feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Duxford, United Kingdom ; Cambridge, United States ; Kidlington, United Kingdom :Woodhead Publishing is an imprint of Elsevier,
    UID:
    edoccha_BV045383518
    Format: 1 online resource (267 Seiten).
    ISBN: 978-0-12-816019-0 , 0-12-816019-5
    Note: 6.3.1 Maintenance of relative water content for plant adaptation
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-815879-1
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Author information: Singh, Pawan Kumar 1976-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9949272196402882
    Format: VIII, 278 p. 1 illus. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9789811644979
    Content: This book is a comprehensive account of recent advances in the endophytic research. It covers recent perspective of endophytic research, molecular diversity, bioprospecting of novel genes using high throughput molecular techniques, and most importantly application of endophytes in practicing sustainable agriculture. Endophytic micro-organisms are mysterious living component associated mutually with plant roots and soil microbes. Various endophytic bacteria have attracted considerable attention for their ability to promote plant growth through direct mechanisms or by acting as biocontrol agents. Endophytes also find use in biocontrol, medicine, agriculture and food industry. This is a useful reading for the student of agriculture, environmental microbiology and biotechnology.
    Note: 1 Endophytic Bacteria: Application against biotic and abiotic stresses and Plant Health Improvements for Sustainable Agriculture -- 2 Endophytic Bacteria: Mitigating Abiotic Stress from Inside -- 3 Diversity and bioactive potential of endophytic bacteria from high-value medicinal plants -- 4 Plant Growth Promoting Rhizobacteria (PGPR) Assisted Phytoremediation of Contaminated Soils -- 5 Endophytic Bacteria: Role in Phosphorous Solubilization -- 6 Endophytes of Medicinal plants: Diversity and Bioactivity -- 7 Title: Biotechnological applications of Bacterial Endophytes -- 8 Genetic Basis of Fungal Endophytic Bioactive Compounds Synthesis, Modulation, and Their Biotechnological Application -- 9 Endophytic bacteria for plant growth promotion -- 10 Bacterial Endophytes and Bio-nanotechnology -- 11 Role of Endophyte Metabolites in Plant Protection and other Metabolic Activities -- 12 Role of Bacterial Endophytes in the Promotion of Plant Growth -- 13 Bacterial endophytes and abiotic stress mitigation. .
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9789811644962
    Additional Edition: Printed edition: ISBN 9789811644986
    Additional Edition: Printed edition: ISBN 9789811644993
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    b3kat_BV047917476
    Format: 1 Online-Ressource (VIII, 278 p. 1 illus)
    Edition: 1st ed. 2022
    ISBN: 9789811644979
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1644-96-2
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1644-98-6
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1644-99-3
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almahu_9948212024302882
    Format: 1 online resource (317 pages)
    ISBN: 0-12-817004-2 , 0-12-817005-0
    Note: Front Cover -- Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology -- Copyright Page -- Contents -- List of Contributors -- 1 Plant growth-promoting microorganisms in sustainable agriculture -- 1.1 Introduction -- 1.2 Beneficial soil microbes -- 1.2.1 Cyanobacteria -- 1.2.2 Plant growth-promoting rhizobacteria -- 1.3 Role of plant growth-promoting bacteria in soil fertility -- 1.4 Mechanism of growth promotion by plant growth-promoting bacteria -- 1.4.1 Mineral solubilization by soil microbes -- 1.4.2 Siderophore production -- 1.4.3 Heavy metal toxicity -- 1.4.4 Microbe-induced bioremediation for plant-growth promotion -- 1.4.5 Remediation of heavy metals by bacteria -- 1.4.6 Remediation of heavy metals by fungi -- 1.4.7 Remediation of heavy metals by plant growth-promoting bacteria -- 1.5 Induced systemic resistance -- 1.6 New paradigms in sustainable agriculture -- Acknowledgments -- References -- Further reading -- 2 Microbes as a novel source of secondary metabolite products of industrial significance -- 2.1 Introduction -- 2.2 Role of microbes in agriculture -- 2.3 Role of microbes and their products in pharma industries -- 2.4 Current challenges for microbial products and unexplored areas of research -- 2.5 Role of modern scientific and technological innovation -- 2.6 Conclusion and future prospects -- References -- Further reading -- 3 Modern molecular and omics tools for understanding the plant growth-promoting rhizobacteria -- 3.1 Introduction -- 3.2 Need for modern molecular tools and techniques -- 3.3 Modern molecular techniques -- 3.3.1 Polymerase chain reaction -- 3.3.2 G+C mole% content -- 3.3.3 Reassociation of DNA -- 3.3.4 Nucleic acid hybridization -- 3.3.5 Restriction fragment-length polymorphism -- 3.3.6 Terminal restriction fragment-length polymorphism. , 3.3.7 Ribosomal intergenic spacer analysis/automated ribosomal intergenic spacer analysis/amplified ribosomal DNA restricti... -- 3.3.8 DNA microarrays -- 3.3.9 Denaturant gradient gel electrophoresis/temperature gradient gel electrophoresis -- 3.3.10 Single-strand conformation polymorphism -- 3.4 Genomics -- 3.5 Transcriptomics -- 3.6 Proteomics -- 3.7 Metabolomics -- 3.8 Metaomics -- 3.9 Collective omics approach -- 3.10 Next generation sequencing -- Acknowledgment -- References -- Further reading -- 4 Role of microbially synthesized nanoparticles in sustainable agriculture and environmental management -- 4.1 Introduction -- 4.2 Microbial (green) synthesis of nanoparticles and advantages over nonbiological synthesis -- 4.3 Metal nanoparticle biosynthesis by bacteria -- 4.4 Metal nanoparticle biosynthesis by fungi -- 4.5 Mechanism of nanoparticle synthesis -- 4.6 Factors affecting nanoparticle synthesis by microorganisms -- 4.6.1 pH -- 4.6.2 Temperature -- 4.6.3 Redox condition -- 4.6.4 Irradiation -- 4.6.5 Incubation time -- 4.7 Effect of reaction time -- 4.8 Location of synthesis of nanoparticles -- 4.9 Application in sustainable agriculture -- 4.10 Applications in environmental management -- 4.11 Green versus physicochemical synthesis of nanoparticles -- 4.12 Future perspectives -- 4.13 Conclusions -- References -- 5 Sustainable agriculture and benefits of organic farming to special emphasis on PGPR -- 5.1 Introduction -- 5.2 The genesis of the Green Revolution -- 5.3 Indian Agricultural System -- 5.3.1 Subsistence and commercial farming -- 5.3.2 Intensive and extensive farming -- 5.3.3 Plantation farming -- 5.3.4 Mixed farming -- 5.4 Why organic farming? -- 5.5 Composting and vermicomposting -- 5.6 Use of green manure/manure -- 5.7 Role of microbes in organic agriculture -- 5.8 Challenges for developing countries and small-scale farmers. , 5.9 Conclusions -- References -- Further reading -- 6 Plant growth-promoting microbes for abiotic stress tolerance in plants -- 6.1 Introduction -- 6.2 Abiotic stresses affecting plant health -- 6.2.1 Drought -- 6.2.2 Salinity -- 6.2.3 Heavy metal deposition in soil -- 6.2.4 Fluctuations in temperature -- 6.3 How do Plant growth growth-promoting microorganism help ameliorate abiotic stresses of plants? -- 6.3.1 Drought tolerance -- 6.3.2 Sequestration of heavy metals -- 6.3.3 Salinity -- 6.3.4 Tolerating changes in temperature -- 6.3.5 Combating nutrient deficiency -- 6.4 Conclusion -- References -- Further reading -- 7 Legal issues in nanotechnology -- 7.1 Introduction -- 7.2 Nature and scope of nanotechnology -- 7.3 Nanotechnology and intellectual property rights -- 7.3.1 Copyrights -- 7.3.2 Trademarks -- 7.3.3 Patents -- 7.3.4 Trade secrets -- 7.4 Nanotechnology and intellectual property rights: Indian perspective -- 7.5 Problems and prospects -- 7.6 Progressive trends -- 7.7 Conclusion -- References -- 8 Applying nanotechnology to bacteria: an emerging technology for sustainable agriculture -- 8.1 Introduction -- 8.1.1 Bacteria are reservoirs of bioactive compounds -- 8.1.2 Nanotechnology and agriculture -- 8.1.3 Role of bacteria in nanotechnology-based agricultural systems -- 8.2 Biogenesis of nanoparticles -- 8.2.1 As an alternative to available inorganic nanoparticles -- 8.2.2 Bacteria as the source of biogenesis of nanoparticles -- 8.2.3 Validation of nanoparticles -- 8.2.3.1 Validation approaches -- Use of spiked samples -- Determination of selectivity -- Calibration curve, linearity, and working range -- Precision -- 8.3 Application of bacterial nanoparticles -- 8.3.1 Bacteria as nanobiopesticide/biocontrol agent -- 8.3.2 Bacterial nanoparticles as nanobiofertilizers -- 8.3.3 Bacterial nanoparticles as biosensors. , 8.4 Limitations and future of nanotechnology-based agricultural applications -- References -- 9 The role of fungus in bioactive compound production and nanotechnology -- 9.1 Introduction -- 9.1.1 Prevalence of Fungal diversity -- 9.2 Secondary metabolites of fungal species -- 9.2.1 Antimicrobial activity -- 9.2.2 Antifungal compounds -- 9.2.3 Anticancer compounds -- 9.3 Biosynthesis of nanoparticles by fungi -- 9.4 Future prospectives -- References -- Further reading -- 10 Role of actinomycetes in bioactive and nanoparticle synthesis -- 10.1 Introduction -- 10.2 Role of actinomycetes in soil and plant health -- 10.3 Actinomycetes as plant growth-promoting agents -- 10.4 Actinomycetes in the synthesis of bioactive compounds -- 10.5 Role of actinomycetes in nanotechnology -- 10.6 Future perspectives -- References -- Further reading -- 11 Cyanobacteria as a source of nanoparticles and their applications -- 11.1 Introduction -- 11.1.1 Nanoparticles currently in use -- 11.1.2 Nanoparticle synthesis -- 11.1.2.1 Industrial synthesis -- 11.1.3 Why biosynthesize nanoparticles? Disadvantages of conventional synthesis methods -- 11.2 Role of microbes (cyanobacteria) in nanoparticle synthesis and contribution -- 11.2.1 Synthesis of gold nanoparticles from cyanobacteria -- 11.2.2 Synthesis of silver nanoparticles from cyanobacteria -- 11.3 Commercial applications of cyanobacterial nanoparticles -- 11.4 Concluding remarks and prospects -- Acknowledgments -- References -- 12 Biosynthesis of nanoparticles and applications in agriculture -- 12.1 Introduction -- 12.2 Synthesis of nanoparticles by fungal microbes -- 12.3 Synthesis of nanoparticles by bacteria and actinobacteria -- 12.4 Synthesis of nanoparticles by cynobacteria -- 12.5 Green synthesis of nanometals and their translocation in plants -- 12.6 Synthesis of nanoparticles by microbes. , 12.7 Applications of nanoparticles -- 12.7.1 Nanotechnology in agri sector -- 12.7.2 Nanotechnology in the food sector -- 12.7.3 Nanotechnology in sustainable agriculture -- 12.8 Future challenges -- References -- 13 Trichoderma-mediated biocontrol and growth promotion in plants: an endophytic approach -- 13.1 Introduction -- 13.2 Endophytic activity -- 13.3 Growth promotion mechanisms -- 13.3.1 Nutrient uptake and solubilization -- 13.3.2 Secondary metabolites -- 13.3.3 Plant hormones production -- 13.4 Effect of Trichoderma on pathogens -- 13.5 Effect of Trichoderma on plants -- 13.5.1 Defense induction -- 13.5.2 Plant resistance due to Trichoderma -- 13.5.3 Effect on rhizosphere by Trichoderma -- Acknowledgment -- References -- 14 Fungal endophytes: potential biocontrol agents in agriculture -- 14.1 Introduction -- 14.2 Biological characteristics of fungal endophytes -- 14.2.1 Tissue colonization and specificity -- 14.2.2 Symbiotic relationship with host plants -- 14.2.3 Transmission and acquisition of endophytes -- 14.2.4 Classification -- 14.3 Species diversity of fungal endophytes -- 14.4 Fungal endophytes: chemical synthesizers inside plants -- 14.4.1 Mode of infection by endophytic fungi -- 14.4.2 Infection strategies of fungal endophytes in plants -- 14.4.3 Spectrum of bioactive compounds produced by fungal endophytes -- 14.5 Fungal endophytes and plant pathogens -- 14.5.1 Strategies of fungal endophytes to control plant disease -- 14.5.1.1 Direct mechanisms -- Competition -- Antibiosis -- Mycoparasitism: hyperparasitism and predation -- 14.5.1.2 Indirect mechanisms -- Production of metabolites -- Plant growth (roots and shoots) -- Improvement in physiological function -- Decrease plant stress -- Improvement in plant resistance -- 14.5.2 Occupation of the ecological niche -- 14.5.3 Endophytic fungi: a source of potential biocontrol compounds. , 14.5.3.1 Interaction with plant pathogens.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    edocfu_9960074572402883
    Format: 1 online resource (317 pages)
    ISBN: 0-12-817004-2 , 0-12-817005-0
    Note: Front Cover -- Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology -- Copyright Page -- Contents -- List of Contributors -- 1 Plant growth-promoting microorganisms in sustainable agriculture -- 1.1 Introduction -- 1.2 Beneficial soil microbes -- 1.2.1 Cyanobacteria -- 1.2.2 Plant growth-promoting rhizobacteria -- 1.3 Role of plant growth-promoting bacteria in soil fertility -- 1.4 Mechanism of growth promotion by plant growth-promoting bacteria -- 1.4.1 Mineral solubilization by soil microbes -- 1.4.2 Siderophore production -- 1.4.3 Heavy metal toxicity -- 1.4.4 Microbe-induced bioremediation for plant-growth promotion -- 1.4.5 Remediation of heavy metals by bacteria -- 1.4.6 Remediation of heavy metals by fungi -- 1.4.7 Remediation of heavy metals by plant growth-promoting bacteria -- 1.5 Induced systemic resistance -- 1.6 New paradigms in sustainable agriculture -- Acknowledgments -- References -- Further reading -- 2 Microbes as a novel source of secondary metabolite products of industrial significance -- 2.1 Introduction -- 2.2 Role of microbes in agriculture -- 2.3 Role of microbes and their products in pharma industries -- 2.4 Current challenges for microbial products and unexplored areas of research -- 2.5 Role of modern scientific and technological innovation -- 2.6 Conclusion and future prospects -- References -- Further reading -- 3 Modern molecular and omics tools for understanding the plant growth-promoting rhizobacteria -- 3.1 Introduction -- 3.2 Need for modern molecular tools and techniques -- 3.3 Modern molecular techniques -- 3.3.1 Polymerase chain reaction -- 3.3.2 G+C mole% content -- 3.3.3 Reassociation of DNA -- 3.3.4 Nucleic acid hybridization -- 3.3.5 Restriction fragment-length polymorphism -- 3.3.6 Terminal restriction fragment-length polymorphism. , 3.3.7 Ribosomal intergenic spacer analysis/automated ribosomal intergenic spacer analysis/amplified ribosomal DNA restricti... -- 3.3.8 DNA microarrays -- 3.3.9 Denaturant gradient gel electrophoresis/temperature gradient gel electrophoresis -- 3.3.10 Single-strand conformation polymorphism -- 3.4 Genomics -- 3.5 Transcriptomics -- 3.6 Proteomics -- 3.7 Metabolomics -- 3.8 Metaomics -- 3.9 Collective omics approach -- 3.10 Next generation sequencing -- Acknowledgment -- References -- Further reading -- 4 Role of microbially synthesized nanoparticles in sustainable agriculture and environmental management -- 4.1 Introduction -- 4.2 Microbial (green) synthesis of nanoparticles and advantages over nonbiological synthesis -- 4.3 Metal nanoparticle biosynthesis by bacteria -- 4.4 Metal nanoparticle biosynthesis by fungi -- 4.5 Mechanism of nanoparticle synthesis -- 4.6 Factors affecting nanoparticle synthesis by microorganisms -- 4.6.1 pH -- 4.6.2 Temperature -- 4.6.3 Redox condition -- 4.6.4 Irradiation -- 4.6.5 Incubation time -- 4.7 Effect of reaction time -- 4.8 Location of synthesis of nanoparticles -- 4.9 Application in sustainable agriculture -- 4.10 Applications in environmental management -- 4.11 Green versus physicochemical synthesis of nanoparticles -- 4.12 Future perspectives -- 4.13 Conclusions -- References -- 5 Sustainable agriculture and benefits of organic farming to special emphasis on PGPR -- 5.1 Introduction -- 5.2 The genesis of the Green Revolution -- 5.3 Indian Agricultural System -- 5.3.1 Subsistence and commercial farming -- 5.3.2 Intensive and extensive farming -- 5.3.3 Plantation farming -- 5.3.4 Mixed farming -- 5.4 Why organic farming? -- 5.5 Composting and vermicomposting -- 5.6 Use of green manure/manure -- 5.7 Role of microbes in organic agriculture -- 5.8 Challenges for developing countries and small-scale farmers. , 5.9 Conclusions -- References -- Further reading -- 6 Plant growth-promoting microbes for abiotic stress tolerance in plants -- 6.1 Introduction -- 6.2 Abiotic stresses affecting plant health -- 6.2.1 Drought -- 6.2.2 Salinity -- 6.2.3 Heavy metal deposition in soil -- 6.2.4 Fluctuations in temperature -- 6.3 How do Plant growth growth-promoting microorganism help ameliorate abiotic stresses of plants? -- 6.3.1 Drought tolerance -- 6.3.2 Sequestration of heavy metals -- 6.3.3 Salinity -- 6.3.4 Tolerating changes in temperature -- 6.3.5 Combating nutrient deficiency -- 6.4 Conclusion -- References -- Further reading -- 7 Legal issues in nanotechnology -- 7.1 Introduction -- 7.2 Nature and scope of nanotechnology -- 7.3 Nanotechnology and intellectual property rights -- 7.3.1 Copyrights -- 7.3.2 Trademarks -- 7.3.3 Patents -- 7.3.4 Trade secrets -- 7.4 Nanotechnology and intellectual property rights: Indian perspective -- 7.5 Problems and prospects -- 7.6 Progressive trends -- 7.7 Conclusion -- References -- 8 Applying nanotechnology to bacteria: an emerging technology for sustainable agriculture -- 8.1 Introduction -- 8.1.1 Bacteria are reservoirs of bioactive compounds -- 8.1.2 Nanotechnology and agriculture -- 8.1.3 Role of bacteria in nanotechnology-based agricultural systems -- 8.2 Biogenesis of nanoparticles -- 8.2.1 As an alternative to available inorganic nanoparticles -- 8.2.2 Bacteria as the source of biogenesis of nanoparticles -- 8.2.3 Validation of nanoparticles -- 8.2.3.1 Validation approaches -- Use of spiked samples -- Determination of selectivity -- Calibration curve, linearity, and working range -- Precision -- 8.3 Application of bacterial nanoparticles -- 8.3.1 Bacteria as nanobiopesticide/biocontrol agent -- 8.3.2 Bacterial nanoparticles as nanobiofertilizers -- 8.3.3 Bacterial nanoparticles as biosensors. , 8.4 Limitations and future of nanotechnology-based agricultural applications -- References -- 9 The role of fungus in bioactive compound production and nanotechnology -- 9.1 Introduction -- 9.1.1 Prevalence of Fungal diversity -- 9.2 Secondary metabolites of fungal species -- 9.2.1 Antimicrobial activity -- 9.2.2 Antifungal compounds -- 9.2.3 Anticancer compounds -- 9.3 Biosynthesis of nanoparticles by fungi -- 9.4 Future prospectives -- References -- Further reading -- 10 Role of actinomycetes in bioactive and nanoparticle synthesis -- 10.1 Introduction -- 10.2 Role of actinomycetes in soil and plant health -- 10.3 Actinomycetes as plant growth-promoting agents -- 10.4 Actinomycetes in the synthesis of bioactive compounds -- 10.5 Role of actinomycetes in nanotechnology -- 10.6 Future perspectives -- References -- Further reading -- 11 Cyanobacteria as a source of nanoparticles and their applications -- 11.1 Introduction -- 11.1.1 Nanoparticles currently in use -- 11.1.2 Nanoparticle synthesis -- 11.1.2.1 Industrial synthesis -- 11.1.3 Why biosynthesize nanoparticles? Disadvantages of conventional synthesis methods -- 11.2 Role of microbes (cyanobacteria) in nanoparticle synthesis and contribution -- 11.2.1 Synthesis of gold nanoparticles from cyanobacteria -- 11.2.2 Synthesis of silver nanoparticles from cyanobacteria -- 11.3 Commercial applications of cyanobacterial nanoparticles -- 11.4 Concluding remarks and prospects -- Acknowledgments -- References -- 12 Biosynthesis of nanoparticles and applications in agriculture -- 12.1 Introduction -- 12.2 Synthesis of nanoparticles by fungal microbes -- 12.3 Synthesis of nanoparticles by bacteria and actinobacteria -- 12.4 Synthesis of nanoparticles by cynobacteria -- 12.5 Green synthesis of nanometals and their translocation in plants -- 12.6 Synthesis of nanoparticles by microbes. , 12.7 Applications of nanoparticles -- 12.7.1 Nanotechnology in agri sector -- 12.7.2 Nanotechnology in the food sector -- 12.7.3 Nanotechnology in sustainable agriculture -- 12.8 Future challenges -- References -- 13 Trichoderma-mediated biocontrol and growth promotion in plants: an endophytic approach -- 13.1 Introduction -- 13.2 Endophytic activity -- 13.3 Growth promotion mechanisms -- 13.3.1 Nutrient uptake and solubilization -- 13.3.2 Secondary metabolites -- 13.3.3 Plant hormones production -- 13.4 Effect of Trichoderma on pathogens -- 13.5 Effect of Trichoderma on plants -- 13.5.1 Defense induction -- 13.5.2 Plant resistance due to Trichoderma -- 13.5.3 Effect on rhizosphere by Trichoderma -- Acknowledgment -- References -- 14 Fungal endophytes: potential biocontrol agents in agriculture -- 14.1 Introduction -- 14.2 Biological characteristics of fungal endophytes -- 14.2.1 Tissue colonization and specificity -- 14.2.2 Symbiotic relationship with host plants -- 14.2.3 Transmission and acquisition of endophytes -- 14.2.4 Classification -- 14.3 Species diversity of fungal endophytes -- 14.4 Fungal endophytes: chemical synthesizers inside plants -- 14.4.1 Mode of infection by endophytic fungi -- 14.4.2 Infection strategies of fungal endophytes in plants -- 14.4.3 Spectrum of bioactive compounds produced by fungal endophytes -- 14.5 Fungal endophytes and plant pathogens -- 14.5.1 Strategies of fungal endophytes to control plant disease -- 14.5.1.1 Direct mechanisms -- Competition -- Antibiosis -- Mycoparasitism: hyperparasitism and predation -- 14.5.1.2 Indirect mechanisms -- Production of metabolites -- Plant growth (roots and shoots) -- Improvement in physiological function -- Decrease plant stress -- Improvement in plant resistance -- 14.5.2 Occupation of the ecological niche -- 14.5.3 Endophytic fungi: a source of potential biocontrol compounds. , 14.5.3.1 Interaction with plant pathogens.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edoccha_9960074572402883
    Format: 1 online resource (317 pages)
    ISBN: 0-12-817004-2 , 0-12-817005-0
    Note: Front Cover -- Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology -- Copyright Page -- Contents -- List of Contributors -- 1 Plant growth-promoting microorganisms in sustainable agriculture -- 1.1 Introduction -- 1.2 Beneficial soil microbes -- 1.2.1 Cyanobacteria -- 1.2.2 Plant growth-promoting rhizobacteria -- 1.3 Role of plant growth-promoting bacteria in soil fertility -- 1.4 Mechanism of growth promotion by plant growth-promoting bacteria -- 1.4.1 Mineral solubilization by soil microbes -- 1.4.2 Siderophore production -- 1.4.3 Heavy metal toxicity -- 1.4.4 Microbe-induced bioremediation for plant-growth promotion -- 1.4.5 Remediation of heavy metals by bacteria -- 1.4.6 Remediation of heavy metals by fungi -- 1.4.7 Remediation of heavy metals by plant growth-promoting bacteria -- 1.5 Induced systemic resistance -- 1.6 New paradigms in sustainable agriculture -- Acknowledgments -- References -- Further reading -- 2 Microbes as a novel source of secondary metabolite products of industrial significance -- 2.1 Introduction -- 2.2 Role of microbes in agriculture -- 2.3 Role of microbes and their products in pharma industries -- 2.4 Current challenges for microbial products and unexplored areas of research -- 2.5 Role of modern scientific and technological innovation -- 2.6 Conclusion and future prospects -- References -- Further reading -- 3 Modern molecular and omics tools for understanding the plant growth-promoting rhizobacteria -- 3.1 Introduction -- 3.2 Need for modern molecular tools and techniques -- 3.3 Modern molecular techniques -- 3.3.1 Polymerase chain reaction -- 3.3.2 G+C mole% content -- 3.3.3 Reassociation of DNA -- 3.3.4 Nucleic acid hybridization -- 3.3.5 Restriction fragment-length polymorphism -- 3.3.6 Terminal restriction fragment-length polymorphism. , 3.3.7 Ribosomal intergenic spacer analysis/automated ribosomal intergenic spacer analysis/amplified ribosomal DNA restricti... -- 3.3.8 DNA microarrays -- 3.3.9 Denaturant gradient gel electrophoresis/temperature gradient gel electrophoresis -- 3.3.10 Single-strand conformation polymorphism -- 3.4 Genomics -- 3.5 Transcriptomics -- 3.6 Proteomics -- 3.7 Metabolomics -- 3.8 Metaomics -- 3.9 Collective omics approach -- 3.10 Next generation sequencing -- Acknowledgment -- References -- Further reading -- 4 Role of microbially synthesized nanoparticles in sustainable agriculture and environmental management -- 4.1 Introduction -- 4.2 Microbial (green) synthesis of nanoparticles and advantages over nonbiological synthesis -- 4.3 Metal nanoparticle biosynthesis by bacteria -- 4.4 Metal nanoparticle biosynthesis by fungi -- 4.5 Mechanism of nanoparticle synthesis -- 4.6 Factors affecting nanoparticle synthesis by microorganisms -- 4.6.1 pH -- 4.6.2 Temperature -- 4.6.3 Redox condition -- 4.6.4 Irradiation -- 4.6.5 Incubation time -- 4.7 Effect of reaction time -- 4.8 Location of synthesis of nanoparticles -- 4.9 Application in sustainable agriculture -- 4.10 Applications in environmental management -- 4.11 Green versus physicochemical synthesis of nanoparticles -- 4.12 Future perspectives -- 4.13 Conclusions -- References -- 5 Sustainable agriculture and benefits of organic farming to special emphasis on PGPR -- 5.1 Introduction -- 5.2 The genesis of the Green Revolution -- 5.3 Indian Agricultural System -- 5.3.1 Subsistence and commercial farming -- 5.3.2 Intensive and extensive farming -- 5.3.3 Plantation farming -- 5.3.4 Mixed farming -- 5.4 Why organic farming? -- 5.5 Composting and vermicomposting -- 5.6 Use of green manure/manure -- 5.7 Role of microbes in organic agriculture -- 5.8 Challenges for developing countries and small-scale farmers. , 5.9 Conclusions -- References -- Further reading -- 6 Plant growth-promoting microbes for abiotic stress tolerance in plants -- 6.1 Introduction -- 6.2 Abiotic stresses affecting plant health -- 6.2.1 Drought -- 6.2.2 Salinity -- 6.2.3 Heavy metal deposition in soil -- 6.2.4 Fluctuations in temperature -- 6.3 How do Plant growth growth-promoting microorganism help ameliorate abiotic stresses of plants? -- 6.3.1 Drought tolerance -- 6.3.2 Sequestration of heavy metals -- 6.3.3 Salinity -- 6.3.4 Tolerating changes in temperature -- 6.3.5 Combating nutrient deficiency -- 6.4 Conclusion -- References -- Further reading -- 7 Legal issues in nanotechnology -- 7.1 Introduction -- 7.2 Nature and scope of nanotechnology -- 7.3 Nanotechnology and intellectual property rights -- 7.3.1 Copyrights -- 7.3.2 Trademarks -- 7.3.3 Patents -- 7.3.4 Trade secrets -- 7.4 Nanotechnology and intellectual property rights: Indian perspective -- 7.5 Problems and prospects -- 7.6 Progressive trends -- 7.7 Conclusion -- References -- 8 Applying nanotechnology to bacteria: an emerging technology for sustainable agriculture -- 8.1 Introduction -- 8.1.1 Bacteria are reservoirs of bioactive compounds -- 8.1.2 Nanotechnology and agriculture -- 8.1.3 Role of bacteria in nanotechnology-based agricultural systems -- 8.2 Biogenesis of nanoparticles -- 8.2.1 As an alternative to available inorganic nanoparticles -- 8.2.2 Bacteria as the source of biogenesis of nanoparticles -- 8.2.3 Validation of nanoparticles -- 8.2.3.1 Validation approaches -- Use of spiked samples -- Determination of selectivity -- Calibration curve, linearity, and working range -- Precision -- 8.3 Application of bacterial nanoparticles -- 8.3.1 Bacteria as nanobiopesticide/biocontrol agent -- 8.3.2 Bacterial nanoparticles as nanobiofertilizers -- 8.3.3 Bacterial nanoparticles as biosensors. , 8.4 Limitations and future of nanotechnology-based agricultural applications -- References -- 9 The role of fungus in bioactive compound production and nanotechnology -- 9.1 Introduction -- 9.1.1 Prevalence of Fungal diversity -- 9.2 Secondary metabolites of fungal species -- 9.2.1 Antimicrobial activity -- 9.2.2 Antifungal compounds -- 9.2.3 Anticancer compounds -- 9.3 Biosynthesis of nanoparticles by fungi -- 9.4 Future prospectives -- References -- Further reading -- 10 Role of actinomycetes in bioactive and nanoparticle synthesis -- 10.1 Introduction -- 10.2 Role of actinomycetes in soil and plant health -- 10.3 Actinomycetes as plant growth-promoting agents -- 10.4 Actinomycetes in the synthesis of bioactive compounds -- 10.5 Role of actinomycetes in nanotechnology -- 10.6 Future perspectives -- References -- Further reading -- 11 Cyanobacteria as a source of nanoparticles and their applications -- 11.1 Introduction -- 11.1.1 Nanoparticles currently in use -- 11.1.2 Nanoparticle synthesis -- 11.1.2.1 Industrial synthesis -- 11.1.3 Why biosynthesize nanoparticles? Disadvantages of conventional synthesis methods -- 11.2 Role of microbes (cyanobacteria) in nanoparticle synthesis and contribution -- 11.2.1 Synthesis of gold nanoparticles from cyanobacteria -- 11.2.2 Synthesis of silver nanoparticles from cyanobacteria -- 11.3 Commercial applications of cyanobacterial nanoparticles -- 11.4 Concluding remarks and prospects -- Acknowledgments -- References -- 12 Biosynthesis of nanoparticles and applications in agriculture -- 12.1 Introduction -- 12.2 Synthesis of nanoparticles by fungal microbes -- 12.3 Synthesis of nanoparticles by bacteria and actinobacteria -- 12.4 Synthesis of nanoparticles by cynobacteria -- 12.5 Green synthesis of nanometals and their translocation in plants -- 12.6 Synthesis of nanoparticles by microbes. , 12.7 Applications of nanoparticles -- 12.7.1 Nanotechnology in agri sector -- 12.7.2 Nanotechnology in the food sector -- 12.7.3 Nanotechnology in sustainable agriculture -- 12.8 Future challenges -- References -- 13 Trichoderma-mediated biocontrol and growth promotion in plants: an endophytic approach -- 13.1 Introduction -- 13.2 Endophytic activity -- 13.3 Growth promotion mechanisms -- 13.3.1 Nutrient uptake and solubilization -- 13.3.2 Secondary metabolites -- 13.3.3 Plant hormones production -- 13.4 Effect of Trichoderma on pathogens -- 13.5 Effect of Trichoderma on plants -- 13.5.1 Defense induction -- 13.5.2 Plant resistance due to Trichoderma -- 13.5.3 Effect on rhizosphere by Trichoderma -- Acknowledgment -- References -- 14 Fungal endophytes: potential biocontrol agents in agriculture -- 14.1 Introduction -- 14.2 Biological characteristics of fungal endophytes -- 14.2.1 Tissue colonization and specificity -- 14.2.2 Symbiotic relationship with host plants -- 14.2.3 Transmission and acquisition of endophytes -- 14.2.4 Classification -- 14.3 Species diversity of fungal endophytes -- 14.4 Fungal endophytes: chemical synthesizers inside plants -- 14.4.1 Mode of infection by endophytic fungi -- 14.4.2 Infection strategies of fungal endophytes in plants -- 14.4.3 Spectrum of bioactive compounds produced by fungal endophytes -- 14.5 Fungal endophytes and plant pathogens -- 14.5.1 Strategies of fungal endophytes to control plant disease -- 14.5.1.1 Direct mechanisms -- Competition -- Antibiosis -- Mycoparasitism: hyperparasitism and predation -- 14.5.1.2 Indirect mechanisms -- Production of metabolites -- Plant growth (roots and shoots) -- Improvement in physiological function -- Decrease plant stress -- Improvement in plant resistance -- 14.5.2 Occupation of the ecological niche -- 14.5.3 Endophytic fungi: a source of potential biocontrol compounds. , 14.5.3.1 Interaction with plant pathogens.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edoccha_BV047917476
    Format: 1 Online-Ressource (VIII, 278 p. 1 illus).
    Edition: 1st ed. 2022
    ISBN: 978-981-1644-97-9
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1644-96-2
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1644-98-6
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1644-99-3
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    edocfu_BV047917476
    Format: 1 Online-Ressource (VIII, 278 p. 1 illus).
    Edition: 1st ed. 2022
    ISBN: 978-981-1644-97-9
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1644-96-2
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1644-98-6
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-981-1644-99-3
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Duxford, United Kingdom ; Cambridge, United States ; Kidlington, United Kingdom :Woodhead Publishing is an imprint of Elsevier,
    UID:
    almafu_BV045383518
    Format: 1 online resource (267 Seiten).
    ISBN: 978-0-12-816019-0 , 0-12-816019-5
    Note: 6.3.1 Maintenance of relative water content for plant adaptation
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-815879-1
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Author information: Singh, Pawan Kumar 1976-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Duxford, United Kingdom ; Cambridge, United States ; Kidlington, United Kingdom :Woodhead Publishing is an imprint of Elsevier,
    UID:
    edocfu_BV045383518
    Format: 1 online resource (267 Seiten).
    ISBN: 978-0-12-816019-0 , 0-12-816019-5
    Note: 6.3.1 Maintenance of relative water content for plant adaptation
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-815879-1
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Author information: Singh, Pawan Kumar 1976-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages