feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    edochu_18452_25857
    Umfang: 1 Online-Ressource (9 Seiten)
    Inhalt: The impacts of climate change are affecting human societies today. In parallel, socio-economic development has increased the capacity of countries around the global to adapt to those impacts although substantial challenges remain. Ongoing climate change will continue to result in a pressure to adapt, while socio-economic development could make it easier to do so. Countries’ effectiveness in fostering climate resilience will depend on the pace of both developments under different socio-economic and emission pathways. Here we assess trajectories of adaptation readiness in comparison with the continued emergence of hot days as a proxy for climate change hazards for different emission and socio-economic pathways over the 21st century. Putting the future evolution of both indices in relation to the observed dynamics over the recent past allows us to provide an assessment of the prospects of future climate resilience building beyond what has been experienced to date. We show that only an inclusive and sustainable stringent mitigation pathway allows for effective climate resilient development over the 21st century. Less inclusive or fossil-fuel driven development will not allow for improvements in resilience building beyond the recent past. Substantial differences emerge already in the 2020s. Our findings underscore the paramount importance of achieving the Paris Agreement goals to enable climate-resilient, sustainable development.
    Inhalt: Peer Reviewed
    In: Bristol : IOP Publ., 16,5
    Sprache: Englisch
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    edochu_18452_25375
    Umfang: 1 Online-Ressource (9 Seiten)
    Inhalt: On top of their well known positive impact on air quality and CO2 emissions, electric vehicles generate less exhaust heat compared to traditional vehicles thanks to their high engine efficiency. As such, electric vehicles have the potential to mitigate the excessive heat in urban areas—a problem which has been exacerbated due to urbanisation and climate change. Still, the heat mitigation potential of electric vehicles has not been fully understood. Here, we combine high-resolution traffic heat emission inventories with an urban climate model to simulate the impact of the fleet electrification to the near-surface air temperature in the tropical city of Singapore. We show that a full replacement of traditional internal combustion engine vehicles with electric vehicles reduces the near-surface air temperature by up to 0.6°C. The heat mitigation potential is highest during the morning traffic peak and over areas with the largest traffic density. Interestingly, the reduction in exhaust heat emissions due to the fleet electrification during the evening traffic peak hardly leads to a reduction of near-surface air-temperatures, which is attributed to the different atmospheric conditions during morning and evening. This study presents a new quantification of the city-wide impact of electric vehicles on the air temperature in a tropical urban area. The results may support policy-makers toward designing holistic solutions to address the challenge of climate change adaptation and mitigation in cities.
    Inhalt: Peer Reviewed
    In: Lausanne : Frontiers Media, 10
    Sprache: Englisch
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    almafu_BV019734161
    Umfang: IX, 151 Bl. : , Ill., graph. Darst., Kt.
    Ausgabe: [Mikrofiche-Ausg.]
    Ausgabe: Mikroform-Ausgabe 2003 3 Mikrofiches : 24x Mikrofiche-Ausg.:
    Anmerkung: Zürich, ETH, Diss., 2003
    Weitere Ausg.: Reproduktion von Seneviratne, Sonia I. Terrestrial water storage 2003
    Sprache: Englisch
    Schlagwort(e): Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    edochu_18452_29673
    Umfang: 1 Online-Ressource (34 Seiten)
    Inhalt: Intergovernmental Panel on Climate Change (IPCC) assessments are the trusted source of scientific evidence for climate negotiations taking place under the United Nations Framework Convention on Climate Change (UNFCCC). Evidence-based decision-making needs to be informed by up-to-date and timely information on key indicators of the state of the climate system and of the human influence on the global climate system. However, successive IPCC reports are published at intervals of 5–10 years, creating potential for an information gap between report cycles. We follow methods as close as possible to those used in the IPCC Sixth Assessment Report (AR6) Working Group One (WGI) report. We compile monitoring datasets to produce estimates for key climate indicators related to forcing of the climate system: emissions of greenhouse gases and short-lived climate forcers, greenhouse gas concentrations, radiative forcing, the Earth's energy imbalance, surface temperature changes, warming attributed to human activities, the remaining carbon budget, and estimates of global temperature extremes. The purpose of this effort, grounded in an open-data, open-science approach, is to make annually updated reliable global climate indicators available in the public domain (https://doi.org/10.5281/zenodo.11388387, Smith et al., 2024a). As they are traceable to IPCC report methods, they can be trusted by all parties involved in UNFCCC negotiations and help convey wider understanding of the latest knowledge of the climate system and its direction of travel. The indicators show that, for the 2014–2023 decade average, observed warming was 1.19 [1.06 to 1.30] °C, of which 1.19 [1.0 to 1.4] °C was human-induced. For the single-year average, human-induced warming reached 1.31 [1.1 to 1.7] °C in 2023 relative to 1850–1900. The best estimate is below the 2023-observed warming record of 1.43 [1.32 to 1.53] °C, indicating a substantial contribution of internal variability in the 2023 record. Human-induced warming has been increasing at a rate that is unprecedented in the instrumental record, reaching 0.26 [0.2–0.4] °C per decade over 2014–2023. This high rate of warming is caused by a combination of net greenhouse gas emissions being at a persistent high of 53±5.4 Gt CO2e yr−1 over the last decade, as well as reductions in the strength of aerosol cooling. Despite this, there is evidence that the rate of increase in CO2 emissions over the last decade has slowed compared to the 2000s, and depending on societal choices, a continued series of these annual updates over the critical 2020s decade could track a change of direction for some of the indicators presented here.
    Inhalt: Peer Reviewed
    In: Katlenburg-Lindau : Copernicus Publications, 16,6, Seiten 2625-2658
    Sprache: Englisch
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz