feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore, | Singapore :Springer.
    UID:
    edoccha_BV049674058
    Format: 1 Online-Ressource (XX, 321 S. 67 Abb., 51 Abb. in Farbe).
    Edition: 1st ed. 2024
    ISBN: 978-981-9978-08-3
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-9978-07-6
    Language: German
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore, | Singapore :Springer.
    UID:
    edocfu_BV049674058
    Format: 1 Online-Ressource (XX, 321 S. 67 Abb., 51 Abb. in Farbe).
    Edition: 1st ed. 2024
    ISBN: 978-981-9978-08-3
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-9978-07-6
    Language: German
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Springer
    UID:
    b3kat_BV049674058
    Format: 1 Online-Ressource (XX, 321 S. 67 Abb., 51 Abb. in Farbe)
    Edition: 1st ed. 2024
    ISBN: 9789819978083
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-9978-07-6
    Language: German
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almahu_9948612939902882
    Format: XIX, 436 p. 114 illus., 97 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9789811585340
    Series Statement: Studies in Computational Intelligence, 923
    Content: The novel coronavirus disease 2019 (COVID-19) pandemic has posed a major threat to human life and health. This book is beneficial for interdisciplinary students, researchers, and professionals to understand COVID-19 and how computational intelligence can be used for the purpose of surveillance, control, prevention, prediction, diagnosis, and potential treatment of the disease. The book contains different aspects of COVID-19 that includes fundamental knowledge, epidemic forecast models, surveillance and tracking systems, IoT- and IoMT-based integrated systems for COVID-19, social network analysis systems for COVID-19, radiological images (CT, X-ray) based diagnosis system, and computational intelligence and in silico drug design and drug repurposing methods against COVID-19 patients. The contributing authors of this volume are experts in their fields and they are from various reputed universities and institutions across the world. This volume is a valuable and comprehensive resource for computer and data scientists, epidemiologists, radiologists, doctors, clinicians, pharmaceutical professionals, along with graduate and research students of interdisciplinary and multidisciplinary sciences.
    Note: 1. An Introduction to Computational Intelligence in COVID-19: Surveillance, Prevention, Prediction, and Diagnosis -- 2. Role of Computational Intelligence against COVID-19 -- 3. Using Computational Intelligence for Tracking COVID-19 Outbreak in Online Social Networks -- 4. Social Network Analysis for the Identification of Key Spreaders during COVID-19 -- 5. Mobile Technology Solution for COVID -19: Surveillance and Prevention -- 6. The Role of Internet of Things (IoT) in the Containment and Spread of the Novel COVID-19 Pandemic -- 7. A Review on Predictive Systems and Data Models for COVID-19 -- 8. A Comparative Study of the SIR Prediction Models and Disease Control Strategies: A Case Study of the State of Kerala, India -- 9. Computational Intelligence Approach for Prediction of COVID-19 using Particle Swarm Optimization. 10. COVID-19 Insightful Data Visualization and Forecasting using Elasticsearch.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9789811585333
    Additional Edition: Printed edition: ISBN 9789811585357
    Additional Edition: Printed edition: ISBN 9789811585364
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almahu_9949420157802882
    Format: XX, 328 p. 68 illus., 47 illus. in color. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9789811963797
    Series Statement: Studies in Computational Intelligence, 1066
    Content: This book encapsulates and occupies recent advances and state-of-the-art applications of nature-inspired computing (NIC) techniques in the field of bioinformatics and computational biology, which would aid medical sciences in various clinical applications. This edited volume covers fundamental applications, scope, and future perspectives of NIC techniques in bioinformatics including genomic profiling, gene expression data classification, DNA computation, systems and network biology, solving personalized therapy complications, antimicrobial resistance in bacterial pathogens, and computer-aided drug design, discovery, and therapeutics. It also covers the role of NIC techniques in various diseases and disorders, including cancer detection and diagnosis, breast cancer, lung disorder detection, disease biomarkers, and potential therapeutics identifications.
    Note: Part-I: Preliminaries -- Chapter 1. The Scope and Applications of Nature-Inspired Computing in Bioinformatics -- Chapter 2. Leveraging Healthcare System with Nature-Inspired Computing Techniques: An Overview and Future Perspective -- Part-II: Nature-Inspired Computing in Cancer Research -- Chapter 3. Nature-Inspired Computing in Breast Cancer Research: Overview, Perspective and Challenges of the State-of-the-art Techniques -- Chapter 4. Advances in Genomic Profiling of Colorectal Cancer using Nature[1]Inspired Computing Techniques -- Chapter 5. Potential Role of the Nature-Inspired Algorithms for Classification of High-dimensional and Complex Gene Expression Data -- Chapter 6. Optimized Nature-Inspired Computing Algorithms for Lung Disorder Detection -- Chapter 7. Overview and Classification of Swarm Intelligence-based Nature[1]Inspired Computing Algorithms and their Applications in Cancer Detection and Diagnosis -- Chapter 8. Nature-Inspired Computing: Scope and applications of Artificial Immune Systems towards Analysis and Diagnosis of Complex Problems -- Chapter 9. Nature-Inspired Computing: Bat echolocation to BAT algorithm -- Chapter 10. Social, Emotional and Ethical (SEE) Attributes, Which Configures Our Bioinformatics Systems to Activate the Hidden Forces to Shape Human Decisions -- Part III: Nature-Inspired Computing in Drug Design, Development, and Therapeutics -- Chapter 11. Applications of Nature-Inspired Computing and Artificial Intelligence Algorithms in Solving Personalized Therapy Complications -- Chapter 12. Role of Nature-Inspired Intelligence in Genomic Diagnosis of Antimicrobial Resistance -- Chapter 13. Consequential Innovations in Nature-Inspired Intelligent Computing Techniques for Biomarkers and Potential Therapeutics Identification -- Chapter 14. Nature-Inspired Computing Techniques in Drug Design, Development, and Therapeutics -- Chapter 15. Illustrious Implications of Nature-Inspired Computing Methods in Therapeutics and Computer-Aided Drug Design -- Chapter 16. Nature-based Computing Bioinformatics Approaches in Drug Discovery against Promising Molecular Targets Carbonic Anhydrases and Se[1]rine/Threonine Kinases for Cancer Treatment.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9789811963780
    Additional Edition: Printed edition: ISBN 9789811963803
    Additional Edition: Printed edition: ISBN 9789811963810
    Language: English
    Subjects: Computer Science
    RVK:
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    almahu_9949709214202882
    Format: XIX, 323 p. 67 illus., 62 illus. in color. , online resource.
    Edition: 1st ed. 2024.
    ISBN: 9789819990290
    Series Statement: Studies in Computational Intelligence, 1133
    Content: The book provides an overview of various autoimmune disorders and how artificial intelligence (AI) and machine learning will be used for the diagnosis, prognosis, and treatment of these disorders. AI algorithms are used to create synthetic patient populations with the properties of actual patient cohorts, build personalized predictive models of drug combinations and unravel complex relationships between diet, microbiome, and genetic line-up to determine the comparative treatment response. The book highlights clinical applications and challenges of AI for the diagnosis and treatment/management of autoimmune disorders which includes Rheumatoid Arthritis (RA), Multiple Sclerosis (MS), Type I Diabetes, Psoriatic Arthritis (PsA), and other critical diseases.
    Note: Autoimmune Disorders: Types, Symptoms and Risk Factors -- Immune System and Autoimmunity: Cellular and Molecular Mechanisms -- Autoimmune Diseases: Recent Insights on Epidemiology, Pathogenesis and Prevalence Rate -- The Role of Artificial Intelligence and Machine learning in Autoimmune Disorders -- Autoimmune Autonomic Disorder: AI-based Diagnosis and Prognosis -- Detection of Rheumatoid Arthritis using CNN in Autoimmune Diseases Disorders -- The Emerging Applications of Machine Learning in the Diagnosis of Multiple Sclerosis -- Exploring State-of-the-art CNN Models for Early Detection of Multiple Sclerosis using MRI Images -- AI-assisted Model for Risk Detection of Autoimmune Diseases -- Artificial Intelligence in the Diagnosis and Treatment of Rheumatoid Arthritis: Current Status and Future Perspectives -- Data Analytics for Diagnosis, Tracking, and Treatment Planning in Autoimmune Diseases using AI -- Role of Artificial Intelligence in the Treatment Management of Psoriatic Arthritis -- Artificial Intelligence, Machine Learning and Deep Learning in the Diagnosis and Treatment of Rheumatoid Arthritis: Case Studies -- Artificial Intelligence and Machine Learning Techniques in the Diagnosis of Type I Diabetes: Case Studies -- Computational Intelligence Methods for Biomarkers Discovery in Autoimmune Diseases: Case Studies -- AI-empowered Prediction of Prognosis and Treatment Response in Rheumatoid arthritis.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9789819990283
    Additional Edition: Printed edition: ISBN 9789819990306
    Additional Edition: Printed edition: ISBN 9789819990313
    Language: English
    Subjects: Computer Science
    RVK:
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    b3kat_BV047887539
    Format: 1 Online-Ressource (xx, 467 Seiten) , Illustrationen, Diagramme (überwiegend farbig)
    ISBN: 9789811692215
    Series Statement: Studies in computational intelligence volume 1016
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1692-20-8
    Language: English
    Subjects: Computer Science
    RVK:
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    London, England :Academic Press is an imprint of Elsevier,
    UID:
    almahu_9949725454302882
    Format: 1 online resource (299 pages)
    Edition: First edition.
    ISBN: 0-443-22298-3
    Series Statement: Issn Series
    Note: Front Cover -- Deep Learning Applications in Translational Bioinformatics -- Copyright Page -- Contents -- List of contributors -- About the editors -- 1 Deep learning ensembles in translational bioinformatics -- 1.1 Introduction -- 1.2 Basic ensembling methods -- 1.3 Application -- 1.3.1 Application of ensemble techniques to proteomics using microarray and mass spectrometry -- 1.3.2 Gene-gene interaction detection using random forest -- 1.3.3 Prediction of regulatory elements using ensemble methods -- 1.3.3.1 Further growing uses for ensemble methods in bioinformatics -- 1.4 Extensions of the ensemble method in bioinformatics -- 1.5 Ensemble theory's application to feature selection -- 1.6 Ensemble feature selection methods and stability of feature selection algorithms in bioinformatics -- 1.6.1 Stability and feature selection algorithms -- 1.7 Algorithmic ensembles for feature selection -- 1.8 Conclusion -- References -- 2 Recursive feature elimination and multisupport vector machine in healthcare analytics -- 2.1 Introduction -- 2.1.1 Motivation of the work -- 2.1.2 Contribution of the research work -- 2.1.3 Chapter organization -- 2.2 Related works -- 2.2.1 Limitation of the existing works -- 2.3 Proposed system -- 2.3.1 Description of dataset -- 2.3.2 Dimensionality reduction and feature selection methods in medical disease diagnosis -- 2.3.2.1 Filtering techniques -- 2.3.2.2 Wrapper techniques -- 2.3.2.3 Recursive feature elimination -- 2.3.3 Classification using multisupport vector machine -- 2.4 Results and discussion -- 2.4.1 Performance used in medical disease classification -- 2.4.2 Results evaluation for recursive feature elimination calculation -- 2.5 Conclusion -- References -- 3 Sensor-enabled biomedical decision support system using deep learning and fuzzy logic -- 3.1 Introduction -- 3.1.1 Background and motivation. , 3.1.2 Research problem statement -- 3.1.3 Objectives and contributions -- 3.1.4 Chapter organization -- 3.2 Literature review -- 3.2.1 Fuzzy logic -- 3.2.1.1 Fuzzy sets and fuzzy numbers -- 3.2.1.2 Concepts of fuzzy logic approach for research study -- 3.2.1.3 Definition of fuzzy sets along with membership function -- 3.2.2 The deep learning concept -- 3.2.2.1 Convolutional neural network -- 3.2.2.2 The concept of recurrent neural networks -- 3.2.3 Biomedical decision support system -- 3.2.3.1 Electronic health records -- 3.2.3.2 The key challenges in developing biomedical decision support system -- 3.2.4 Related work on the integration of fuzzy logic and deep learning for sensor-enabled biomedical decision support systems -- 3.3 Methodology -- 3.3.1 Data collection and preprocessing -- 3.3.2 Fuzzy logic-based feature selection -- 3.3.3 Deep learning model design and implementation -- 3.3.4 Performance evaluation metrics -- 3.4 Results from experiment -- 3.4.1 Dataset description -- 3.4.2 Performance comparison with traditional machine learning methods -- 3.4.3 Case study: prediction of cardiovascular diseases -- 3.4.3.1 Fuzzy logic-based feature selection -- 3.4.3.2 Deep learning -- 3.4.4 Case study: prediction of cardiovascular diseases using fuzzy logic and deep learning -- 3.4.4.1 Dataset description -- 3.4.4.2 Fuzzy logic-based feature selection -- 3.4.4.3 Deep learning model design and implementation -- 3.4.4.4 Performance evaluation metrics -- 3.4.4.5 Results -- 3.5 Discussion -- 3.5.1 Interpretation of results -- 3.5.2 Limitations and challenges -- 3.5.2.1 Limitations -- 3.5.2.2 Challenges -- 3.5.3 Future research directions -- 3.6 Conclusion -- References -- Further reading -- 4 Prediction of Alzheimer's disease using densely convolutional neural network -- 4.1 Introduction -- 4.2 Literature review -- 4.3 Methodology. , 4.4 Materials and tools -- 4.4.1 Dataset -- 4.4.2 Data preprocessing -- 4.4.3 Dense convolutional neural network architecture -- 4.4.4 Hyperparameters -- 4.4.5 Evaluation -- 4.5 Results and discussion -- 4.6 Conclusion -- References -- 5 Brain tumor detection from magnetic resonance imaging images using shallow convolutional neural network -- 5.1 Introduction -- 5.2 Related works -- 5.3 Methodology -- 5.3.1 Convolutional neural network models -- 5.3.2 Proposed shallow convolutional neural network -- 5.3.2.1 The architecture -- 5.3.3 Transfer learning -- 5.3.4 Support vector machine -- 5.4 Result and discussion -- 5.5 Conclusion -- References -- 6 Multiview learning with shallow 1D-CNN for anticancer activity classification of therapeutic peptides -- 6.1 Introduction -- 6.2 Related work -- 6.3 Methodology -- 6.3.1 Convolutional neural network -- 6.3.2 The proposed 1D-convolutional neural network -- 6.3.3 Feature descriptor -- 6.3.4 Sequence-based -- 6.3.5 Standard physicochemical properties -- 6.3.6 Physicochemical properties and sequence composition -- 6.4 Experimental setup -- 6.4.1 Dataset -- 6.4.2 Result discussion -- 6.4.3 Analysis of the optimal multiview learning -- 6.5 Conclusion -- References -- 7 Deep learning methods for protein classification -- 7.1 Introduction -- 7.2 Literature survey -- 7.3 Protein representation methods -- 7.3.1 Amino-acid sequence -- 7.3.2 Substitution matrix representation -- 7.3.3 Physicochemical property response matrix -- 7.4 Proposed methodology -- 7.4.1 Dataset -- 7.4.2 Proposed classification model -- 7.4.2.1 Convolutional neural network -- 7.4.2.1.1 Input layers for 2-D CNN model -- 7.4.2.1.2 Hidden layers -- 7.4.2.1.3 Output layers -- 7.5 Result and discussion -- 7.5.1 Performace evaluation metrics -- 7.5.1.1 Accuracy -- 7.5.1.2 Precision -- 7.5.1.3 Recall. , 7.5.2 Prediction of hemolytic and nonhemolytic activity -- 7.6 Conclusion -- References -- 8 Biosensors-based identification of antibiotic resistance in bacteria -- 8.1 Introduction -- 8.2 Gonnococal antibiotic resistance -- 8.2.1 Penicillin -- 8.2.2 Tetracycline -- 8.2.3 Ciprofloxacin -- 8.2.4 Cefixime -- 8.2.5 Ceftriaxone -- 8.2.6 Azithromycin -- 8.3 Proposed work -- 8.4 Experimentation -- 8.5 Results and discussion -- 8.5.1 Learning curve -- 8.6 Conclusion -- References -- 9 Deep learning for vehement gene expression exploration -- 9.1 Introduction -- 9.2 Gene expression -- 9.3 Gene expression analysis -- 9.4 Gene expression functioning -- 9.5 Gene expression technologies -- 9.6 Microarray technique -- 9.7 Strengths and limitations of microarray -- 9.8 Strengths of microarrays -- 9.9 Limitations of microarrays -- 9.10 Microarray functioning -- 9.11 RNA-Seq technique -- 9.12 Strengths and limitations of RNA-Seq -- 9.13 Strengths of RNA-seq -- 9.14 Limitations of RNA-seq -- 9.15 RNA-Seq functioning -- 9.16 Study on RNA-Seq over microarray -- 9.17 Deep learning -- 9.18 Deep learning sets unique from neural network -- 9.19 Deep learning sets unique from machine learning -- 9.20 Deep learning architectures: convolutional neural network and recurrent neural network -- 9.21 Convolutional neural network functioning -- 9.22 Recurrent neural networks functioning -- 9.23 Deep learning for gene expression -- 9.24 Convolutional neural networks for gene expression -- 9.25 Recurrent neural network for gene expression -- 9.26 Potential of recurrent neural network over convolutional neural network for gene expression -- 9.27 Conclusion -- References -- 10 Machine learning-enforced bioinformatics approaches for drug discovery and development -- 10.1 Introduction -- 10.2 Drug discovery: an introduction and historical perspective -- 10.3 Machine learning approaches. , 10.4 Machine learning-enforced bioinformatic tools for drug discovery -- 10.4.1 Random forest -- 10.4.2 Artificial neural network-based approaches -- 10.4.2.1 Convolutional neural networks -- 10.4.2.2 Support vector machines -- 10.4.2.3 Multilayer perception neural network -- 10.4.2.4 Recurrent neural networks -- 10.4.3 Bayesian models -- 10.5 Deep machine learning -- 10.6 Artificial intelligence -- 10.7 Machine learning-, deep learning-, and artificial intelligence-enforced bioinformatics and cheminformatics tools -- 10.7.1 Drug design, drug prediction, and optimization -- 10.7.2 Determination of the target and validation -- 10.7.3 Prophecy of drug-drug interaction -- 10.7.4 Compound screening or hit discovery -- 10.7.5 Drug repurposing -- 10.7.6 Molecular docking -- 10.7.7 Drug safety assessment -- 10.8 Challenges and opportunities -- 10.9 Conclusion -- References -- 11 Role of deep learning in predicting drug formulations and delivery systems -- 11.1 Introduction -- 11.2 Databases, deep learning tools and techniques -- 11.2.1 Establishing the dataset -- 11.2.2 Deep learning tools and techniques -- 11.3 Data processing methods -- 11.3.1 Steps involved in data preprocessing -- 11.4 Artificial intelligence algorithms and models in dosage form development -- 11.4.1 Application of artificial intelligence in pharmaceutical drug formulations -- 11.5 Conclusions and future prospects -- References -- 12 Deep learning in computer-aided drug design: a case study -- 12.1 Introduction -- 12.1.1 Drug designing approaches -- 12.1.1.1 Structure-based drug design -- 12.1.1.2 Ligand-based drug design -- 12.1.2 Why deep learning in computer-aided drug design? -- 12.2 Role of deep learning in computer-aided drug design -- 12.3 Software tools, web servers, and package -- 12.3.1 Parameters -- 12.3.2 Tools -- 12.3.3 Packages. , 12.4 Promises and challenges of deep learning in computer-aided drug design.
    Additional Edition: ISBN 0-443-22299-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    almahu_9949225596302882
    Format: 1 online resource (256 pages) : , illustrations
    ISBN: 0-323-89890-4 , 0-323-89824-6
    Series Statement: Advances in ubiquitous sensing applications for healthcare ; Volume 13
    Note: 1. Translational bioinformatics in healthcare: past, present, and future 2. The fundamentals and potential of translational medicine in healthcare 3. Next-generation sequencing: an expedition from workstation to clinical applications 4. Genomics in clinical care through precision medicine and personalized treatments 5. A review of a hybrid IoT-NG-PON system for translational bioinformatics in healthcare 6. IoT applications in translational bioinformatics 7. Blockchain technology in healthcare: making digital healthcare reliable, more accurate, and revolutionary 8. Integrity promised: leveraging blockchain technology for medical image sharing 9. From molecules to patients: the clinical applications of biologic databases and electronic health records 10. Translational bioinformatics methods for drug discovery and drug repurposing 11. Role of Bioinformatics in cancer research and drug developmen t12. Application, functionality, and security issues of data mining techniques in healthcare informatics 13. Viroinformatics: a modern approach to counter viral diseases through computational informatics 14. Viroinformatics for viral diseases: tools and databases 15. Machine learning in translational bioinformatics 16. An enhanced feature selection and cancer classification for microarray data using relaxed Lasso and support vector machine 17. Fuzzy rule-driven data mining framework for knowledge acquisition for expert system 18. High accuracy in algorithm bioinformatics efficient in healthcare in detection and counting of leukocytes, blasts, and erythrocytes
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    almafu_9961492925202883
    Format: 1 online resource (371 pages)
    Edition: 1st ed.
    ISBN: 9789819978083
    Note: Intro -- Vorwort -- Über dieses Buch -- Inhaltsverzeichnis -- Herausgeber- und Autorenverzeichnis -- Präliminarieniges -- Umfang und Anwendungsbereiche des von der Natur inspirierten Computings in der Bioinformatik -- Abkürzungen -- 1 Einführung -- 2 Naturinspirierte Modelle der Berechnung -- 2.1 Traditionelle NIC-Modelle -- 2.2 Neue NIC-Modelle -- 3 Anwendungsbereiche und Anwendungen von NIC-Modellen in der Bioinformatik -- 4 Einschränkungen von naturinspirierten Rechenmodellen in der Bioinformatik -- 5 Zukunftsaussichten -- 6 Schlussfolgerung -- Literatur -- Nutzung des Gesundheitssystems mit naturinspirierten Computertechniken: Ein Überblick und zukünftige Perspektiven -- 1 Einführung -- 2 Naturinspirierter Algorithmus: Ein Überblick -- 2.1 Schwarmintelligenz -- 2.2 Bioinspirierter Algorithmus -- 2.3 Physik- und chemiebasierte Algorithmen -- 3 Kombination von KI-Technologien und naturinspirierten Rechenmodellen für COVID-19 -- 4 Naturinspirierte Algorithmen und ihre bedeutende Verwendung im Gesundheitswesen -- 5 Gesundheitsmanagement -- 6 Radiologie -- 6.1 Radiotherapie -- 6.2 Orthopädie -- 7 Geburtshilfe und Gynäkologie -- 8 Onkologie -- 9 Kardiologie -- 10 Endokrinologie -- 11 Pharmakotherapie -- 12 Neurologie -- 13 Chirurgie -- 14 Infektionskrankheiten -- 15 Rehabilitationsmedizin -- 16 Künstlicher Bienenalgorithmus -- 16.1 Biomedizinische Sensoren -- 16.2 Rauschfilterung und -unterdrückung -- 16.3 DNA-Mikroarray -- 16.4 Bestätigende Diagnose -- 16.5 EEG-Analyse -- 17 Ameisenkolonieoptimierung -- 17.1 Schnelles Medikamentenabgabesystem (FMDS) -- 17.2 Medikamentenmanagement in Krankenhäusern und Apotheken: OPM -- 18 Schlussfolgerung -- Literatur -- Naturinspiriertes Computing in der Krebsforschung -- Naturinspiriertes Computing in der Brustkrebsforschung: Überblick, Perspektive und Herausforderungen der modernsten Techniken -- 1 Einführung. , 2 Naturinspirierte Rechenlösungen für Brustkrebs -- 3 Naturinspirierte Algorithmen -- 3.1 Genetischer Algorithmus -- 3.2 Ameisenkolonieoptimierung -- 3.3 Künstliche Bienenkolonieoptimierung -- 3.4 Schwarmoptimierungsalgorithmen -- 4 Auswahl von Fitnessfunktionen und Parametereinstellungen -- 4.1 Parameterabstimmung und Fitnessfunktionen für ACO -- 4.2 Parameterabstimmung und Fitnessfunktion für ABC -- 4.3 Parameterabstimmung und Fitnessfunktion für den Glühwürmchenalgorithmus -- 5 Herausforderungen der NIC-Techniken in der Brustkrebsforschung -- 6 Zukünftige Forschungsrichtung -- 7 Schlussfolgerung -- Literatur -- Fortschritte bei der genomischen Profilerstellung von Darmkrebs mit naturinspirierten Rechentechniken -- Abkürzungen -- 1 Einführung -- 2 Landschaft der genomischen Veränderungen bei CRC -- 2.1 Molekulare Subtypen von CRC -- 3 Überblick über Modelle auf der Basis von computergestützter Intelligenz, die in der CRC-Diagnose verwendet werden, und ihre Grenzen -- 4 Auswirkungen von naturinspiriertem Computing in der Krebsforschung -- 5 Implementierung von NIC-Methoden in der CRC-Erkennung -- 5.1 Genetischer Algorithmus (GA) -- 5.2 Ameisenkolonieoptimierung (ACO) -- 5.3 Partikelschwarmoptimierung (PSO) -- 5.4 Künstliche Bienenkolonie (ABC) -- 5.5 Kuckuckssuchealgorithmus (CSA) -- 6 Anwendung von NIC-Techniken zur Identifizierung potenzieller Biomarker bei CRC -- 7 Fallstudien zu verschiedenen Hybridtechniken: Eine revolutionäre Veränderung in der Erkennung und Behandlung von CRC -- 8 Smartphone-Technologie in der Krankheitsüberwachung: Ein intelligenter Ansatz -- 9 Vorteile, Einschränkungen und Beschränkungen der NIC-Techniken in der Krebsforschung -- 10 Schlussfolgerung und zukünftige Perspektive -- Literatur -- Potenzielle Rolle der naturinspirierten Algorithmen zur Klassifizierung von hochdimensionalen und komplexen Genexpressionsdaten. , 1 Einführung -- 2 Naturinspirierte Algorithmen in der Genexpressionsklassifikation -- 2.1 Kuckuckssuchealgorithmus -- 2.2 Mehrziel-Kuckuckssuchealgorithmus -- 2.3 Künstliche Bienenkolonie (ABC) -- 2.4 AdaBoost-Algorithmus -- 2.5 Support-Vektor-Maschinen -- 2.6 Borutaalgorithmus -- 2.7 K-Nächste-Nachbarn-Algorithmus -- 2.8 Random-Forest-Algorithmus -- 3 Vor- und Nachteile von naturinspirierten Algorithmen zur Genklassifikation -- 4 Zukunftsaussichten -- 5 Schlussfolgerung -- Literatur -- Optimierte naturinspirierte Rechenalgorithmen zur Erkennung von Lungenerkrankungen -- 1 Einführung -- 1.1 Einführung in naturinspirierte Optimierungsalgorithmen -- 1.2 Allgemeine Merkmale -- 2 Literaturübersicht zu Lungenstörungsklassifikationen -- 3 Beitrag des Kapitels -- 4 Vorgeschlagenes Modell -- 5 Ergebnisse -- 6 Schlussfolgerung -- Literatur -- Überblick und Klassifizierung von auf Schwarmintelligenz basierenden naturinspirierten Rechenalgorithmen und deren Anwendungen in der Krebserkennung und -diagnose -- 1 Einführung -- 2 Klassifizierung von naturinspirierten Rechenalgorithmen -- 2.1 Evolutionsbasierte naturinspirierte Rechenalgorithmen -- 2.1.1 Künstliches neuronales Netzwerk (ANN) -- 2.1.2 Genetische Algorithmen und genetische Programmierung -- 2.1.3 Evolutionsstrategien -- 2.1.4 Andere auf Evolution basierende naturinspirierte Algorithmen -- 2.2 Ökologiebasierte naturinspirierte Algorithmen -- 2.2.1 Optimierung von invasiven Unkräutern -- 2.2.2 Biogeographiebasierte Optimierung -- 2.2.3 Weitere ökologiebasierte naturinspirierte Algorithmen -- 2.3 Von der Natur inspirierte Mehrzielalgorithmen -- 2.3.1 Genetischer Algorithmus II für nicht dominierte Sortierung -- 2.3.2 Populationsbasiertes ACO -- 2.3.3 Weitere von der Natur inspirierte Mehrzielalgorithmen -- 2.4 Schwarmintelligenzbasierte naturinspirierte Algorithmen -- 2.4.1 Ameisenkolonieoptimierung. , 2.4.2 Künstliche Bienenkolonie -- 2.4.3 Fischschwarmalgorithmus -- 2.4.4 Glühwürmchenschwarmoptimierung -- 2.4.5 Glühwürmchenalgorithmus -- 2.4.6 Ameisenlöwenoptimierung -- 2.4.7 Andere schwarmintelligenzbasierte naturinspirierte Algorithmen -- 3 NIC-Techniken (insektenbasiert) zur Diagnose menschlicher Krankheiten -- 4 Rolle von ABC, ACO, GSO, ALO und FA bei der Diagnose von Krebs -- 5 Einschränkungen -- 6 Zukünftige Richtungen -- 7 Schlussfolgerung -- Literatur -- Naturinspiriertes Computing: Anwendungsbereich und Anwendungen von künstlichen Immunsystemen zur Analyse und Diagnose komplexer Probleme -- 1 Einführung -- 2 Naturinspirierte Informatik -- 3 Bioinspirierte Algorithmen -- 3.1 Auf Evolution basierende Algorithmen -- 3.2 Auf Schwarmintelligenz basierende Algorithmen -- 3.3 Auf Ökologie basierende Algorithmen -- 3.4 Mehrzielalgorithmus -- 4 Künstliches Immunsystem -- 4.1 Biologische Aspekte, die auf die Entwicklung des Algorithmus fokussiert sind -- 4.2 Klonale Selektionstheorie -- 4.3 Immunnetzwerke -- 4.4 Negative Selektion -- 4.5 Künstliche Immunsystemalgorithmen -- 4.5.1 Negative selektionsbasierte Algorithmen -- 4.5.2 Klonale Selektionsalgorithmen (CSAs) -- 4.5.3 Künstliche Immunnetzwerke (AINs) -- 4.5.4 Gefahrentheorie und dendritische Zellalgorithmen -- 5 Anwendungen des künstlichen Immunsystems -- 5.1 Fehlererkennung, -diagnose und -behebung mit AIS -- 5.2 Immunnetzwerkbasierte Ansätze -- 5.3 Fehlerdiagnose bei hydraulischen Bremsen von Automobilen -- 5.4 Fehlererkennung im Kühlsystem -- 5.5 Fehlerdiagnose, -erkennung und -isolierung von Windturbinen -- 5.6 Fehlerdiagnose in Transformatoren -- 6 Schlussfolgerung -- Literatur -- Naturinspiriertes Computing: Fledermausecholokation zum BAT-Algorithmus -- 1 Einführung -- 2 Entdeckung der Echoortung -- 3 Vokalisierung bei Fledermäusen -- 4 Der BAT-Algorithmus -- 4.1 Nachteile. , 4.2 Neue Varianten und Anwendung -- 5 Schlussfolgerung -- Literatur -- Soziale, emotionale und ethische (SEE) Attribute, die unsere Bioinformatiksysteme konfigurieren, um die verborgenen Kräfte zur Gestaltung menschlicher Entscheidungen zu aktivieren -- 1 Einführung -- 2 Die drei Bereiche und drei Dimensionen -- 2.1 Mitgefühl -- 2.2 Bewusstsein -- 2.3 Engagement -- 3 Die drei Bereiche sind drei Arten von Dingen -- 3.1 Der persönliche Bereich -- 3.2 Der soziale Bereich -- 3.3 Der Systembereich -- 4 Literaturübersicht -- 4.1 Wie trifft man eine Entscheidung in einer Multilösungsumgebung? -- 5 Mathematische Modulation -- 6 Modell der Entscheidungsfindung -- 6.1 Die Personalisierung -- 6.2 Die gegenwärtige Situation -- 7 Prozess der Entscheidungsfindung -- 8 Gleichungen für Entscheidungsmodelle -- 8.1 Formulierung menschlichen Verhaltens in mathematische Gleichungen -- 8.2 Vorhersehbar irrationales Verhalten -- 8.3 Warum können wir uns nicht einfach zwingen, das zu tun, was wir wollen? -- 8.4 Warum schätzen wir unseren Besitz übermäßig hoch ein? -- 8.5 Warum lassen uns Optionen unser Hauptziel aus den Augen verlieren? -- 8.6 Warum bekommen wir das, was wir von unseren Gedanken erwarten? -- 8.7 Warum kann eine 50-Cent-Aspirin Funktionen ausführen, die eine Pfennig-Aspirin nicht kann? -- 8.8 Warum sind wir unzuverlässig und was können wir dagegen tun? -- 8.9 Warum werden wir ehrlicher, wenn wir mit Bargeld umgehen? -- 8.9.1 Wo gibt es in der Verhaltensökonomie kostenlose Mittagessen? -- 9 Start-Aktions-Strategie (SAS) -- 10 Schlussfolgerung und Zukunftsperspektiven -- Literatur -- Naturinspiriertes Computing in Arzneimittelentwurf, -entwicklung und -therapeutik -- Anwendungen von naturinspiriertem Computing und künstlichen Intelligenzalgorithmen bei der Lösung von Komplikationen bei personalisierten Therapien -- 1 Einführung. , 2 NIC- und KI-Algorithmen in der personalisierten Medizin.
    Additional Edition: ISBN 9789819978076
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages