feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949252280202882
    Format: 1 online resource (392 pages)
    ISBN: 0-323-85580-6
    Content: New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Revitalization through Organic Products provides a comprehensive overview of different organic products which work as plant biostimulants, i.e., protein hydrolysates, chitosan, microbial derived exopolysaccharides, pectin, nanoparticles, etc. In addition, detailed insights in their mechanisms for plant growth promotion and stress alleviation are covered. This volume further discusses the extraction and formulation of organic products for use in sustainable agriculture. The application of microbial derived secondary metabolites in crop protection is also extensively covered.
    Additional Edition: Print version: Singh, Harikesh Bahadur New and Future Developments in Microbial Biotechnology and Bioengineering San Diego : Elsevier,c2022 ISBN 9780323855792
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9949342272602882
    Format: 1 online resource (564 pages)
    ISBN: 0-323-85582-2
    Content: Sustainable Agriculture: Revisiting Green Chemicals discusses green technologies that help us to understand new green chemicals to reduce plant pathogens and induce plant growth as well as soil health. The most used green chemicals are antioxidants, osmoprotectants, and phytohormones. This book brings together the most relevant information on how we can use microbial resources to develop new formulations for these types of chemicals and technologies for field application.
    Note: Front Cover -- New and Future Developments in Microbial Biotechnology and Bioengineering -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Alternative strategies to synthetic chemical fertilizers: revitalization of soil quality for sustainable agriculture usin... -- 1.1 Introduction -- 1.2 Green manure for the revitalization of soil quality -- 1.3 Organic compost for the revitalization of soil quality -- 1.4 Biochar for the revitalization of soil quality -- 1.4.1 What is biochar? -- 1.5 Effects of biochar on the nutrient availability in soil -- 1.6 Effects of biochar on soil quality -- 1.7 Microbial carrier of biochar -- 1.8 Use of biochar for remediation in agricultural soils -- 1.9 Uncertainties of biochar -- 1.10 Future prospects of biochar use in agricultural soils -- 1.11 Organo-mineral fertilizers: past, present, and future -- 1.11.1 What is an organo-mineral fertilizer? -- 1.12 Effects of organo-mineral fertilizers on soil productivity -- 1.13 Effects of organo-mineral fertilizers on plant growth and plant nutrient use efficiency -- 1.14 Role of organo-mineral fertilizers in sustainable agriculture -- 1.15 Bio-fertilizers -- 1.16 Future perspectives of bio-fertilizers -- References -- 2 Application of biostimulants to improve agronomic and physiological responses of plants: a review -- 2.1 Introduction -- 2.2 The response of plants to biostimulant elements -- 2.3 Biostimulants: definitions and classifications -- 2.4 Biostimulant origins -- 2.5 Factors of biostimulants on growth -- 2.6 The efficiency of biostimulants on the chemical composition -- 2.7 Biostimulant use on vegetable crops -- 2.8 Conclusions -- References -- 3 Green nanotechnology: a paradigm, panacea and new perspective for sustainable agriculture -- 3.1 Introduction -- 3.1.1 Background -- 3.1.2 Green nanotechnology. , 3.1.3 Nanomaterials or nanoparticles -- 3.1.4 Brief description of green synthesis of nanomaterial and characterization -- 3.1.5 Overview of engineered nanomaterials -- 3.1.6 Classification of nanomaterials -- 3.1.6.1 Nanoemulsions -- 3.1.6.2 Nanoclays -- 3.1.6.3 Nanoparticles -- 3.1.6.3.1 Inorganic nanoparticles -- 3.1.6.3.2 Organic nanoparticle -- 3.1.6.4 Fluorescent nanomaterials -- 3.1.7 Factors affecting the effect of engineered nanomaterials -- 3.2 Review literature and recent developments -- 3.2.1 Occurrence of nanomaterial in a living system -- 3.2.2 Occurrence of nanomaterial in the agriculture system -- 3.2.3 Uptake and translocation mechanism of nanoparticles in plants -- 3.2.3.1 Uptake and translocation of nanoparticles -- 3.2.3.1.1 Foliar uptake and translocation of NPs -- 3.2.3.1.2 The uptake and translocation of nanoparticles in the plant via the root system -- 3.2.4 Phytotoxicity of engineered nanomaterials -- 3.2.5 Green nanotechnology approach for sustainable agriculture -- 3.2.5.1 Increase productivity -- 3.2.5.2 Crop protection -- 3.2.5.2.1 Nanofertilizers -- 3.2.5.2.2 Nanopesticides -- 3.2.5.3 Precision farming -- 3.2.5.4 Stress tolerance -- 3.2.5.5 Soil enrichment -- 3.2.5.6 Crop growth -- 3.2.5.7 Crop improvement -- 3.2.5.8 Pollution monitoring -- 3.2.5.8.1 Diagnostic -- 3.2.5.8.2 Pollutant remediation -- 3.2.6 Green nanotechnology approaches in other sectors -- 3.2.6.1 Approaches to green nanotechnology for engineering smart plant sensors -- 3.2.6.2 Approaches to green nanotechnology for the food sector -- 3.2.6.3 Approaches to green nanotechnology for water and wastewater treatment -- 3.2.6.4 Approaches to green nanotechnology for pollution monitoring -- 3.2.6.5 Approaches to green nanotechnology for the energy sector and photovoltaic cells -- 3.2.6.6 Approaches to green nanotechnology for nanofabrics. , 3.2.6.7 Approaches of nanobiotechnology for medicines, drugs, defense, and security -- 3.2.6.8 Approaches to nanobiotechnology for cosmetics -- 3.2.6.9 Approaches of nanobiotechnology for electronics, fuel cells, batteries, space, chemical sensors, automobiles, and t... -- 3.3 Conclusion and future prospects -- References -- 4 Feasibility and challenges of biopesticides application -- 4.1 Introduction -- 4.2 Biopesticides -- 4.2.1 Microbial biopesticides -- 4.2.2 Plant-incorporated protectants -- 4.2.3 Biochemical pesticides -- 4.3 Merits and disadvantages of biopesticides -- 4.4 Role of biopesticides -- 4.5 Application of biopesticides -- 4.6 Commercialization of biopesticides -- 4.7 Conclusion and recommendations -- Acknowledgments -- References -- 5 How the soil nitrogen nutrient promotes plant growth-a critical assessment -- 5.1 Introduction -- 5.1.1 One-to-one care for soil N controlling -- 5.1.2 Status of N concentration in planting soil -- 5.1.3 N mineralization and immobilization from soil organic matter -- 5.1.4 Is microbe helping in plant nitrogen acquisition? -- 5.1.5 Nitrogen uptake and assimilation in plants -- 5.1.6 N localization in plants -- 5.1.7 Crosstalk of N, NO, and N transporters -- 5.1.8 Approaches for improved N fertilization -- 5.1.9 Sol nitrogen management through agronomic cropping practice nitrogen -- 5.2 Conclusion -- References -- 6 Morphological and phytochemical changes of Cannabis sativa L. affected by light spectra -- 6.1 Introduction -- 6.2 Secondary metabolites in cannabis -- 6.3 Biosynthesis pathway of cannabinoids -- 6.4 How to analyze and measure the amount of cannabinoids in the plant -- 6.5 The importance of light spectra in plant cultivation -- 6.6 Examining the effects of light spectra on cannabis -- 6.6.1 Morphological characteristics -- 6.6.2 Phytochemical characteristics -- 6.7 Conclusion -- References. , 7 Application of phosphite as a biostimulant in agriculture -- 7.1 Introduction -- 7.2 Chemistry of Phi and its metabolism in plants -- 7.3 Phosphite as a biostimulant in agriculture -- 7.4 Cereal and pulse crops -- 7.5 Fruits -- 7.6 Vegetables -- 7.7 Other food crops -- 7.8 Beyond agricultural applications of Phi: biotechnological and industrial usage -- 7.9 Conclusion and prospects -- References -- 8 Sustainable mainframes for control of Sugarcane early shoot borer, Chilo infuscatellus (Snellen) -- 8.1 Introduction -- 8.2 Biology of early shoot borer on sugarcane -- 8.2.1 Embryonic development -- 8.2.2 Larval development -- 8.2.3 The external appearance of pupa form -- 8.2.4 Description and morph metrics of adult -- 8.3 Integrated pest management for early shoot borer, Chilo infuscatellus -- 8.4 Design making stage for early shoot borer -- 8.5 Role of soil nutrients on the incidence of Chilo infuscatellus on sugarcane varieties -- 8.6 Utilization of eggs parasitoid -- 8.7 Genotype×role of climatic factors in under irrigation condition in sugarcane at advanced screening stages -- 8.8 Adumbrate the molecular markers character of sugarcane forming resistance against early shoot borer -- 8.9 Application of Pheromone traps techniques -- 8.10 In vitro bioassay to determine the toxicity of cry 1f protein effective against Chilo Infuscatellus -- 8.11 Synthesize Bt genes effective in the management of early shoot borer -- 8.12 Effect of granulosis virus on early shoot borer -- 8.13 Conclusions -- References -- 9 Levulinic acid: a potent green chemical in sustainable agriculture -- 9.1 Introduction -- 9.2 Levulinic acid: will it replace fossil fuels? -- 9.3 Chemical and physical properties -- 9.4 Application of levulinic acid and its derivatives -- 9.4.1 Fuel or fuel additives -- 9.4.2 Pharmaceuticals and medicines -- 9.4.3 Food additives and preservatives. , 9.4.4 Resin and adhesives -- 9.4.5 Solvent -- 9.4.6 Other uses of levulinic acid in product preparations -- 9.5 Industrially important derivatives of levulinic acid, applications, and synthesis -- 9.5.1 Diphenolic acids -- 9.5.2 Δ-Aminolevulinic acid -- 9.5.3 2-Methyltetrahydrofuran -- 9.5.4 & -- e_0263 -- -Valerolactone -- 9.5.5 Succinic acid -- 9.5.6 Pyrrolidones -- 9.5.7 Levulinic ketals -- 9.5.8 Levulinate esters -- 9.6 Synthesis of levulinic acid -- 9.6.1 Levulinic acid production from first-generation biomass -- 9.6.1.1 Sugars -- 9.6.2 From the second generation of biomass -- 9.6.2.1 Lignocellulosic feedstock -- 9.6.3 From other renewable resources -- 9.6.4 The third generation of biomass -- 9.7 Different processes for levulinic acid synthesis -- 9.7.1 Biofine process -- 9.7.2 Homogenous catalytic system -- 9.7.3 Heterogeneous catalytic system -- 9.7.4 Biphasic system -- 9.7.5 Ionic liquids system -- 9.7.6 Supercritical fluid system -- 9.8 Bottlenecks of levulinic acid production -- 9.9 Conclusion and future remarks -- References -- 10 Role of chitosan in eco-friendly management of plant diseases for sustainable agriculture -- 10.1 Introduction -- 10.2 Sources of chitosan and its chemical structure -- 10.2.1 Chemical structure of chitosan -- 10.2.2 Sources of chitosan -- 10.3 Application of chitosan in plant growth promotion and yield improvement -- 10.4 Application of chitosan in plant protection -- 10.5 Mode of action -- 10.5.1 Mode of action of antimicrobial activity -- 10.6 Factors affecting chitosan activity -- 10.6.1 Microbial factors -- 10.6.2 Intrinsic factors of chitosan -- 10.6.2.1 Positive charge density -- 10.6.2.2 Molecular weight -- 10.6.2.3 Hydrophobic/hydrophilic characteristics -- 10.6.2.4 Chelating capacity -- 10.6.3 Physical state -- 10.6.3.1 Antimicrobial activity in a soluble state. , 10.6.3.2 Antimicrobial activity in solid-state.
    Additional Edition: Print version: Singh, Harikesh Bahadur New and Future Developments in Microbial Biotechnology and Bioengineering San Diego : Elsevier,c2022
    Additional Edition: ISBN 9780323855815
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almahu_9948026109002882
    Format: 1 online resource (256 pages) : , illustrations
    ISBN: 0-444-63510-6
    Note: Gene manipulation and regulation of Catholic genes for biodegredation of biphenyl compounds / Divjot Kour, Kusam Lata Rana, Rajesh Kumar, Neelam Yadav, Ali A. Rastegari, Ajar Nath Yadav, Karan Singh -- Genetics and molecular biology of genes encoding cephalosporin biosynthesis in microbes / Khusbu Singh, Pradumna K. Mohapatra, Sanghamitra Pati, Gauran Raj Dwivedi .
    Additional Edition: ISBN 0-444-63503-3
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almahu_9949762864102882
    Format: 1 online resource (449 pages)
    Edition: 1st ed.
    ISBN: 0-323-96006-5
    Note: Front Cover -- Bio-inoculants in Horticultural Crops -- Copyright Page -- Contents -- List of contributors -- 1 Microbial bioinoculants: boosting horticultural productivity -- 1.1 Introduction -- 1.2 Microbial bioinoculants -- 1.3 Need of biofertilizers in horticultural crops -- 1.4 Classification of microbial bioinoculants used in horticultural crop -- 1.5 Mechanism of microbial bioinoculants -- 1.5.1 Rhizobia -- 1.5.2 Azotobacter -- 1.5.3 Azospirillum -- 1.5.4 Phosphorus solubilizing bacteria -- 1.5.5 Phosphorus solubilizing fungi -- 1.5.6 Potassium solubilizing bacteria -- 1.6 Application of microbial bioinoculants in vegetables crops -- 1.7 Application of microbial bioinoculants in fruits crops -- 1.8 Application of microbial bioinoculants in flowering crops -- 1.9 Future prospects and conclusion -- References -- 2 Application of bioinoculants in horticulture, plantation, and forest farming: is it truly ecologically sustainable? -- 2.1 Introduction -- 2.2 Chronology of microbial bioinoculants and their market landscape -- 2.3 Horticultural crops -- 2.4 Forest farming -- 2.4.1 Mechanism of bioinoculants in different forest trees -- 2.5 Plantation crops -- 2.5.1 Effect of biofertilizers on major spices -- 2.5.2 Effect of biofertilizers on seed and tree spices -- 2.6 Application of bioinoculants: are they truly ecologically sustainable? -- 2.7 Stages of microbial invasion -- 2.8 Right steps toward the use and application of PGPRs -- 2.9 Practices to control successive microbial invasions -- 2.10 Conclusion -- References -- 3 Role of microbial inoculants on vegetable and fruit quality -- 3.1 Introduction -- 3.2 Microbial inoculants -- 3.2.1 Fungi and yeasts -- 3.2.1.1 Trichoderma spp. -- 3.2.1.2 Pythium oligandrum -- 3.2.1.3 Talaromyces flavus -- 3.2.1.4 Aureobasidium pullulans -- 3.2.1.5 Arbuscular mycorrhizal fungi -- 3.2.2 Bacteria. , 3.2.2.1 Bacillus spp -- 3.2.2.2 Pseudomonas fluorescens -- 3.2.2.3 lactic acid bacteria -- 3.3 Benefits of arbuscular mycorrhizal fungi inoculants for fruits and vegetables crop production -- 3.4 Plant-growth-promoting bacteria and horticultural crop production -- 3.4.1 Mechanism of action of plant-growth-promoting bacteria -- 3.5 Inoculants containing mixes of bacteria -- 3.6 Potential role of different innoculants in horticulture -- 3.6.1 Biological nitrogen fixation -- 3.6.2 Asymbiotic nitrogen fixation -- 3.7 Microbial functions benefit the adaptation of crops to climate change -- References -- 4 Microbial biofertilizers to mitigate climate change associated abiotic stress in vegetable crops -- 4.1 Introduction -- 4.2 Microorganisms for the amelioration of abiotic stress -- 4.3 Mechanism of microbe-mediated stress tolerance -- 4.3.1 Osmolytes for water homeostasis and osmotic stress -- 4.3.2 Tolerance through nutrition balance and ion homeostasis -- 4.3.3 Antioxidants for oxidative stress -- 4.3.4 Phytohormones -- 4.3.5 1-Aminocyclopropane-1-carboxylase deaminase activity -- 4.3.6 Exopolysaccharide production and biofilm formation -- 4.3.7 Volatile organic compounds -- 4.4 Physiological changes in the host plant in response to bioinoculants -- 4.5 Conclusion and future prospects -- References -- 5 Bacillus sp. as biofertilizers applied in horticultural crops -- 5.1 Introduction -- 5.2 Biofertilizer use in horticultural crops -- 5.3 Bacillus as biofertilizer -- 5.3.1 Nitrogen fixation -- 5.3.2 Phosphate solubilizer -- 5.3.3 Micronutrient solubilizer -- 5.3.4 Pathogen suppressor -- 5.3.5 Plant growth promotor -- 5.4 Future challenges and prospects -- 5.5 Conclusion -- References -- 6 The role of biofertilizers in the growth and development of mango plantations -- 6.1 Introduction -- 6.2 History, origin, and spread -- 6.2.1 Cultural significance. , 6.2.2 Methods of propagation -- 6.2.3 Mango cultivars of India -- 6.3 Botany -- 6.4 Fruits -- 6.5 Root system -- 6.5.1 Agro-climatic conditions -- 6.6 Biofertilizers -- 6.6.1 Application of biofertilizers on mango plantations -- 6.6.2 Effect of biofertilizers on plant height -- 6.6.3 Rootstock girth and scion girth (%) -- 6.6.4 Number of shoots per plant (%) -- 6.7 Soil parameters -- 6.7.1 Availability of micronutrients -- 6.7.2 Synthesis of phytohormones and vitamins -- 6.8 Safety aspect -- 6.8.1 Soil and crop management -- 6.9 Conclusion -- References -- 7 Rhizobacterial metabolites as a munition against plant disease and an amigo for soil vigor -- 7.1 Introduction -- 7.2 Types and classes of major rhizobacterial primary metabolites -- 7.2.1 Hormones -- 7.2.2 Carbohydrates -- 7.2.3 Nucleic acids -- 7.2.4 Lipids -- 7.2.5 Proteins -- 7.3 Role of primary metabolites as biofertilizing agent -- 7.4 Types and classes of major rhizobacterial secondary metabolites -- 7.4.1 Alkaloids -- 7.4.2 Tryptophan -- 7.4.3 Phenazines -- 7.4.4 Polyketides -- 7.4.5 Phenazines -- 7.4.6 Ribosomal peptides -- 7.4.7 Nonribosomal peptides -- 7.5 Role of bacterial secondary metabolites as biocontrol agent -- 7.6 Future prospects -- 7.7 Concluding remarks -- Acknowledgment -- Conflict of interest -- References -- 8 Mechanisms and applications of nitrogen fixing Azotobacter and Azospirillum in horticultural crops -- 8.1 Introduction -- 8.2 Azotobacter -- 8.2.1 Nitrogen fixation -- 8.2.2 Exopolysaccharide production -- 8.2.3 Phosphorus solubilization -- 8.2.4 Siderophore production -- 8.2.5 Biocontrol of pathogens -- 8.3 Azospirillum -- 8.3.1 Colonization of the host plant's root -- 8.3.2 Nitrogen fixation -- 8.3.3 Plant growth promotion -- 8.3.4 Phytohormone production -- 8.3.5 Biological control -- 8.4 Response of Azospirillum and Azotobacter inoculation in horticultural crops. , 8.5 Conclusion -- References -- 9 Phosphate solubilizing microbes: ecological significances, diversity, and biotechnological applications -- 9.1 Introduction -- 9.2 P in soils -- 9.3 P availability -- 9.4 Role and function of P as a nutrient -- 9.5 P deficiency -- 9.6 Phosphorus uptake and regulation by plants -- 9.7 Microbes mediated in P solubilization -- 9.8 Diversity of phosphate solubilizing microbe -- 9.9 Bacteria as phosphate solubilizing bacteria -- 9.10 Fungi as phosphate solubilizing fungi -- 9.11 Mechanism of phosphate solubilization -- 9.11.1 Role of phosphate solubilizing in sustainable agriculture (biotechnological application and biofertilizer) -- 9.12 Conclusion and future perspectives -- References -- 10 Potassium releasing bacteria (KRB): role of KRB in horticultural crops -- 10.1 Introduction -- 10.2 K in soils -- 10.3 K availability -- 10.4 Role and function of K as a nutrient -- 10.5 K deficiency -- 10.6 K uptake and regulation by plants -- 10.7 Microbes mediated in K solubilization -- 10.8 Isolation process of K releasing microorganism -- 10.9 Diversity of KRM -- 10.10 Bacteria as potassium solubilizing bacteria -- 10.11 Fungi as potassium solubilizing fungi -- 10.12 Mechanism of K releasing by potassium solubilizing microorganism -- 10.13 Role of potassium solubilizing bacteria in sustainable agriculture -- 10.14 Conclusion and future perspectives -- References -- 11 Zinc and iron solubilizing microbial biofertilizer: a potential tool for sustainable horticultural crop production -- 11.1 Introduction -- 11.2 Biofertilizers -- 11.3 Significance of zinc in plant and human metabolism -- 11.4 Significance of iron in plant and human metabolism -- 11.5 Availability of zinc and iron in soil -- 11.6 Factors affecting zinc and iron availability in soils. , 11.7 Different microorganisms involved in Zn solubilization and siderophore production -- 11.7.1 Zinc solubilizing and siderophore producing bacteria -- 11.7.2 Zinc solubilizing and siderophore producing fungi -- 11.8 Isolation and characterization of Zn solubilizing microorganisms and siderophores producing microorganism -- 11.9 Commercial production of Zn and Fe solubilizing microbial biofertilizers -- 11.10 Mechanisms for zinc solubilization by zinc-solubilizing microbes -- 11.10.1 Exudation of organic acids and protons -- 11.10.2 Production of chelating substances -- 11.10.3 Production of chelating substances -- 11.10.4 Modification in root morphology and architecture -- 11.11 Mechanisms for iron solubilization by iron-solubilizing microbes -- 11.11.1 Siderophore production -- 11.12 Inoculation of Zn solubilizing microorganisms on growth and yield parameters of different horticultural crops -- 11.13 Inoculation of siderophore producing rhizobacteria on germination, growth, and yield parameters of different horticul... -- 11.14 Role of Zn solubilizing microorganism and siderophores producing microorganism in horticultural crop protection -- 11.14.1 Mechanisms of Zn solubilizing microorganism and siderophores producing microorganism in crop pest and disease control -- 11.14.1.1 Pest and disease control through induced systemic resistance by Zn solubilizing microorganism and siderophores pr... -- 11.14.1.2 Pest and disease control through siderophore production by Zn solubilizing microorganism and siderophores produci... -- 11.14.1.3 Pest and disease control through production of antibiotics and enzymes by Zn solubilizing microorganism and sider... -- 11.14.2 Involvement of Zn solubilizing microorganism and siderophores producing microorganism in horticultural crop disease. , 11.14.3 Involvement of Zn solubilizing microorganism and siderophores producing microorganism in horticultural crop pest co.
    Additional Edition: ISBN 0-323-96005-7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almahu_9949254430202882
    Format: 1 online resource (488 pages)
    ISBN: 0-323-85578-4
    Content: New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Advances in Microbe-Based Biostimulants describes advances in microbial mechanisms involved in crop production and stress alleviation. Recent developments in our understanding of the role of microbes in sustainable agriculture and disease management have created a highly potential research area. The plant holobiont has a significant role in stress signaling, nutrient use efficiency, and soil health and fertility for sustainable developments. The mycorrhizosphere, hyphosphere, phyllosphere, rhizosphere and endosphere are critical interfaces for the exchange of signaling and resources between plants and soil environment. 
    Additional Edition: Print version: Singh, Harikesh Bahadur New and Future Developments in Microbial Biotechnology and Bioengineering San Diego : Elsevier,c2022 ISBN 9780323855778
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    almahu_9949225703002882
    Format: 1 online resource (392 pages)
    ISBN: 0-323-86000-1
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the Editors -- Preface -- CHAPTER 1 - Role of microorganism as new generation plant bio-stimulants: An assessment -- 1.1 Background -- 1.2 Introduction of plant bio-stimulants -- 1.3 Basic mechanism of bio-stimulants -- 1.4 Sources of plant bio-stimulants -- 1.5 Microbes as plant bio-stimulant -- 1.5.1 Fungi as bio-stimulants -- 1.5.2 Bacteria as bio-stimulants -- 1.5.3 Microbial consortia as bio-stimulants -- 1.6 Role of microbes in nutrient uptake/stimulation -- 1.6.1 Nitrogen fixation -- 1.6.2 Phosphate solubilisation -- 1.6.3 Hormones and other secondary metabolite -- 1.7 Conclusions -- References -- CHAPTER 2 - Exploiting biostimulant properties of Trichoderma for sustainable plant production -- 2.1 Introduction -- 2.2 Trichoderma metabolism: from decomposers to plant growth promoters -- 2.3 Trichoderma -plant chemical dialogue -- 2.3.1 Trichoderma released compounds in plant growth promotion -- 2.4 Trichoderma -induced resistance to plant pathogens -- 2.4.1 Salicylic acid-mediated interactions -- 2.4.2 Jasmonic acid and other oxylipins -- 2.4.3 Biocontrol of aphids, nematodes and other pests -- 2.5 Trichoderma and plant nutrition -- 2.5.1 Major nutritional needs of crops -- 2.5.2 Phosphate nutrition -- 2.5.3 Nitrate use efficiency -- 2.5.4 Iron acquisition -- 2.5.5 Better usage of organic nutriments -- 2.6 Soil acidification in Trichoderma -plant interactions -- 2.7 Salt stress tolerance mediated by Trichoderma -- 2.7.1 Plant adaptive responses to salinity -- 2.7.2 Trichoderma improves plant adaptation to salt stress -- 2.8 Conclusions and future prospects -- References -- CHAPTER 3 - Bacillus rhizobacteria: A versatile biostimulant for sustainable agriculture -- 3.1 Introduction. , 3.2 Diversity of Bacillus species -- 3.3 Direct mechanism of plant growth promotion -- 3.3.1 Phosphate solubilization -- 3.3.2 Nitrogen fixation -- 3.3.3 Potassium solubilization -- 3.3.4 Phytohormones production -- 3.3.5 Siderophores production -- 3.4 Indirect mechanism -- 3.4.1 Antibiotic production -- 3.4.2 Lytic enzyme production -- 3.4.3 Induction of systemic resistance -- 3.4.3.1 Phenylalanine ammonia lyase (PAL) -- 3.4.3.2 Phenols -- 3.4.3.3 β−1, 3-glucanases (PR2) -- 3.4.3.4 Peroxidase (PO) -- 3.4.3.5 Polyphenol oxidase (PPO) -- 3.4.3.6 Scavengers of reactive oxygen species (ROS) -- 3.5 Future prospects -- References -- CHAPTER 4 - Arbuscular mycorrhizae, a treasured symbiont to agriculture -- 4.1 Introduction to mycorrhiza -- 4.2 VAM in agriculture -- 4.2.1 AMF and PGPR -- 4.2.2 Soil fertility and nutrient uptake -- 4.2.3 Water uptake -- 4.2.4 Soil erosion prevention -- 4.2.5 Effect on plant physiology and biochemical attributes -- 4.2.6 AMF as biocontrol agent -- 4.2.7 Weed control -- 4.3 Application of AMF in bioremediation -- 4.4 Renaturation and afforestation -- 4.5 Mass production of VAM: the past, present and future -- 4.5.1 Substrate based production -- 4.5.2 Substrate free production -- 4.5.3 In-vitro production of AM fungi -- 4.5.4 Formulation of AMF -- 4.5.5 Factors affecting AMF bioinoculants -- 4.6 Conclusion -- References -- CHAPTER 5 - Micro and macroalgae: A potential biostimulant for abiotic stress management and crop production -- 5.1 Introduction -- 5.2 Review of literature and recent developments -- 5.2.1 Global production of algae -- 5.2.2 Harvesting of algal biomass -- 5.2.3 Extraction of bioactive compounds from macroalgae -- 5.2.4 Extraction of bioactive components from microalgae -- 5.2.5 Phytohormone constituents of algae. , 5.2.6 Mineral and organic constituents of algae -- 5.2.7 Formulation of algal biostimulants -- 5.2.8 Applications of algal biostimulants -- 5.2.9 Challenges in commercialization of algal biostimulants and tackling strategies -- 5.3 Conclusion and future prospects -- References -- CHAPTER 6 - Fluorescent Pseudomonads: A multifaceted biocontrol agent for sustainable agriculture -- 6.1 Introduction -- 6.2 Species diversity of Fluorescent Pseudomanads -- 6.3 Mechanisms of Fluorescent Pseudomanads -- 6.3.1 Plant growth promotion -- 6.3.2 Siderophores -- 6.3.3 Hydrogen cyanide production -- 6.3.4 Antibiotic production -- 6.3.4.1 2,4-Diacetyl phloro glucinol (DAPG) -- 6.3.4.2 Phenazines -- 6.3.4.3 Pyrrolnitrin and pyoluteorin -- 6.3.5 Lytic enzyme production -- 6.3.6 Induced systemic resistance -- 6.4 Future prospects -- References -- CHAPTER 7 - Role of Piriformospora indica in inducing soil microbial communities and drought stress tolerance in plants -- 7.1 Introduction -- 7.2 Soil microbial communities: benign hidden players in plant growth -- 7.3 P. indica : an overview -- 7.3.1 P. indica mediated microbe-microbe interaction shape rhizospheric microbiome -- 7.3.2 P. indica as a promoter of synergistic tripartite symbiosis -- 7.4 Basic mechanisms in plants to counter drought stress -- 7.5 Morphological and physiological innate responses in plants against drought stress -- 7.5.1 Plants morphological responses in drought stress condition -- 7.5.2 Plants physiological response in drought -- 7.6 Multidimensional contribution of P. indica in providing tolerance against drought stress -- 7.6.1 Bioprotectant properties of P. indica to confer drought stress tolerance in maize: a case study -- 7.7 P. indica mediated adaptative responses generated in rice plants to cope up drought stress. , 7.8 Scope of P. indica for the promotion of sustainable agriculture in xerophytic habitats -- 7.9 Conclusion -- References -- CHAPTER 8 - Microbes-based bio-stimulants towards sustainable oilseeds production: Nutrient recycling and genetics involved -- 8.1 Introduction -- 8.2 Soil microbes and plant interactions -- 8.2.1 Plant and microorganisms -- 8.2.2 Soil and microorganism -- 8.2.3 Soil and plant -- 8.2.4 The three way interaction -- 8.3 Geochemical changes in plant rhizosphere and release of mineral nutrients -- 8.3.1 Weathering -- 8.3.2 Carbonates and phosphates precipitation -- 8.3.3 Nutrient cycling -- 8.4 VAM fungi for efficient nutrient acquisition and mobilization -- 8.4.1 Uniqueness of VAM -- 8.4.2 Interaction of biotic and abiotic factors with VAM -- 8.4.2.1 Abiotic factors -- 8.4.2.2 Biotic factors -- 8.4.3 Mass production of VAM -- 8.4.4 Tips for the efficient use of VAM -- 8.5 Genetics involved in nutrient cycling -- 8.5.1 Nitrogen cycle -- 8.5.2 Carbon cycle -- 8.5.3 Phosphorus transformation -- 8.5.4 Potassium solubilization -- 8.5.5 Sulphur transformation -- 8.6 Conclusions -- References -- CHAPTER 9 - Role of soil microbes in micronutrient solubilization -- 9.1 Introduction -- 9.2 Importance of micronutrients in plant nutrition -- 9.3 Sources and pools of micronutrients in soil and their significance in plant uptake -- 9.4 Factors affecting the availability of micronutrients -- 9.4.1 Cationic micronutrients -- 9.4.2 Anionic micronutrients -- 9.5 Influence of rhizosphere in micronutrient availability -- 9.6 Soil pH and pE as an indicator of micronutrient availability -- 9.7 Micronutrients -- 9.7.1 ZINC (Zn) -- 9.7.2 Manganese -- 9.7.3 Iron (Fe) -- 9.7.4 Copper (Cu) -- 9.7.5 Boron (B) -- 9.7.6 Molybdenum (Mo) -- 9.7.7 Chlorine (Cl) -- 9.8 Conclusion and future perspectives. , References -- CHAPTER 10 - Sustainable induction of systemic resistance in response to potential biological control agents in crops -- 10.1 Introduction -- 10.2 Novel scenario of biological control -- 10.3 Suppressive soils pathogens -- 10.4 Potential in PGPR -- 10.5 Induction of systemic resistance -- 10.5.1 Role of PGPR -- 10.5.2 Abundance of antibiotics -- 10.5.3 Siderophore production -- 10.5.4 Poduction of HCN -- 10.5.5 Systemic acquired resistance in plants -- 10.5.6 Mechanisms of induced systemic resistance -- 10.5.7 Conception molecular in PGPR -- 10.5.8 Biocontrol products of PGPR -- 10.6 Fungal BCAs -- 10.6.1 Relevance of Trichoderma -- 10.7 Potental of non-pathogenic strains -- 10.7.1 Fusarium strains -- 10.7.2 Pythium strains -- 10.7.3 Potential of penicillum strain -- 10.7.4 Potential of Rhizoctonia strain -- 10.7.5 Potential of Colletotrichum starin -- 10.8 Conclusion and future prospects -- References -- CHAPTER 11 - Psychrophilic microbes: Biodiversity, beneficial role and improvement of cold stress in crop plants -- 11.1 Introduction -- 11.2 Historical background -- 11.3 Biodiversity of psychrophilic microbes -- 11.4 Mechanisms of adaptation of psychrophilic microbes -- 11.4.1 Structural adaptations -- 11.5 Psychrophilic microbes used in crop improvement -- 11.6 The beneficial role of psychrophilic microbes in crop performance -- 11.6.1 Biological nitrogen fixation -- 11.6.2 Phytohormones production -- 11.6.3 Solubilization of beneficial nutrients -- 11.6.4 Siderophore production -- 11.6.5 Antifungal activity, antibiotics and enzymes -- 11.7 Conclusion and future prospects -- References -- CHAPTER 12 - Role of plant-associated bacteria as bio-stimulants in alleviation of chromium toxicity in plants -- 12.1 Cr toxicity to the environment -- 12.1.1 Effects on human -- 12.1.2 Effect on plants. , 12.1.3 Effect on microorganisms.
    Additional Edition: ISBN 0-323-85163-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edocfu_9960074236702883
    Format: 1 online resource (392 pages)
    ISBN: 0-323-86000-1
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the Editors -- Preface -- CHAPTER 1 - Role of microorganism as new generation plant bio-stimulants: An assessment -- 1.1 Background -- 1.2 Introduction of plant bio-stimulants -- 1.3 Basic mechanism of bio-stimulants -- 1.4 Sources of plant bio-stimulants -- 1.5 Microbes as plant bio-stimulant -- 1.5.1 Fungi as bio-stimulants -- 1.5.2 Bacteria as bio-stimulants -- 1.5.3 Microbial consortia as bio-stimulants -- 1.6 Role of microbes in nutrient uptake/stimulation -- 1.6.1 Nitrogen fixation -- 1.6.2 Phosphate solubilisation -- 1.6.3 Hormones and other secondary metabolite -- 1.7 Conclusions -- References -- CHAPTER 2 - Exploiting biostimulant properties of Trichoderma for sustainable plant production -- 2.1 Introduction -- 2.2 Trichoderma metabolism: from decomposers to plant growth promoters -- 2.3 Trichoderma -plant chemical dialogue -- 2.3.1 Trichoderma released compounds in plant growth promotion -- 2.4 Trichoderma -induced resistance to plant pathogens -- 2.4.1 Salicylic acid-mediated interactions -- 2.4.2 Jasmonic acid and other oxylipins -- 2.4.3 Biocontrol of aphids, nematodes and other pests -- 2.5 Trichoderma and plant nutrition -- 2.5.1 Major nutritional needs of crops -- 2.5.2 Phosphate nutrition -- 2.5.3 Nitrate use efficiency -- 2.5.4 Iron acquisition -- 2.5.5 Better usage of organic nutriments -- 2.6 Soil acidification in Trichoderma -plant interactions -- 2.7 Salt stress tolerance mediated by Trichoderma -- 2.7.1 Plant adaptive responses to salinity -- 2.7.2 Trichoderma improves plant adaptation to salt stress -- 2.8 Conclusions and future prospects -- References -- CHAPTER 3 - Bacillus rhizobacteria: A versatile biostimulant for sustainable agriculture -- 3.1 Introduction. , 3.2 Diversity of Bacillus species -- 3.3 Direct mechanism of plant growth promotion -- 3.3.1 Phosphate solubilization -- 3.3.2 Nitrogen fixation -- 3.3.3 Potassium solubilization -- 3.3.4 Phytohormones production -- 3.3.5 Siderophores production -- 3.4 Indirect mechanism -- 3.4.1 Antibiotic production -- 3.4.2 Lytic enzyme production -- 3.4.3 Induction of systemic resistance -- 3.4.3.1 Phenylalanine ammonia lyase (PAL) -- 3.4.3.2 Phenols -- 3.4.3.3 β−1, 3-glucanases (PR2) -- 3.4.3.4 Peroxidase (PO) -- 3.4.3.5 Polyphenol oxidase (PPO) -- 3.4.3.6 Scavengers of reactive oxygen species (ROS) -- 3.5 Future prospects -- References -- CHAPTER 4 - Arbuscular mycorrhizae, a treasured symbiont to agriculture -- 4.1 Introduction to mycorrhiza -- 4.2 VAM in agriculture -- 4.2.1 AMF and PGPR -- 4.2.2 Soil fertility and nutrient uptake -- 4.2.3 Water uptake -- 4.2.4 Soil erosion prevention -- 4.2.5 Effect on plant physiology and biochemical attributes -- 4.2.6 AMF as biocontrol agent -- 4.2.7 Weed control -- 4.3 Application of AMF in bioremediation -- 4.4 Renaturation and afforestation -- 4.5 Mass production of VAM: the past, present and future -- 4.5.1 Substrate based production -- 4.5.2 Substrate free production -- 4.5.3 In-vitro production of AM fungi -- 4.5.4 Formulation of AMF -- 4.5.5 Factors affecting AMF bioinoculants -- 4.6 Conclusion -- References -- CHAPTER 5 - Micro and macroalgae: A potential biostimulant for abiotic stress management and crop production -- 5.1 Introduction -- 5.2 Review of literature and recent developments -- 5.2.1 Global production of algae -- 5.2.2 Harvesting of algal biomass -- 5.2.3 Extraction of bioactive compounds from macroalgae -- 5.2.4 Extraction of bioactive components from microalgae -- 5.2.5 Phytohormone constituents of algae. , 5.2.6 Mineral and organic constituents of algae -- 5.2.7 Formulation of algal biostimulants -- 5.2.8 Applications of algal biostimulants -- 5.2.9 Challenges in commercialization of algal biostimulants and tackling strategies -- 5.3 Conclusion and future prospects -- References -- CHAPTER 6 - Fluorescent Pseudomonads: A multifaceted biocontrol agent for sustainable agriculture -- 6.1 Introduction -- 6.2 Species diversity of Fluorescent Pseudomanads -- 6.3 Mechanisms of Fluorescent Pseudomanads -- 6.3.1 Plant growth promotion -- 6.3.2 Siderophores -- 6.3.3 Hydrogen cyanide production -- 6.3.4 Antibiotic production -- 6.3.4.1 2,4-Diacetyl phloro glucinol (DAPG) -- 6.3.4.2 Phenazines -- 6.3.4.3 Pyrrolnitrin and pyoluteorin -- 6.3.5 Lytic enzyme production -- 6.3.6 Induced systemic resistance -- 6.4 Future prospects -- References -- CHAPTER 7 - Role of Piriformospora indica in inducing soil microbial communities and drought stress tolerance in plants -- 7.1 Introduction -- 7.2 Soil microbial communities: benign hidden players in plant growth -- 7.3 P. indica : an overview -- 7.3.1 P. indica mediated microbe-microbe interaction shape rhizospheric microbiome -- 7.3.2 P. indica as a promoter of synergistic tripartite symbiosis -- 7.4 Basic mechanisms in plants to counter drought stress -- 7.5 Morphological and physiological innate responses in plants against drought stress -- 7.5.1 Plants morphological responses in drought stress condition -- 7.5.2 Plants physiological response in drought -- 7.6 Multidimensional contribution of P. indica in providing tolerance against drought stress -- 7.6.1 Bioprotectant properties of P. indica to confer drought stress tolerance in maize: a case study -- 7.7 P. indica mediated adaptative responses generated in rice plants to cope up drought stress. , 7.8 Scope of P. indica for the promotion of sustainable agriculture in xerophytic habitats -- 7.9 Conclusion -- References -- CHAPTER 8 - Microbes-based bio-stimulants towards sustainable oilseeds production: Nutrient recycling and genetics involved -- 8.1 Introduction -- 8.2 Soil microbes and plant interactions -- 8.2.1 Plant and microorganisms -- 8.2.2 Soil and microorganism -- 8.2.3 Soil and plant -- 8.2.4 The three way interaction -- 8.3 Geochemical changes in plant rhizosphere and release of mineral nutrients -- 8.3.1 Weathering -- 8.3.2 Carbonates and phosphates precipitation -- 8.3.3 Nutrient cycling -- 8.4 VAM fungi for efficient nutrient acquisition and mobilization -- 8.4.1 Uniqueness of VAM -- 8.4.2 Interaction of biotic and abiotic factors with VAM -- 8.4.2.1 Abiotic factors -- 8.4.2.2 Biotic factors -- 8.4.3 Mass production of VAM -- 8.4.4 Tips for the efficient use of VAM -- 8.5 Genetics involved in nutrient cycling -- 8.5.1 Nitrogen cycle -- 8.5.2 Carbon cycle -- 8.5.3 Phosphorus transformation -- 8.5.4 Potassium solubilization -- 8.5.5 Sulphur transformation -- 8.6 Conclusions -- References -- CHAPTER 9 - Role of soil microbes in micronutrient solubilization -- 9.1 Introduction -- 9.2 Importance of micronutrients in plant nutrition -- 9.3 Sources and pools of micronutrients in soil and their significance in plant uptake -- 9.4 Factors affecting the availability of micronutrients -- 9.4.1 Cationic micronutrients -- 9.4.2 Anionic micronutrients -- 9.5 Influence of rhizosphere in micronutrient availability -- 9.6 Soil pH and pE as an indicator of micronutrient availability -- 9.7 Micronutrients -- 9.7.1 ZINC (Zn) -- 9.7.2 Manganese -- 9.7.3 Iron (Fe) -- 9.7.4 Copper (Cu) -- 9.7.5 Boron (B) -- 9.7.6 Molybdenum (Mo) -- 9.7.7 Chlorine (Cl) -- 9.8 Conclusion and future perspectives. , References -- CHAPTER 10 - Sustainable induction of systemic resistance in response to potential biological control agents in crops -- 10.1 Introduction -- 10.2 Novel scenario of biological control -- 10.3 Suppressive soils pathogens -- 10.4 Potential in PGPR -- 10.5 Induction of systemic resistance -- 10.5.1 Role of PGPR -- 10.5.2 Abundance of antibiotics -- 10.5.3 Siderophore production -- 10.5.4 Poduction of HCN -- 10.5.5 Systemic acquired resistance in plants -- 10.5.6 Mechanisms of induced systemic resistance -- 10.5.7 Conception molecular in PGPR -- 10.5.8 Biocontrol products of PGPR -- 10.6 Fungal BCAs -- 10.6.1 Relevance of Trichoderma -- 10.7 Potental of non-pathogenic strains -- 10.7.1 Fusarium strains -- 10.7.2 Pythium strains -- 10.7.3 Potential of penicillum strain -- 10.7.4 Potential of Rhizoctonia strain -- 10.7.5 Potential of Colletotrichum starin -- 10.8 Conclusion and future prospects -- References -- CHAPTER 11 - Psychrophilic microbes: Biodiversity, beneficial role and improvement of cold stress in crop plants -- 11.1 Introduction -- 11.2 Historical background -- 11.3 Biodiversity of psychrophilic microbes -- 11.4 Mechanisms of adaptation of psychrophilic microbes -- 11.4.1 Structural adaptations -- 11.5 Psychrophilic microbes used in crop improvement -- 11.6 The beneficial role of psychrophilic microbes in crop performance -- 11.6.1 Biological nitrogen fixation -- 11.6.2 Phytohormones production -- 11.6.3 Solubilization of beneficial nutrients -- 11.6.4 Siderophore production -- 11.6.5 Antifungal activity, antibiotics and enzymes -- 11.7 Conclusion and future prospects -- References -- CHAPTER 12 - Role of plant-associated bacteria as bio-stimulants in alleviation of chromium toxicity in plants -- 12.1 Cr toxicity to the environment -- 12.1.1 Effects on human -- 12.1.2 Effect on plants. , 12.1.3 Effect on microorganisms.
    Additional Edition: ISBN 0-323-85163-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    edoccha_9960074236702883
    Format: 1 online resource (392 pages)
    ISBN: 0-323-86000-1
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the Editors -- Preface -- CHAPTER 1 - Role of microorganism as new generation plant bio-stimulants: An assessment -- 1.1 Background -- 1.2 Introduction of plant bio-stimulants -- 1.3 Basic mechanism of bio-stimulants -- 1.4 Sources of plant bio-stimulants -- 1.5 Microbes as plant bio-stimulant -- 1.5.1 Fungi as bio-stimulants -- 1.5.2 Bacteria as bio-stimulants -- 1.5.3 Microbial consortia as bio-stimulants -- 1.6 Role of microbes in nutrient uptake/stimulation -- 1.6.1 Nitrogen fixation -- 1.6.2 Phosphate solubilisation -- 1.6.3 Hormones and other secondary metabolite -- 1.7 Conclusions -- References -- CHAPTER 2 - Exploiting biostimulant properties of Trichoderma for sustainable plant production -- 2.1 Introduction -- 2.2 Trichoderma metabolism: from decomposers to plant growth promoters -- 2.3 Trichoderma -plant chemical dialogue -- 2.3.1 Trichoderma released compounds in plant growth promotion -- 2.4 Trichoderma -induced resistance to plant pathogens -- 2.4.1 Salicylic acid-mediated interactions -- 2.4.2 Jasmonic acid and other oxylipins -- 2.4.3 Biocontrol of aphids, nematodes and other pests -- 2.5 Trichoderma and plant nutrition -- 2.5.1 Major nutritional needs of crops -- 2.5.2 Phosphate nutrition -- 2.5.3 Nitrate use efficiency -- 2.5.4 Iron acquisition -- 2.5.5 Better usage of organic nutriments -- 2.6 Soil acidification in Trichoderma -plant interactions -- 2.7 Salt stress tolerance mediated by Trichoderma -- 2.7.1 Plant adaptive responses to salinity -- 2.7.2 Trichoderma improves plant adaptation to salt stress -- 2.8 Conclusions and future prospects -- References -- CHAPTER 3 - Bacillus rhizobacteria: A versatile biostimulant for sustainable agriculture -- 3.1 Introduction. , 3.2 Diversity of Bacillus species -- 3.3 Direct mechanism of plant growth promotion -- 3.3.1 Phosphate solubilization -- 3.3.2 Nitrogen fixation -- 3.3.3 Potassium solubilization -- 3.3.4 Phytohormones production -- 3.3.5 Siderophores production -- 3.4 Indirect mechanism -- 3.4.1 Antibiotic production -- 3.4.2 Lytic enzyme production -- 3.4.3 Induction of systemic resistance -- 3.4.3.1 Phenylalanine ammonia lyase (PAL) -- 3.4.3.2 Phenols -- 3.4.3.3 β−1, 3-glucanases (PR2) -- 3.4.3.4 Peroxidase (PO) -- 3.4.3.5 Polyphenol oxidase (PPO) -- 3.4.3.6 Scavengers of reactive oxygen species (ROS) -- 3.5 Future prospects -- References -- CHAPTER 4 - Arbuscular mycorrhizae, a treasured symbiont to agriculture -- 4.1 Introduction to mycorrhiza -- 4.2 VAM in agriculture -- 4.2.1 AMF and PGPR -- 4.2.2 Soil fertility and nutrient uptake -- 4.2.3 Water uptake -- 4.2.4 Soil erosion prevention -- 4.2.5 Effect on plant physiology and biochemical attributes -- 4.2.6 AMF as biocontrol agent -- 4.2.7 Weed control -- 4.3 Application of AMF in bioremediation -- 4.4 Renaturation and afforestation -- 4.5 Mass production of VAM: the past, present and future -- 4.5.1 Substrate based production -- 4.5.2 Substrate free production -- 4.5.3 In-vitro production of AM fungi -- 4.5.4 Formulation of AMF -- 4.5.5 Factors affecting AMF bioinoculants -- 4.6 Conclusion -- References -- CHAPTER 5 - Micro and macroalgae: A potential biostimulant for abiotic stress management and crop production -- 5.1 Introduction -- 5.2 Review of literature and recent developments -- 5.2.1 Global production of algae -- 5.2.2 Harvesting of algal biomass -- 5.2.3 Extraction of bioactive compounds from macroalgae -- 5.2.4 Extraction of bioactive components from microalgae -- 5.2.5 Phytohormone constituents of algae. , 5.2.6 Mineral and organic constituents of algae -- 5.2.7 Formulation of algal biostimulants -- 5.2.8 Applications of algal biostimulants -- 5.2.9 Challenges in commercialization of algal biostimulants and tackling strategies -- 5.3 Conclusion and future prospects -- References -- CHAPTER 6 - Fluorescent Pseudomonads: A multifaceted biocontrol agent for sustainable agriculture -- 6.1 Introduction -- 6.2 Species diversity of Fluorescent Pseudomanads -- 6.3 Mechanisms of Fluorescent Pseudomanads -- 6.3.1 Plant growth promotion -- 6.3.2 Siderophores -- 6.3.3 Hydrogen cyanide production -- 6.3.4 Antibiotic production -- 6.3.4.1 2,4-Diacetyl phloro glucinol (DAPG) -- 6.3.4.2 Phenazines -- 6.3.4.3 Pyrrolnitrin and pyoluteorin -- 6.3.5 Lytic enzyme production -- 6.3.6 Induced systemic resistance -- 6.4 Future prospects -- References -- CHAPTER 7 - Role of Piriformospora indica in inducing soil microbial communities and drought stress tolerance in plants -- 7.1 Introduction -- 7.2 Soil microbial communities: benign hidden players in plant growth -- 7.3 P. indica : an overview -- 7.3.1 P. indica mediated microbe-microbe interaction shape rhizospheric microbiome -- 7.3.2 P. indica as a promoter of synergistic tripartite symbiosis -- 7.4 Basic mechanisms in plants to counter drought stress -- 7.5 Morphological and physiological innate responses in plants against drought stress -- 7.5.1 Plants morphological responses in drought stress condition -- 7.5.2 Plants physiological response in drought -- 7.6 Multidimensional contribution of P. indica in providing tolerance against drought stress -- 7.6.1 Bioprotectant properties of P. indica to confer drought stress tolerance in maize: a case study -- 7.7 P. indica mediated adaptative responses generated in rice plants to cope up drought stress. , 7.8 Scope of P. indica for the promotion of sustainable agriculture in xerophytic habitats -- 7.9 Conclusion -- References -- CHAPTER 8 - Microbes-based bio-stimulants towards sustainable oilseeds production: Nutrient recycling and genetics involved -- 8.1 Introduction -- 8.2 Soil microbes and plant interactions -- 8.2.1 Plant and microorganisms -- 8.2.2 Soil and microorganism -- 8.2.3 Soil and plant -- 8.2.4 The three way interaction -- 8.3 Geochemical changes in plant rhizosphere and release of mineral nutrients -- 8.3.1 Weathering -- 8.3.2 Carbonates and phosphates precipitation -- 8.3.3 Nutrient cycling -- 8.4 VAM fungi for efficient nutrient acquisition and mobilization -- 8.4.1 Uniqueness of VAM -- 8.4.2 Interaction of biotic and abiotic factors with VAM -- 8.4.2.1 Abiotic factors -- 8.4.2.2 Biotic factors -- 8.4.3 Mass production of VAM -- 8.4.4 Tips for the efficient use of VAM -- 8.5 Genetics involved in nutrient cycling -- 8.5.1 Nitrogen cycle -- 8.5.2 Carbon cycle -- 8.5.3 Phosphorus transformation -- 8.5.4 Potassium solubilization -- 8.5.5 Sulphur transformation -- 8.6 Conclusions -- References -- CHAPTER 9 - Role of soil microbes in micronutrient solubilization -- 9.1 Introduction -- 9.2 Importance of micronutrients in plant nutrition -- 9.3 Sources and pools of micronutrients in soil and their significance in plant uptake -- 9.4 Factors affecting the availability of micronutrients -- 9.4.1 Cationic micronutrients -- 9.4.2 Anionic micronutrients -- 9.5 Influence of rhizosphere in micronutrient availability -- 9.6 Soil pH and pE as an indicator of micronutrient availability -- 9.7 Micronutrients -- 9.7.1 ZINC (Zn) -- 9.7.2 Manganese -- 9.7.3 Iron (Fe) -- 9.7.4 Copper (Cu) -- 9.7.5 Boron (B) -- 9.7.6 Molybdenum (Mo) -- 9.7.7 Chlorine (Cl) -- 9.8 Conclusion and future perspectives. , References -- CHAPTER 10 - Sustainable induction of systemic resistance in response to potential biological control agents in crops -- 10.1 Introduction -- 10.2 Novel scenario of biological control -- 10.3 Suppressive soils pathogens -- 10.4 Potential in PGPR -- 10.5 Induction of systemic resistance -- 10.5.1 Role of PGPR -- 10.5.2 Abundance of antibiotics -- 10.5.3 Siderophore production -- 10.5.4 Poduction of HCN -- 10.5.5 Systemic acquired resistance in plants -- 10.5.6 Mechanisms of induced systemic resistance -- 10.5.7 Conception molecular in PGPR -- 10.5.8 Biocontrol products of PGPR -- 10.6 Fungal BCAs -- 10.6.1 Relevance of Trichoderma -- 10.7 Potental of non-pathogenic strains -- 10.7.1 Fusarium strains -- 10.7.2 Pythium strains -- 10.7.3 Potential of penicillum strain -- 10.7.4 Potential of Rhizoctonia strain -- 10.7.5 Potential of Colletotrichum starin -- 10.8 Conclusion and future prospects -- References -- CHAPTER 11 - Psychrophilic microbes: Biodiversity, beneficial role and improvement of cold stress in crop plants -- 11.1 Introduction -- 11.2 Historical background -- 11.3 Biodiversity of psychrophilic microbes -- 11.4 Mechanisms of adaptation of psychrophilic microbes -- 11.4.1 Structural adaptations -- 11.5 Psychrophilic microbes used in crop improvement -- 11.6 The beneficial role of psychrophilic microbes in crop performance -- 11.6.1 Biological nitrogen fixation -- 11.6.2 Phytohormones production -- 11.6.3 Solubilization of beneficial nutrients -- 11.6.4 Siderophore production -- 11.6.5 Antifungal activity, antibiotics and enzymes -- 11.7 Conclusion and future prospects -- References -- CHAPTER 12 - Role of plant-associated bacteria as bio-stimulants in alleviation of chromium toxicity in plants -- 12.1 Cr toxicity to the environment -- 12.1.1 Effects on human -- 12.1.2 Effect on plants. , 12.1.3 Effect on microorganisms.
    Additional Edition: ISBN 0-323-85163-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    gbv_371479339
    Format: 360 S. , graph. Darst., Kt. , 23 cm
    ISBN: 8172362439
    Content: Seminar organized by National Institute of Science Communication and Information Resources, New Delhi, India
    Note: Includes indexes - "Ethnobotany of North-east region of India - bibliography" (p. [346]-360)
    Language: English
    Keywords: Ethnomedizin ; Phytotherapie ; Indien ; Heilpflanzen ; Konferenzschrift ; Konferenzschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    edoccha_9960135066002883
    Format: 1 online resource (488 pages)
    ISBN: 0-323-85578-4
    Content: New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Advances in Microbe-Based Biostimulants describes advances in microbial mechanisms involved in crop production and stress alleviation. Recent developments in our understanding of the role of microbes in sustainable agriculture and disease management have created a highly potential research area. The plant holobiont has a significant role in stress signaling, nutrient use efficiency, and soil health and fertility for sustainable developments. The mycorrhizosphere, hyphosphere, phyllosphere, rhizosphere and endosphere are critical interfaces for the exchange of signaling and resources between plants and soil environment. 
    Additional Edition: Print version: Singh, Harikesh Bahadur New and Future Developments in Microbial Biotechnology and Bioengineering San Diego : Elsevier,c2022 ISBN 9780323855778
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages