feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Duxford :Woodhead Publishing,
    UID:
    almahu_9949698052502882
    Format: 1 online resource (464 pages)
    ISBN: 0-08-101981-5 , 0-08-101980-7
    Content: Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge.
    Note: Front Cover -- Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- Nomenclature -- Chapter 1: Introduction to liquid metal cooled reactors -- 1.1. Nuclear energy and fast reactors -- 1.2. Liquid metal reactor design -- 1.3. Short history of liquid metal reactors -- 1.4. Benefits and drawbacks of liquid metals as coolants -- 1.5. European liquid metal reactor designs -- 1.5.1. ASTRID () -- 1.5.1.1. Introduction -- 1.5.1.2. Description of the primary cooling system -- 1.5.1.3. Description of the safety concept -- 1.5.1.4. Deployment status and planned schedule -- 1.5.2. ALFRED () -- 1.5.2.1. Introduction -- 1.5.2.2. Description of the primary cooling system -- 1.5.2.3. Description of the safety concept -- 1.5.2.4. Deployment status and planned schedule -- 1.5.3. MYRRHA () -- 1.5.3.1. Introduction -- 1.5.3.2. Description of the primary cooling system -- 1.5.3.3. Description of the safety concept -- 1.5.3.4. Deployment status and planned schedule -- 1.5.4. SEALER () -- 1.5.4.1. Introduction -- 1.5.4.2. Description of the primary cooling system -- 1.5.4.3. Description of the safety concept -- 1.5.4.4. Deployment status and planned schedule -- 1.6. Guidance -- References -- Chapter 2: Thermal-hydraulic challenges in liquid-metal-cooled reactors -- 2.1. Introduction -- 2.2. Identification -- 2.3. Categorization -- 2.4. Thermal hydraulic challenges -- 2.4.1. Basic phenomena -- 2.4.2. Core thermal hydraulics -- 2.4.3. Pool thermal hydraulics -- 2.4.4. System thermal hydraulics -- 2.4.5. Guidelines -- References -- Further reading -- Chapter 3: Thermal-hydraulic experiments with liquid metals-Introduction -- References -- Chapter 3.1: Rod bundle and pool-type experiments in water serving liquid metal reactors -- 3.1.1. Introduction -- 3.1.2. Scaling and theory. , 3.1.2.1. Forced convection for pool-type investigation -- 3.1.2.2. Natural convection for pool-type investigation -- 3.1.2.3. Fuel bundle investigation -- 3.1.2.4. Experimental techniques -- 3.1.2.4.1. Laser Doppler anemometry -- Irregular sampling -- Light reflection -- Light distortion -- 3.1.2.4.2. Particle image velocimetry -- Illumination requirements -- Image requirements -- 3.1.2.4.3. Laser-induced fluorescence -- 3.1.2.4.4. Refractive index matching techniques -- Matching fluid with solid (F2S) -- Matching solid with fluid (S2F) -- Absorption coefficient -- Thin walls -- 3.1.2.4.5. Flow-induced vibrations -- 3.1.3. Fuel bundle experiments -- 3.1.3.1. Mean flow and turbulence characteristics -- 3.1.3.2. Secondary flow -- 3.1.3.3. Periodic flow pulsations -- 3.1.3.4. Fluid-structure interaction -- 3.1.3.5. Effect of wire wraps -- 3.1.3.6. Lateral mixing -- 3.1.4. Pool-type experiments -- 3.1.4.1. Scaling for pool-type experiments -- 3.1.4.2. MYRRHABELLE water model -- 3.1.4.3. PIV measurements in MYRRHABELLE -- 3.1.4.3.1. Nominal conditions -- 3.1.4.3.2. Natural convection -- 3.1.5. Conclusions -- References -- Further reading -- Chapter 3.2: Design of experimental liquid-metal facilities -- 3.2.1. Introduction -- 3.2.1.1. HLM pool thermal-fluid-dynamic -- 3.2.1.2. Fuel assembly thermal-fluid-dynamic -- 3.2.1.3. Integral tests -- 3.2.2. HLM large pool design -- 3.2.3. Gas enhanced circulation -- 3.2.4. Core simulator design -- 3.2.4.1. CFD core simulator design -- 3.2.4.2. Numerical set-up -- 3.2.4.3. CFD results -- 3.2.5. Steam generator design -- 3.2.5.1. RELAP5 modeling -- 3.2.5.2. Results -- 3.2.6. Test section pressure drop -- 3.2.7. Final remarks -- References -- Chapter 3.3: Construction of experimental liquid-metal facilities -- 3.3.1. Introduction -- 3.3.1.1. General characteristics defining an experimental liquid (metal) facility. , 3.3.1.2. Special features of liquid metals and their impact on the facilities -- 3.3.1.2.1. Physical properties -- 3.3.1.2.2. Chemical interactions -- 3.3.1.2.3. Corrosion (compatibility with solid materials) -- 3.3.2. Thermo-hydraulic loop facilities -- 3.3.2.1. Main components -- 3.3.2.1.1. Pumping devices -- 3.3.2.1.2. Heat exchangers -- 3.3.2.2. Instrumentation -- 3.3.2.2.1. Flow rate -- 3.3.2.2.2. Differential pressure -- 3.3.2.3. Some examples at KIT: The THEADES (LBE) and KASOLA (Na) loops -- 3.3.3. Thermo-hydraulic test sections -- 3.3.3.1. Reproducible operating conditions -- 3.3.3.2. In-situ calibration of instruments and data acquisition chain -- 3.3.3.3. Some examples at KIT: Rod bundles (LBE), backward-facing step (Na) -- 3.3.4. Conclusions -- References -- Chapter 3.4: Operational aspects of experimental liquid metal facilities -- 3.4.1. Preoxidation -- 3.4.2. LBE melting and first time filling -- 3.4.3. Gas conditioning sequence (inerting) -- 3.4.4. Preheating -- 3.4.5. LBE filling -- 3.4.6. Pump startup and shutdown -- 3.4.7. Cooling -- 3.4.8. Draining -- 3.4.9. General notes and precautions during operation -- 3.4.9.1. LBE solidification: Valve operation/actuation -- 3.4.9.2. Pressure surge -- 3.4.9.3. Instrumentation -- 3.4.9.4. System performance monitoring -- 3.4.10. Cleaning of the facility/test section -- 3.4.11. Summary -- References -- Chapter 3.5: Measurement techniques for liquid metal based nuclear coolants -- 3.5.1. Introduction -- 3.5.2. Ultrasound-based methods -- 3.5.3. Inductive measurement techniques -- 3.5.4. Conclusions -- References -- Chapter 4: System thermal hydraulics for liquid metals -- 4.1. Convective heat transfer with liquid metals -- 4.1.1. Turbulent Prandtl number -- 4.1.2. Convective heat transfer correlations -- 4.2. Hydrodynamic model for STH codes. , 4.3. Thermodynamic properties for the liquid metals to be implemented in a STH code -- 4.3.1. Liquid phase -- 4.3.2. Vapor phase -- 4.4. RELAP5/Mod3.3 modified code and application -- 4.4.1. RELAP5/Mod3.3 modified code -- 4.4.2. Application to NACIE -- 4.4.2.1. Facility description -- 4.4.2.2. NACIE RELAP5 model and application: Isothermal and ULOF transient -- 4.5. Other STH codes used in the SESAME project -- 4.5.1. CATHARE code -- 4.5.2. ATHLET code/package -- 4.5.3. SPECTRA code -- 4.5.4. SAS4A/SASSYS-1 code -- References -- Further reading -- Chapter 5: Subchannel analysis for LMR -- 5.1. Introduction -- 5.1.1. Structure of LMR fuel assemblies -- 5.1.2. Liquid metals as coolant -- 5.1.3. Tasks of reactor core thermal hydraulic analysis -- 5.2. SCTH analysis -- 5.2.1. Basic equations -- 5.2.1.1. Mass conservation -- 5.2.1.2. Momentum conservation -- 5.2.1.3. Energy conservation -- 5.2.2. Closure models -- 5.2.2.1. Pressure drop -- 5.2.2.2. Heat transfer -- 5.2.2.3. Transversal exchange -- Diversion cross flow -- Flow sweeping -- Turbulent mixing -- Flow scattering -- Large scale oscillation -- 5.2.2.4. Local wall temperature distribution -- 5.2.3. Examples -- References -- Further reading -- Chapter 6: CFD-Introduction -- 6.1. Direct numerical simulation -- 6.2. Large-eddy simulation -- 6.3. Reynolds-averaged Navier Stokes equations -- 6.4. Reduced resolution RANS -- 6.5. Low-resolution CFD -- References -- Chapter 6.1.1: Direct numerical simulations for liquid metal applications -- 6.1.1.1. Introduction -- 6.1.1.1.1. The Navier-Stokes equations -- 6.1.1.1.1.1. Historical context -- 6.1.1.1.2. The scalar transport equation -- 6.1.1.1.3. Length and time scales in turbulent flows -- 6.1.1.2. Direct numerical simulation techniques -- 6.1.1.3. Boundary and initial conditions -- 6.1.1.3.1. Periodic boundary conditions. , 6.1.1.3.2. Inflow open boundary conditions -- 6.1.1.3.3. Outflow open boundary conditions -- 6.1.1.3.4. Boundary conditions for the thermal field -- 6.1.1.3.5. Initial conditions -- 6.1.1.3.6. Statistical treatment of numerical solutions -- 6.1.1.4. Results: Channel flow -- 6.1.1.5. Results: Nonplanar geometries -- 6.1.1.6. Conclusions -- References -- Chapter 6.1.2: Large-eddy simulation: Application to liquid metal fluid flow and heat transfer -- 6.1.2.1. Introduction -- 6.1.2.2. LES equations -- 6.1.2.2.1. Governing equations -- 6.1.2.2.2. Implicitly filtered LES or grid-LES -- 6.1.2.2.3. Closure problem -- 6.1.2.2.3.1. Practical LES equation set -- 6.1.2.2.3.2. The closure problem -- 6.1.2.2.4. Heat transfer in LES -- 6.1.2.3. Subgrid-scale models -- 6.1.2.3.1. Eddy-viscosity models -- 6.1.2.3.1.1. The Smagorinsky model -- 6.1.2.3.1.2. The WALE model -- 6.1.2.3.2. Dynamic models -- 6.1.2.3.2.1. The approach -- 6.1.2.3.2.2. The dynamic Smagorinsky model -- 6.1.2.3.3. Multiscale models -- 6.1.2.3.3.1. The approach -- 6.1.2.3.3.2. The multiscale WALE model -- 6.1.2.3.4. Modeling subgrid-scale heat flux -- 6.1.2.3.4.1. The Reynolds analogy and the eddy heat diffusivity approach -- 6.1.2.3.4.2. The case of liquid metals -- 6.1.2.4. Application -- 6.1.2.4.1. The turbulent channel flow -- 6.1.2.4.2. Validation of the V-LES/T-DNS approach -- 6.1.2.4.3. V-LES/T-DNS at higher Reynolds -- 6.1.2.5. Concluding remarks -- References -- Chapter 6.2.1: Turbulent heat transport -- 6.2.1.1. Understanding the peculiarities of heat transfer modeling in turbulent liquid metal flows -- 6.2.1.1.1. Incomplete modeling of turbulent heat flux -- 6.2.1.1.2. Dissimilarity in velocity and thermal fields -- 6.2.1.1.3. Time scale ratio -- 6.2.1.2. Modeling of turbulent heat transfer -- 6.2.1.2.1. Second-moment closures -- 6.2.1.2.2. Algebraic heat flux models. , 6.2.1.2.2.1. Explicit AHFM.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Duxford :Woodhead Publishing,
    UID:
    edocfu_9961089640102883
    Format: 1 online resource (464 pages)
    ISBN: 0-08-101981-5 , 0-08-101980-7
    Content: Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge.
    Note: Front Cover -- Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- Nomenclature -- Chapter 1: Introduction to liquid metal cooled reactors -- 1.1. Nuclear energy and fast reactors -- 1.2. Liquid metal reactor design -- 1.3. Short history of liquid metal reactors -- 1.4. Benefits and drawbacks of liquid metals as coolants -- 1.5. European liquid metal reactor designs -- 1.5.1. ASTRID () -- 1.5.1.1. Introduction -- 1.5.1.2. Description of the primary cooling system -- 1.5.1.3. Description of the safety concept -- 1.5.1.4. Deployment status and planned schedule -- 1.5.2. ALFRED () -- 1.5.2.1. Introduction -- 1.5.2.2. Description of the primary cooling system -- 1.5.2.3. Description of the safety concept -- 1.5.2.4. Deployment status and planned schedule -- 1.5.3. MYRRHA () -- 1.5.3.1. Introduction -- 1.5.3.2. Description of the primary cooling system -- 1.5.3.3. Description of the safety concept -- 1.5.3.4. Deployment status and planned schedule -- 1.5.4. SEALER () -- 1.5.4.1. Introduction -- 1.5.4.2. Description of the primary cooling system -- 1.5.4.3. Description of the safety concept -- 1.5.4.4. Deployment status and planned schedule -- 1.6. Guidance -- References -- Chapter 2: Thermal-hydraulic challenges in liquid-metal-cooled reactors -- 2.1. Introduction -- 2.2. Identification -- 2.3. Categorization -- 2.4. Thermal hydraulic challenges -- 2.4.1. Basic phenomena -- 2.4.2. Core thermal hydraulics -- 2.4.3. Pool thermal hydraulics -- 2.4.4. System thermal hydraulics -- 2.4.5. Guidelines -- References -- Further reading -- Chapter 3: Thermal-hydraulic experiments with liquid metals-Introduction -- References -- Chapter 3.1: Rod bundle and pool-type experiments in water serving liquid metal reactors -- 3.1.1. Introduction -- 3.1.2. Scaling and theory. , 3.1.2.1. Forced convection for pool-type investigation -- 3.1.2.2. Natural convection for pool-type investigation -- 3.1.2.3. Fuel bundle investigation -- 3.1.2.4. Experimental techniques -- 3.1.2.4.1. Laser Doppler anemometry -- Irregular sampling -- Light reflection -- Light distortion -- 3.1.2.4.2. Particle image velocimetry -- Illumination requirements -- Image requirements -- 3.1.2.4.3. Laser-induced fluorescence -- 3.1.2.4.4. Refractive index matching techniques -- Matching fluid with solid (F2S) -- Matching solid with fluid (S2F) -- Absorption coefficient -- Thin walls -- 3.1.2.4.5. Flow-induced vibrations -- 3.1.3. Fuel bundle experiments -- 3.1.3.1. Mean flow and turbulence characteristics -- 3.1.3.2. Secondary flow -- 3.1.3.3. Periodic flow pulsations -- 3.1.3.4. Fluid-structure interaction -- 3.1.3.5. Effect of wire wraps -- 3.1.3.6. Lateral mixing -- 3.1.4. Pool-type experiments -- 3.1.4.1. Scaling for pool-type experiments -- 3.1.4.2. MYRRHABELLE water model -- 3.1.4.3. PIV measurements in MYRRHABELLE -- 3.1.4.3.1. Nominal conditions -- 3.1.4.3.2. Natural convection -- 3.1.5. Conclusions -- References -- Further reading -- Chapter 3.2: Design of experimental liquid-metal facilities -- 3.2.1. Introduction -- 3.2.1.1. HLM pool thermal-fluid-dynamic -- 3.2.1.2. Fuel assembly thermal-fluid-dynamic -- 3.2.1.3. Integral tests -- 3.2.2. HLM large pool design -- 3.2.3. Gas enhanced circulation -- 3.2.4. Core simulator design -- 3.2.4.1. CFD core simulator design -- 3.2.4.2. Numerical set-up -- 3.2.4.3. CFD results -- 3.2.5. Steam generator design -- 3.2.5.1. RELAP5 modeling -- 3.2.5.2. Results -- 3.2.6. Test section pressure drop -- 3.2.7. Final remarks -- References -- Chapter 3.3: Construction of experimental liquid-metal facilities -- 3.3.1. Introduction -- 3.3.1.1. General characteristics defining an experimental liquid (metal) facility. , 3.3.1.2. Special features of liquid metals and their impact on the facilities -- 3.3.1.2.1. Physical properties -- 3.3.1.2.2. Chemical interactions -- 3.3.1.2.3. Corrosion (compatibility with solid materials) -- 3.3.2. Thermo-hydraulic loop facilities -- 3.3.2.1. Main components -- 3.3.2.1.1. Pumping devices -- 3.3.2.1.2. Heat exchangers -- 3.3.2.2. Instrumentation -- 3.3.2.2.1. Flow rate -- 3.3.2.2.2. Differential pressure -- 3.3.2.3. Some examples at KIT: The THEADES (LBE) and KASOLA (Na) loops -- 3.3.3. Thermo-hydraulic test sections -- 3.3.3.1. Reproducible operating conditions -- 3.3.3.2. In-situ calibration of instruments and data acquisition chain -- 3.3.3.3. Some examples at KIT: Rod bundles (LBE), backward-facing step (Na) -- 3.3.4. Conclusions -- References -- Chapter 3.4: Operational aspects of experimental liquid metal facilities -- 3.4.1. Preoxidation -- 3.4.2. LBE melting and first time filling -- 3.4.3. Gas conditioning sequence (inerting) -- 3.4.4. Preheating -- 3.4.5. LBE filling -- 3.4.6. Pump startup and shutdown -- 3.4.7. Cooling -- 3.4.8. Draining -- 3.4.9. General notes and precautions during operation -- 3.4.9.1. LBE solidification: Valve operation/actuation -- 3.4.9.2. Pressure surge -- 3.4.9.3. Instrumentation -- 3.4.9.4. System performance monitoring -- 3.4.10. Cleaning of the facility/test section -- 3.4.11. Summary -- References -- Chapter 3.5: Measurement techniques for liquid metal based nuclear coolants -- 3.5.1. Introduction -- 3.5.2. Ultrasound-based methods -- 3.5.3. Inductive measurement techniques -- 3.5.4. Conclusions -- References -- Chapter 4: System thermal hydraulics for liquid metals -- 4.1. Convective heat transfer with liquid metals -- 4.1.1. Turbulent Prandtl number -- 4.1.2. Convective heat transfer correlations -- 4.2. Hydrodynamic model for STH codes. , 4.3. Thermodynamic properties for the liquid metals to be implemented in a STH code -- 4.3.1. Liquid phase -- 4.3.2. Vapor phase -- 4.4. RELAP5/Mod3.3 modified code and application -- 4.4.1. RELAP5/Mod3.3 modified code -- 4.4.2. Application to NACIE -- 4.4.2.1. Facility description -- 4.4.2.2. NACIE RELAP5 model and application: Isothermal and ULOF transient -- 4.5. Other STH codes used in the SESAME project -- 4.5.1. CATHARE code -- 4.5.2. ATHLET code/package -- 4.5.3. SPECTRA code -- 4.5.4. SAS4A/SASSYS-1 code -- References -- Further reading -- Chapter 5: Subchannel analysis for LMR -- 5.1. Introduction -- 5.1.1. Structure of LMR fuel assemblies -- 5.1.2. Liquid metals as coolant -- 5.1.3. Tasks of reactor core thermal hydraulic analysis -- 5.2. SCTH analysis -- 5.2.1. Basic equations -- 5.2.1.1. Mass conservation -- 5.2.1.2. Momentum conservation -- 5.2.1.3. Energy conservation -- 5.2.2. Closure models -- 5.2.2.1. Pressure drop -- 5.2.2.2. Heat transfer -- 5.2.2.3. Transversal exchange -- Diversion cross flow -- Flow sweeping -- Turbulent mixing -- Flow scattering -- Large scale oscillation -- 5.2.2.4. Local wall temperature distribution -- 5.2.3. Examples -- References -- Further reading -- Chapter 6: CFD-Introduction -- 6.1. Direct numerical simulation -- 6.2. Large-eddy simulation -- 6.3. Reynolds-averaged Navier Stokes equations -- 6.4. Reduced resolution RANS -- 6.5. Low-resolution CFD -- References -- Chapter 6.1.1: Direct numerical simulations for liquid metal applications -- 6.1.1.1. Introduction -- 6.1.1.1.1. The Navier-Stokes equations -- 6.1.1.1.1.1. Historical context -- 6.1.1.1.2. The scalar transport equation -- 6.1.1.1.3. Length and time scales in turbulent flows -- 6.1.1.2. Direct numerical simulation techniques -- 6.1.1.3. Boundary and initial conditions -- 6.1.1.3.1. Periodic boundary conditions. , 6.1.1.3.2. Inflow open boundary conditions -- 6.1.1.3.3. Outflow open boundary conditions -- 6.1.1.3.4. Boundary conditions for the thermal field -- 6.1.1.3.5. Initial conditions -- 6.1.1.3.6. Statistical treatment of numerical solutions -- 6.1.1.4. Results: Channel flow -- 6.1.1.5. Results: Nonplanar geometries -- 6.1.1.6. Conclusions -- References -- Chapter 6.1.2: Large-eddy simulation: Application to liquid metal fluid flow and heat transfer -- 6.1.2.1. Introduction -- 6.1.2.2. LES equations -- 6.1.2.2.1. Governing equations -- 6.1.2.2.2. Implicitly filtered LES or grid-LES -- 6.1.2.2.3. Closure problem -- 6.1.2.2.3.1. Practical LES equation set -- 6.1.2.2.3.2. The closure problem -- 6.1.2.2.4. Heat transfer in LES -- 6.1.2.3. Subgrid-scale models -- 6.1.2.3.1. Eddy-viscosity models -- 6.1.2.3.1.1. The Smagorinsky model -- 6.1.2.3.1.2. The WALE model -- 6.1.2.3.2. Dynamic models -- 6.1.2.3.2.1. The approach -- 6.1.2.3.2.2. The dynamic Smagorinsky model -- 6.1.2.3.3. Multiscale models -- 6.1.2.3.3.1. The approach -- 6.1.2.3.3.2. The multiscale WALE model -- 6.1.2.3.4. Modeling subgrid-scale heat flux -- 6.1.2.3.4.1. The Reynolds analogy and the eddy heat diffusivity approach -- 6.1.2.3.4.2. The case of liquid metals -- 6.1.2.4. Application -- 6.1.2.4.1. The turbulent channel flow -- 6.1.2.4.2. Validation of the V-LES/T-DNS approach -- 6.1.2.4.3. V-LES/T-DNS at higher Reynolds -- 6.1.2.5. Concluding remarks -- References -- Chapter 6.2.1: Turbulent heat transport -- 6.2.1.1. Understanding the peculiarities of heat transfer modeling in turbulent liquid metal flows -- 6.2.1.1.1. Incomplete modeling of turbulent heat flux -- 6.2.1.1.2. Dissimilarity in velocity and thermal fields -- 6.2.1.1.3. Time scale ratio -- 6.2.1.2. Modeling of turbulent heat transfer -- 6.2.1.2.1. Second-moment closures -- 6.2.1.2.2. Algebraic heat flux models. , 6.2.1.2.2.1. Explicit AHFM.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Duxford :Woodhead Publishing,
    UID:
    edoccha_9961089640102883
    Format: 1 online resource (464 pages)
    ISBN: 0-08-101981-5 , 0-08-101980-7
    Content: Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge.
    Note: Front Cover -- Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- Nomenclature -- Chapter 1: Introduction to liquid metal cooled reactors -- 1.1. Nuclear energy and fast reactors -- 1.2. Liquid metal reactor design -- 1.3. Short history of liquid metal reactors -- 1.4. Benefits and drawbacks of liquid metals as coolants -- 1.5. European liquid metal reactor designs -- 1.5.1. ASTRID () -- 1.5.1.1. Introduction -- 1.5.1.2. Description of the primary cooling system -- 1.5.1.3. Description of the safety concept -- 1.5.1.4. Deployment status and planned schedule -- 1.5.2. ALFRED () -- 1.5.2.1. Introduction -- 1.5.2.2. Description of the primary cooling system -- 1.5.2.3. Description of the safety concept -- 1.5.2.4. Deployment status and planned schedule -- 1.5.3. MYRRHA () -- 1.5.3.1. Introduction -- 1.5.3.2. Description of the primary cooling system -- 1.5.3.3. Description of the safety concept -- 1.5.3.4. Deployment status and planned schedule -- 1.5.4. SEALER () -- 1.5.4.1. Introduction -- 1.5.4.2. Description of the primary cooling system -- 1.5.4.3. Description of the safety concept -- 1.5.4.4. Deployment status and planned schedule -- 1.6. Guidance -- References -- Chapter 2: Thermal-hydraulic challenges in liquid-metal-cooled reactors -- 2.1. Introduction -- 2.2. Identification -- 2.3. Categorization -- 2.4. Thermal hydraulic challenges -- 2.4.1. Basic phenomena -- 2.4.2. Core thermal hydraulics -- 2.4.3. Pool thermal hydraulics -- 2.4.4. System thermal hydraulics -- 2.4.5. Guidelines -- References -- Further reading -- Chapter 3: Thermal-hydraulic experiments with liquid metals-Introduction -- References -- Chapter 3.1: Rod bundle and pool-type experiments in water serving liquid metal reactors -- 3.1.1. Introduction -- 3.1.2. Scaling and theory. , 3.1.2.1. Forced convection for pool-type investigation -- 3.1.2.2. Natural convection for pool-type investigation -- 3.1.2.3. Fuel bundle investigation -- 3.1.2.4. Experimental techniques -- 3.1.2.4.1. Laser Doppler anemometry -- Irregular sampling -- Light reflection -- Light distortion -- 3.1.2.4.2. Particle image velocimetry -- Illumination requirements -- Image requirements -- 3.1.2.4.3. Laser-induced fluorescence -- 3.1.2.4.4. Refractive index matching techniques -- Matching fluid with solid (F2S) -- Matching solid with fluid (S2F) -- Absorption coefficient -- Thin walls -- 3.1.2.4.5. Flow-induced vibrations -- 3.1.3. Fuel bundle experiments -- 3.1.3.1. Mean flow and turbulence characteristics -- 3.1.3.2. Secondary flow -- 3.1.3.3. Periodic flow pulsations -- 3.1.3.4. Fluid-structure interaction -- 3.1.3.5. Effect of wire wraps -- 3.1.3.6. Lateral mixing -- 3.1.4. Pool-type experiments -- 3.1.4.1. Scaling for pool-type experiments -- 3.1.4.2. MYRRHABELLE water model -- 3.1.4.3. PIV measurements in MYRRHABELLE -- 3.1.4.3.1. Nominal conditions -- 3.1.4.3.2. Natural convection -- 3.1.5. Conclusions -- References -- Further reading -- Chapter 3.2: Design of experimental liquid-metal facilities -- 3.2.1. Introduction -- 3.2.1.1. HLM pool thermal-fluid-dynamic -- 3.2.1.2. Fuel assembly thermal-fluid-dynamic -- 3.2.1.3. Integral tests -- 3.2.2. HLM large pool design -- 3.2.3. Gas enhanced circulation -- 3.2.4. Core simulator design -- 3.2.4.1. CFD core simulator design -- 3.2.4.2. Numerical set-up -- 3.2.4.3. CFD results -- 3.2.5. Steam generator design -- 3.2.5.1. RELAP5 modeling -- 3.2.5.2. Results -- 3.2.6. Test section pressure drop -- 3.2.7. Final remarks -- References -- Chapter 3.3: Construction of experimental liquid-metal facilities -- 3.3.1. Introduction -- 3.3.1.1. General characteristics defining an experimental liquid (metal) facility. , 3.3.1.2. Special features of liquid metals and their impact on the facilities -- 3.3.1.2.1. Physical properties -- 3.3.1.2.2. Chemical interactions -- 3.3.1.2.3. Corrosion (compatibility with solid materials) -- 3.3.2. Thermo-hydraulic loop facilities -- 3.3.2.1. Main components -- 3.3.2.1.1. Pumping devices -- 3.3.2.1.2. Heat exchangers -- 3.3.2.2. Instrumentation -- 3.3.2.2.1. Flow rate -- 3.3.2.2.2. Differential pressure -- 3.3.2.3. Some examples at KIT: The THEADES (LBE) and KASOLA (Na) loops -- 3.3.3. Thermo-hydraulic test sections -- 3.3.3.1. Reproducible operating conditions -- 3.3.3.2. In-situ calibration of instruments and data acquisition chain -- 3.3.3.3. Some examples at KIT: Rod bundles (LBE), backward-facing step (Na) -- 3.3.4. Conclusions -- References -- Chapter 3.4: Operational aspects of experimental liquid metal facilities -- 3.4.1. Preoxidation -- 3.4.2. LBE melting and first time filling -- 3.4.3. Gas conditioning sequence (inerting) -- 3.4.4. Preheating -- 3.4.5. LBE filling -- 3.4.6. Pump startup and shutdown -- 3.4.7. Cooling -- 3.4.8. Draining -- 3.4.9. General notes and precautions during operation -- 3.4.9.1. LBE solidification: Valve operation/actuation -- 3.4.9.2. Pressure surge -- 3.4.9.3. Instrumentation -- 3.4.9.4. System performance monitoring -- 3.4.10. Cleaning of the facility/test section -- 3.4.11. Summary -- References -- Chapter 3.5: Measurement techniques for liquid metal based nuclear coolants -- 3.5.1. Introduction -- 3.5.2. Ultrasound-based methods -- 3.5.3. Inductive measurement techniques -- 3.5.4. Conclusions -- References -- Chapter 4: System thermal hydraulics for liquid metals -- 4.1. Convective heat transfer with liquid metals -- 4.1.1. Turbulent Prandtl number -- 4.1.2. Convective heat transfer correlations -- 4.2. Hydrodynamic model for STH codes. , 4.3. Thermodynamic properties for the liquid metals to be implemented in a STH code -- 4.3.1. Liquid phase -- 4.3.2. Vapor phase -- 4.4. RELAP5/Mod3.3 modified code and application -- 4.4.1. RELAP5/Mod3.3 modified code -- 4.4.2. Application to NACIE -- 4.4.2.1. Facility description -- 4.4.2.2. NACIE RELAP5 model and application: Isothermal and ULOF transient -- 4.5. Other STH codes used in the SESAME project -- 4.5.1. CATHARE code -- 4.5.2. ATHLET code/package -- 4.5.3. SPECTRA code -- 4.5.4. SAS4A/SASSYS-1 code -- References -- Further reading -- Chapter 5: Subchannel analysis for LMR -- 5.1. Introduction -- 5.1.1. Structure of LMR fuel assemblies -- 5.1.2. Liquid metals as coolant -- 5.1.3. Tasks of reactor core thermal hydraulic analysis -- 5.2. SCTH analysis -- 5.2.1. Basic equations -- 5.2.1.1. Mass conservation -- 5.2.1.2. Momentum conservation -- 5.2.1.3. Energy conservation -- 5.2.2. Closure models -- 5.2.2.1. Pressure drop -- 5.2.2.2. Heat transfer -- 5.2.2.3. Transversal exchange -- Diversion cross flow -- Flow sweeping -- Turbulent mixing -- Flow scattering -- Large scale oscillation -- 5.2.2.4. Local wall temperature distribution -- 5.2.3. Examples -- References -- Further reading -- Chapter 6: CFD-Introduction -- 6.1. Direct numerical simulation -- 6.2. Large-eddy simulation -- 6.3. Reynolds-averaged Navier Stokes equations -- 6.4. Reduced resolution RANS -- 6.5. Low-resolution CFD -- References -- Chapter 6.1.1: Direct numerical simulations for liquid metal applications -- 6.1.1.1. Introduction -- 6.1.1.1.1. The Navier-Stokes equations -- 6.1.1.1.1.1. Historical context -- 6.1.1.1.2. The scalar transport equation -- 6.1.1.1.3. Length and time scales in turbulent flows -- 6.1.1.2. Direct numerical simulation techniques -- 6.1.1.3. Boundary and initial conditions -- 6.1.1.3.1. Periodic boundary conditions. , 6.1.1.3.2. Inflow open boundary conditions -- 6.1.1.3.3. Outflow open boundary conditions -- 6.1.1.3.4. Boundary conditions for the thermal field -- 6.1.1.3.5. Initial conditions -- 6.1.1.3.6. Statistical treatment of numerical solutions -- 6.1.1.4. Results: Channel flow -- 6.1.1.5. Results: Nonplanar geometries -- 6.1.1.6. Conclusions -- References -- Chapter 6.1.2: Large-eddy simulation: Application to liquid metal fluid flow and heat transfer -- 6.1.2.1. Introduction -- 6.1.2.2. LES equations -- 6.1.2.2.1. Governing equations -- 6.1.2.2.2. Implicitly filtered LES or grid-LES -- 6.1.2.2.3. Closure problem -- 6.1.2.2.3.1. Practical LES equation set -- 6.1.2.2.3.2. The closure problem -- 6.1.2.2.4. Heat transfer in LES -- 6.1.2.3. Subgrid-scale models -- 6.1.2.3.1. Eddy-viscosity models -- 6.1.2.3.1.1. The Smagorinsky model -- 6.1.2.3.1.2. The WALE model -- 6.1.2.3.2. Dynamic models -- 6.1.2.3.2.1. The approach -- 6.1.2.3.2.2. The dynamic Smagorinsky model -- 6.1.2.3.3. Multiscale models -- 6.1.2.3.3.1. The approach -- 6.1.2.3.3.2. The multiscale WALE model -- 6.1.2.3.4. Modeling subgrid-scale heat flux -- 6.1.2.3.4.1. The Reynolds analogy and the eddy heat diffusivity approach -- 6.1.2.3.4.2. The case of liquid metals -- 6.1.2.4. Application -- 6.1.2.4.1. The turbulent channel flow -- 6.1.2.4.2. Validation of the V-LES/T-DNS approach -- 6.1.2.4.3. V-LES/T-DNS at higher Reynolds -- 6.1.2.5. Concluding remarks -- References -- Chapter 6.2.1: Turbulent heat transport -- 6.2.1.1. Understanding the peculiarities of heat transfer modeling in turbulent liquid metal flows -- 6.2.1.1.1. Incomplete modeling of turbulent heat flux -- 6.2.1.1.2. Dissimilarity in velocity and thermal fields -- 6.2.1.1.3. Time scale ratio -- 6.2.1.2. Modeling of turbulent heat transfer -- 6.2.1.2.1. Second-moment closures -- 6.2.1.2.2. Algebraic heat flux models. , 6.2.1.2.2.1. Explicit AHFM.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages