrichum truncatum using molecular breeding approaches -- 1. Introduction -- 2. Genus Colletotrichum -- 3. The biotrophy-necrotrophy switch -- 4. Colletotrichum truncatum -- 4.1. Infection mode -- 4.2. Genome -- 4.3. Host specificity -- 4.4. Molecular basis for host-pathogen interaction. , 4.5. Genetics and genomics of host plant resistance -- 5. Soybean anthracnose -- 6. Conclusion and future prospects -- References -- Chapter 4: Molecular breeding for drought and heat stress in maize: Revisiting the progress and achievements -- 1. Introduction -- 2. Effects of drought and heat stress and plant response -- 3. Molecular breeding -- 3.1. QTL mapping: Approach and progress -- 3.1.1. Drought stress tolerance -- 3.1.2. Heat stress tolerance -- 3.2. Genome wide association studies/association mapping -- 3.3. Genomic selection -- 4. Conclusion and future perspectives -- References -- Chapter 5: Molecular breeding for improving yield in maize: Recent advances and future perspectives -- 1. Introduction -- 2. Molecular breeding -- 3. Why to use MB? -- 4. Molecular breeding for grain yield: Key considerations -- 5. Molecular breeding for yield improvement: Broad outlines -- 6. Molecular breeding schemes -- 6.1. Marker-assisted backcross breeding -- 6.1.1. Selection for gene/QTL of interest -- 6.1.2. Minimizing linkage drag -- 6.1.3. Selection for the RP -- 6.2. Marker-assisted forward breeding -- 6.3. Marker-assisted gene pyramiding -- 6.3.1. Sequential approach -- 6.3.1.1. Sister line crossing -- 6.3.1.2. Step-wise backcrossing -- 6.3.2. Simultaneous/synchronized approach -- 6.3.3. Convergent backcrossing -- 6.4. Marker-assisted recurrent selection -- 6.5. Genomic selection or genome-wide selection -- 6.5.1. Factors affecting success of GS -- 6.6. Phenotype-integrated MAS -- 7. Perspectives -- References -- Chapter 6: Abiotic stress tolerance in wheat (Triticum aestivum L.): Molecular breeding perspectives -- 1. Introduction -- 2. Impact of abiotic stresses on wheat -- 2.1. Drought stress -- 2.2. Heat stress -- 2.3. Salinity stress -- 3. Genomic regions/QTL associated with abiotic stresses -- 3.1. QTL associated with drought stress. , 3.2. MetaQTL studies in wheat for drought stress -- 3.3. QTL associated with heat stress -- 3.4. QTL associated with salinity stress -- 4. Molecular breeding for abiotic stress tolerance -- 5. High-throughput genotyping platforms: Assist wheat molecular breeding -- 6. Speed breeding for accelerating plant breeding -- 7. Conclusions and future outlook -- 1IntroductionBread wheat (Triticum aestivum L.) is a key staple food crop globally and providing about 20% of the -- References -- Chapter 7: Advances in QTL mapping for biotic stress tolerance in wheat -- 1. Introduction -- 1.1. Wheat breeding -- 1.2. Resistance versus susceptible wheat breeding -- 2. Significant diseases and insect pests of wheat -- 2.1. Powdery mildew -- 2.2. Wheat blast -- 2.3. Tan spot -- 2.4. Septorias -- 2.5. Spot blotch -- 2.6. Fusarium head blight -- 2.7. Downy mildew (Sclerophthora macrospora (Sacc.)) -- 2.8. Loose smut (Ustilago tritici (Pers.) Rostr.) -- 2.9. Flag smut (Urocystis agropyri) -- 2.10. Karnal bunt (Tilletia indica) -- 2.11. Common bunt (Tilletia tritici) and dwarf bunt (Tilletia controversa) -- 2.12. Root rots and nematodes -- 2.13. Viruses -- 2.14. Insects -- 2.15. Aphids -- 2.16. Cereal leaf beetle -- 2.17. Ghujia weevil -- 2.18. Termites -- 2.19. Pink stem borer -- 2.20. White grubs -- 3. QTL approach and its importance in biotic stress improvement in wheat -- 4. QTL mapping on diseases and pests of wheat -- 4.1. Fusarium head blight -- 4.2. Powdery mildew -- 4.3. Wheat blast -- 4.4. Loose smut -- 4.5. Karnal bunt -- 4.6. Flag smut -- 4.7. Insect pests -- 5. Conclusion and future perspectives -- References -- Chapter 8: Drought stress tolerance in wheat: Recent QTL mapping advances -- 1. Introduction: Global importance of wheat -- 2. Climate change effect on wheat -- 3. Physiology of wheat plant -- 4. Drought stress mechanism in wheat. , 5. Advances in molecular breeding techniques -- 6. Wheat QTL mapping for drought tolerance -- References -- Chapter 9: Wheat biofortification: A molecular breeding outlook -- 1. Introduction -- 2. Wheat grain components -- 2.1. Protein -- 2.2. Micronutrients -- 2.3. Pigments: Lutein, yellow pigments, and anthocyanin -- 2.4. Phytic acid -- 3. Strategies for combating hidden hunger -- 3.1. Food supplementation -- 3.2. Diversifying diet -- 3.3. Biofortification -- 4. Biofortification for GPC -- 4.1. GPCB1-Lone contributor of GPC -- 4.2. Identification of different sources of GPC -- 5. Biofortification for grain zinc content -- 5.1. Agronomic biofortification -- 5.2. Nano-fertilization -- 5.3. Exploitation of wild germplasm -- 5.4. QTLs mapped in seed for Zn content -- 5.5. Grain Zn content and transgenics -- 6. Biofortification for grain iron content -- 6.1. Localization of Fe in wheat -- 6.1.1. Conventional breeding -- 6.1.2. Transgenic approaches -- 6.1.3. Understanding gene regulation -- 6.1.4. Combinatorial approach -- 7. Biofortification for grain selenium content -- 7.1. Localization of Se in wheat -- 7.2. Variation for selenium accumulation in plants -- 7.2.1. Agronomic biofortification -- 7.2.2. Nano-fertilization -- 7.2.3. Genetic engineering -- 7.2.4. Exploiting the genetic variation -- 7.2.5. Conventional and molecular breeding approach -- 8. Phytic acid-Culprit for hidden hunger -- 9. Biofortification for pigments -- 9.1. Carotenoids -- 9.2. Anthocyanins -- 9.3. Flavonoids -- 9.4. Color variations in wheat grain -- 9.5. Molecular breeding strategies -- 9.6. Consumer preferences -- 9.7. Environmental effect on color accumulation -- 9.8. Recent progress in breeding of colored wheats -- 10. Conclusion -- References -- Further reading -- Chapter 10: Identification of tolerance for wheat rusts: Insights in recent QTL mapping efforts. , 1. Introduction -- 2. Impact of biotic stresses on wheat production -- 3. Wheat rust diseases -- 4. Insects-pests affecting wheat -- 5. Viral diseases -- 6. Types of rusts attack on wheat and mode of action -- 7. Wheat stem rust -- 8. Wheat stripe rust -- 9. Wheat leaf rust -- 10. Conventional breeding and molecular techniques to control rusts attack -- 11. Stem rust resistance -- 12. Stripe rust resistance in wheat -- 13. Leaf rust resistance in wheat -- 14. QTL mapping for rusts attacks -- 15. Summary -- References -- Chapter 11: Abiotic and biotic stress tolerance in rice: Recent advances in molecular breeding approaches -- 1. Introduction -- 2. QTL mapping approaches -- 2.1. Linkage analysis -- 2.1.1. Biparental mapping populations -- 2.1.2. Multiparent mapping populations -- 3. Statistical techniques used for mapping QTLs -- 3.1. Single marker analysis (SMA) -- 3.2. Simple interval mapping (SIM) -- 3.3. Multiple QTL mapping (MQM) -- 3.3.1. Composite interval mapping (CIM) -- 3.3.2. Multiple interval mapping (MIM) -- 3.3.3. Bayesian mapping -- 3.4. Association analysis -- 4. QTLs/resistance genes identified in rice -- 4.1. Genes identified using a biparental mapping population -- 4.1.1. Biotic stresses -- 4.1.2. Abiotic stress -- 4.2. Genes identified using association mapping -- 5. Conclusion -- References -- Chapter 12: Genetic improvement of rice grain quality -- 1. Introduction -- 2. Rice grain quality evaluation according to consumers preference -- 2.1. Cooking and eating quality -- 2.2. Textural and sensory quality -- 2.3. Nutritional quality -- 3. Genes/QTL for rice grain quality -- 3.1. Milling quality -- 3.2. Appearance quality (shape, size, length, and chalkiness) -- 3.3. Cooking quality -- 3.3.1. Amylose content -- 3.3.2. Gelatinization temperature -- 3.3.3. Gel consistency -- 4. Conclusion -- References. , Chapter 13: Translating genetics into genomics: From QTL identification to candidate gene discovery in rice.
    Additional Edition: Print version: Wani, Shabir Hussain QTL Mapping in Crop Improvement San Diego : Elsevier Science & Technology,c2022 ISBN 9780323852432
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    almahu_9949697308402882
    Format: 1 online resource (416 pages)
    ISBN: 0-323-90285-5
    Content: QTL Mapping in Crop Improvement: Present Progress and Future Perspectives presents advancements in QTL breeding for biotic and abiotic stresses and nutritional improvement in a range of crop plants. The book presents a roadmap for future breeding for resilience to various stresses and improvement in nutritional quality. Crops such as rice, wheat, maize, soybeans, common bean, and pigeon pea are the major staple crops consumed globally, hence fulfilling the nutritional requirements of global populations, particularly in the under-developed world, is extremely important. Sections cover the challenges facing maximized production of these crops, including diseases, insect damage, drought, heat, salinity and mineral toxicity. Covering globally important crops including maize, wheat, rice, barley, soybean, common bean and pigeon pea, this book will be an important reference for those working in agriculture and crop improvement.
    Note: Intro -- QTL Mapping in Crop Improvement: Present Progress and Future Perspectives -- Copyright -- Contents -- Contributors -- Chapter 1: Recent advances in molecular marker technology for QTL mapping in plants -- 1. Introduction -- 2. Advances in marker developments -- 2.1. Sequence-based markers -- 2.2. Next-generation molecular marker technologies -- 3. Trait associations and QTL mapping -- 3.1. Mapping populations -- 3.2. Statistical tools used in QTL mapping -- 3.3. Bulk segregant analysis: Rapid approach for quantitative trait mapping -- 3.4. Advanced approaches for QTL mapping -- 3.5. QTL mapping using high-throughput marker genotyping -- 4. Conclusion -- References -- Chapter 2: A statistical perspective of gene set analysis with trait-specific QTL in molecular crop breeding -- 1. Background -- 2. Structure of gene set analysis -- 2.1. Units of gene set analysis -- 2.2. Hypotheses in gene set analysis -- 2.3. Sampling models in gene set analysis -- 2.3.1. Subject sampling model -- 2.3.2. Gene sampling model -- 3. GSA approaches for high-throughput GE studies -- 4. Statistical approach for gene set analysis with QTLs -- 4.1. Illustration of performance of the GSAQ approach -- 4.2. Distribution of NQhits statistic -- 4.3. Gene sets analysis with QTLs -- 4.4. Performance analysis of gene set selection methods based on GSAQ -- 5. Statistical perspectives of GSAQ -- 6. Limitations and future challenges of GSA -- 6.1. Biological annotation challenges -- 6.2. Methodological challenges -- Acknowledgment -- References -- Chapter 3: Crop improvement againstColletotrichum truncatum using molecular breeding approaches -- 1. Introduction -- 2. Genus Colletotrichum -- 3. The biotrophy-necrotrophy switch -- 4. Colletotrichum truncatum -- 4.1. Infection mode -- 4.2. Genome -- 4.3. Host specificity -- 4.4. Molecular basis for host-pathogen interaction. , 4.5. Genetics and genomics of host plant resistance -- 5. Soybean anthracnose -- 6. Conclusion and future prospects -- References -- Chapter 4: Molecular breeding for drought and heat stress in maize: Revisiting the progress and achievements -- 1. Introduction -- 2. Effects of drought and heat stress and plant response -- 3. Molecular breeding -- 3.1. QTL mapping: Approach and progress -- 3.1.1. Drought stress tolerance -- 3.1.2. Heat stress tolerance -- 3.2. Genome wide association studies/association mapping -- 3.3. Genomic selection -- 4. Conclusion and future perspectives -- References -- Chapter 5: Molecular breeding for improving yield in maize: Recent advances and future perspectives -- 1. Introduction -- 2. Molecular breeding -- 3. Why to use MB? -- 4. Molecular breeding for grain yield: Key considerations -- 5. Molecular breeding for yield improvement: Broad outlines -- 6. Molecular breeding schemes -- 6.1. Marker-assisted backcross breeding -- 6.1.1. Selection for gene/QTL of interest -- 6.1.2. Minimizing linkage drag -- 6.1.3. Selection for the RP -- 6.2. Marker-assisted forward breeding -- 6.3. Marker-assisted gene pyramiding -- 6.3.1. Sequential approach -- 6.3.1.1. Sister line crossing -- 6.3.1.2. Step-wise backcrossing -- 6.3.2. Simultaneous/synchronized approach -- 6.3.3. Convergent backcrossing -- 6.4. Marker-assisted recurrent selection -- 6.5. Genomic selection or genome-wide selection -- 6.5.1. Factors affecting success of GS -- 6.6. Phenotype-integrated MAS -- 7. Perspectives -- References -- Chapter 6: Abiotic stress tolerance in wheat (Triticum aestivum L.): Molecular breeding perspectives -- 1. Introduction -- 2. Impact of abiotic stresses on wheat -- 2.1. Drought stress -- 2.2. Heat stress -- 2.3. Salinity stress -- 3. Genomic regions/QTL associated with abiotic stresses -- 3.1. QTL associated with drought stress. , 3.2. MetaQTL studies in wheat for drought stress -- 3.3. QTL associated with heat stress -- 3.4. QTL associated with salinity stress -- 4. Molecular breeding for abiotic stress tolerance -- 5. High-throughput genotyping platforms: Assist wheat molecular breeding -- 6. Speed breeding for accelerating plant breeding -- 7. Conclusions and future outlook -- 1IntroductionBread wheat (Triticum aestivum L.) is a key staple food crop globally and providing about 20% of the -- References -- Chapter 7: Advances in QTL mapping for biotic stress tolerance in wheat -- 1. Introduction -- 1.1. Wheat breeding -- 1.2. Resistance versus susceptible wheat breeding -- 2. Significant diseases and insect pests of wheat -- 2.1. Powdery mildew -- 2.2. Wheat blast -- 2.3. Tan spot -- 2.4. Septorias -- 2.5. Spot blotch -- 2.6. Fusarium head blight -- 2.7. Downy mildew (Sclerophthora macrospora (Sacc.)) -- 2.8. Loose smut (Ustilago tritici (Pers.) Rostr.) -- 2.9. Flag smut (Urocystis agropyri) -- 2.10. Karnal bunt (Tilletia indica) -- 2.11. Common bunt (Tilletia tritici) and dwarf bunt (Tilletia controversa) -- 2.12. Root rots and nematodes -- 2.13. Viruses -- 2.14. Insects -- 2.15. Aphids -- 2.16. Cereal leaf beetle -- 2.17. Ghujia weevil -- 2.18. Termites -- 2.19. Pink stem borer -- 2.20. White grubs -- 3. QTL approach and its importance in biotic stress improvement in wheat -- 4. QTL mapping on diseases and pests of wheat -- 4.1. Fusarium head blight -- 4.2. Powdery mildew -- 4.3. Wheat blast -- 4.4. Loose smut -- 4.5. Karnal bunt -- 4.6. Flag smut -- 4.7. Insect pests -- 5. Conclusion and future perspectives -- References -- Chapter 8: Drought stress tolerance in wheat: Recent QTL mapping advances -- 1. Introduction: Global importance of wheat -- 2. Climate change effect on wheat -- 3. Physiology of wheat plant -- 4. Drought stress mechanism in wheat. , 5. Advances in molecular breeding techniques -- 6. Wheat QTL mapping for drought tolerance -- References -- Chapter 9: Wheat biofortification: A molecular breeding outlook -- 1. Introduction -- 2. Wheat grain components -- 2.1. Protein -- 2.2. Micronutrients -- 2.3. Pigments: Lutein, yellow pigments, and anthocyanin -- 2.4. Phytic acid -- 3. Strategies for combating hidden hunger -- 3.1. Food supplementation -- 3.2. Diversifying diet -- 3.3. Biofortification -- 4. Biofortification for GPC -- 4.1. GPCB1-Lone contributor of GPC -- 4.2. Identification of different sources of GPC -- 5. Biofortification for grain zinc content -- 5.1. Agronomic biofortification -- 5.2. Nano-fertilization -- 5.3. Exploitation of wild germplasm -- 5.4. QTLs mapped in seed for Zn content -- 5.5. Grain Zn content and transgenics -- 6. Biofortification for grain iron content -- 6.1. Localization of Fe in wheat -- 6.1.1. Conventional breeding -- 6.1.2. Transgenic approaches -- 6.1.3. Understanding gene regulation -- 6.1.4. Combinatorial approach -- 7. Biofortification for grain selenium content -- 7.1. Localization of Se in wheat -- 7.2. Variation for selenium accumulation in plants -- 7.2.1. Agronomic biofortification -- 7.2.2. Nano-fertilization -- 7.2.3. Genetic engineering -- 7.2.4. Exploiting the genetic variation -- 7.2.5. Conventional and molecular breeding approach -- 8. Phytic acid-Culprit for hidden hunger -- 9. Biofortification for pigments -- 9.1. Carotenoids -- 9.2. Anthocyanins -- 9.3. Flavonoids -- 9.4. Color variations in wheat grain -- 9.5. Molecular breeding strategies -- 9.6. Consumer preferences -- 9.7. Environmental effect on color accumulation -- 9.8. Recent progress in breeding of colored wheats -- 10. Conclusion -- References -- Further reading -- Chapter 10: Identification of tolerance for wheat rusts: Insights in recent QTL mapping efforts. , 1. Introduction -- 2. Impact of biotic stresses on wheat production -- 3. Wheat rust diseases -- 4. Insects-pests affecting wheat -- 5. Viral diseases -- 6. Types of rusts attack on wheat and mode of action -- 7. Wheat stem rust -- 8. Wheat stripe rust -- 9. Wheat leaf rust -- 10. Conventional breeding and molecular techniques to control rusts attack -- 11. Stem rust resistance -- 12. Stripe rust resistance in wheat -- 13. Leaf rust resistance in wheat -- 14. QTL mapping for rusts attacks -- 15. Summary -- References -- Chapter 11: Abiotic and biotic stress tolerance in rice: Recent advances in molecular breeding approaches -- 1. Introduction -- 2. QTL mapping approaches -- 2.1. Linkage analysis -- 2.1.1. Biparental mapping populations -- 2.1.2. Multiparent mapping populations -- 3. Statistical techniques used for mapping QTLs -- 3.1. Single marker analysis (SMA) -- 3.2. Simple interval mapping (SIM) -- 3.3. Multiple QTL mapping (MQM) -- 3.3.1. Composite interval mapping (CIM) -- 3.3.2. Multiple interval mapping (MIM) -- 3.3.3. Bayesian mapping -- 3.4. Association analysis -- 4. QTLs/resistance genes identified in rice -- 4.1. Genes identified using a biparental mapping population -- 4.1.1. Biotic stresses -- 4.1.2. Abiotic stress -- 4.2. Genes identified using association mapping -- 5. Conclusion -- References -- Chapter 12: Genetic improvement of rice grain quality -- 1. Introduction -- 2. Rice grain quality evaluation according to consumers preference -- 2.1. Cooking and eating quality -- 2.2. Textural and sensory quality -- 2.3. Nutritional quality -- 3. Genes/QTL for rice grain quality -- 3.1. Milling quality -- 3.2. Appearance quality (shape, size, length, and chalkiness) -- 3.3. Cooking quality -- 3.3.1. Amylose content -- 3.3.2. Gelatinization temperature -- 3.3.3. Gel consistency -- 4. Conclusion -- References. , Chapter 13: Translating genetics into genomics: From QTL identification to candidate gene discovery in rice.
    Additional Edition: Print version: Wani, Shabir Hussain QTL Mapping in Crop Improvement San Diego : Elsevier Science & Technology,c2022 ISBN 9780323852432
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages