feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    UID:
    almahu_9949225724002882
    Format: 1 online resource (247 pages)
    ISBN: 0-323-91050-5
    Note: Intro -- Electrochemical Biosensors: Applications in Diagnostics, Therapeutics, Environment and Food Management -- Copyright -- Contents -- Preface -- Chapter 1 Electrochemical biosensing: Progress and perspectives -- 1.1 Introduction -- 1.2 Biosensors -- 1.3 Optical biosensors -- 1.4 Mechanical biosensors -- 1.5 Electrochemical sensors -- 1.5.1 Components of electrochemical sensors: Electrodes, transducers, or detector device -- 1.5.2 Electrical interface -- 1.5.3 Recognition receptors -- 1.5.4 Antibodies -- 1.5.5 Aptamers -- 1.5.6 DNA, enzymes, and artificial receptors -- 1.6 Development and evolution of electrochemical sensors -- 1.6.1 Screen-printed electrodes (SPE) -- 1.6.2 Synthetic receptors -- 1.7 Portability and miniaturization: Microfluidics in electrochemical biosensors -- 1.7.1 Lab-on-chip (LoC) devices -- 1.7.2 Lab-in-briefcase (LiB) -- 1.7.3 Advantage of microfluidics integrated with electrochemical biosensor -- 1.8 Types of electrochemical biosensors based on electric signals -- 1.8.1 Amperometric sensors -- 1.8.2 Amperometric immunosensors -- 1.8.3 Potentiometric sensors -- 1.8.4 Potentiometric immunosensors -- 1.8.5 Impedance sensor -- 1.8.6 Impedance immunosensors -- 1.8.7 Conductometric sensors -- 1.8.8 Capacitive sensors -- 1.8.9 Gravimetric sensors -- 1.9 Nanomaterials for electrochemical sensor applications -- 1.9.1 Nanohybrids -- 1.9.2 Nanoparticles (NPs) -- 1.9.3 Carbon-based nanomaterials -- 1.9.4 Apoferritin nano-vehicles and metal phosphate labels -- 1.10 Electrochemical immunoassays -- 1.10.1 Nanomaterials in electrochemical immunosensors -- 1.11 Conclusions and future perspectives -- References -- Chapter 2 Nanomaterial based electrochemical biosensing: Progress and perspectives -- 2.1 Introduction -- 2.1.1 Electrochemical immunosensors -- 2.1.2 Type of electrochemical immunosensors based on signal. , 2.1.3 Electrochemical immunoassays -- 2.1.4 Nanomaterial based electrochemical biosensors -- 2.2 Types of nanomaterials -- 2.3 Nanoparticles (NPs) -- 2.3.1 SPR assays based on nanoparticles (NPs) -- 2.3.2 Nanoparticle-enhanced SPR-phase imaging (SPR-PI) -- 2.3.3 Magnetic nanoparticles (MNPs) based SPR assays -- 2.3.4 Advantages of metal nanoparticles in SPR assays -- 2.3.5 Surface plasmon-enhanced fluorescence spectroscopy (SPFS) based detection of agricultural toxins -- 2.3.6 Biofunctionalized metal nanoparticles (NPs) -- 2.3.7 AuNPs/GO and AuNPs/GCE hybrid based electrochemical immunosensors -- 2.3.8 AuNPs based sensors for the detection of clinical biomarkers -- 2.3.9 Colloidal gold-/silver-based electrochemical immunoassay -- 2.3.10 AuNP based quartz crystal microbalance (QCM) immunosensing -- 2.3.11 PANIAuNPs based Impedimetric sensor -- 2.3.12 Multiplexed magneto-immunosensor -- 2.3.13 Mesoporous metallic structures as labels for electrochemical immunoassays -- 2.3.14 Metal phosphate NP labels -- 2.4 Nanomaterials -- 2.4.1 Au and Ag nanomaterials -- 2.4.2 Au and ag-based electrochemical immunosensor -- 2.4.3 Nanomaterial-based enzyme electrodes for the estimation of polyphenols -- 2.4.4 CID-LSPR using gold nanorods (AuNR) for bio-detection -- 2.4.5 Other metal nanomaterials (Cu, Pd, Pt) -- 2.4.6 Carbon-based nanomaterials -- 2.4.7 Carbon nanotubes (CNTs) -- 2.4.7.1 CNTs: Clinical biomarker detection -- 2.4.7.2 CNTs: Detection of polyphenol -- 2.5 Graphene-based nanomaterials -- 2.5.1 Graphene oxide (rGO) -- 2.5.2 Ultrathin graphitic carbon nitride (g-C3N4) nanosheets -- 2.5.3 2D-graphitic carbon nitride nanosheets (CNNSs) -- 2.5.4 2D-nanomaterials and 2D-based nanohybrids -- 2.5.5 Graphene (G)-based composite materials -- 2.5.6 Graphene-based chronoamperometric genosensor for bio-detection. , 2.5.7 Gold-graphene nano-labels for the detection of cancer biomarkers -- 2.5.8 Graphene-based electrochemical CEA immunosensor -- 2.5.9 Magnetic graphene-based electrochemical CEA immunosensor -- 2.5.10 Graphene-based Sandwich immunoassay for the detection of cancer biomarker -- 2.6 C 60 fullerenes and carbon dots -- 2.7 Carbon black -- 2.8 Carbon bucky-paper -- 2.9 Other carbon materials -- 2.10 Apoferritin nano-vehicles -- 2.11 Liposome -- 2.12 Semiconductor nanomaterials -- 2.12.1 SiO 2 nanomaterials -- 2.12.2 Silica nanoparticles -- 2.12.3 Quantum dots -- 2.13 Other nanomaterials -- 2.14 Other labels -- 2.15 Upconverting nanoparticles (UCNPs) -- 2.16 Magnetic beads (MBs) -- 2.17 Conclusion and future outlook -- References -- Further reading -- Chapter 3 Electrochemical biosensors: Biomonitoring of clinically significant biomarkers -- 3.1 Introduction -- 3.2 Electrochemical immunosensing for the assessment of circulating biomarkers -- 3.2.1 Clinical biomarkers -- 3.2.2 Multiplexed electrochemical immunosensors for the detection of cancer biomarkers -- 3.2.3 Mesoporous metallic structures -- 3.2.4 Redox mediators as career tags for the detection of cancer biomarkers -- 3.2.5 Alternative nanomaterial-based strategies for the detection of cancer biomarkers -- 3.2.6 Microfluidic device assisted cancer biomarker detection -- 3.2.7 Nucleic acid-based electrochemical genosensing of circulating biomarkers -- 3.3 Electrochemical sensing of breast cancer biomarkers -- 3.3.1 Electrochemical biosensing of gene-specific mutations and miRNAs associated with breast cancer in biofluids -- 3.3.2 Electrochemical Aptasensors for breast cancer protein circulating biomarkers -- 3.3.3 Electrochemical peptide-biosensor for the detection of circulating breast cancer protein biomarkers. , 3.3.4 Electrochemical biosensing for multiple determination of circulating breast cancer biomarkers -- 3.4 Electrochemical biosensor for the detection of prostate cancer biomarkers -- 3.5 Biomarkers for cardiovascular disease -- 3.5.1 Electrochemical immunosensing of cardiovascular disease biomarkers -- 3.6 Electrochemical biosensing of other disease biomarkers -- 3.6.1 Diabetes -- 3.6.2 Genetic disorder -- 3.7 Electrochemical genosensors for the neurodegenerative disease biomarkers -- 3.8 Electrochemical sensors for the detection and biomonitoring of viral and bacterial pathogenic biomarkers -- 3.8.1 Viral disease biomarkers -- 3.8.2 Electrochemical genosensing of biomarkers for viral infections -- 3.8.3 Minimally invasive electrochemical immunosensing of human immunodeficiency virus (HIV) -- 3.8.4 Pseudorabies virus (PRV) -- 3.8.5 Influenza (flu) virus -- 3.8.6 Dengue virus -- 3.8.7 Human enterovirus 71 (EV71) -- 3.8.8 Human papillomavirus (hrHPV) -- 3.8.9 Human norovirus -- 3.9 Bacterial biomarkers -- 3.9.1 Electrochemical genosensors for bacterial infection biomarkers -- 3.9.2 Electrochemical genosensors (sandwich format) for the detection of bacterial pathogens in liquid biopsies -- 3.9.3 Electrochemical immunosensing of bacterial pathogens in liquid biopsies -- 3.9.4 Electrochemical immunosensing of invertebrate pathogens in liquid biopsies -- 3.10 Lab-on-chip and telemedicine -- 3.11 Optimal electrochemical biosensor characteristics ( Gao and Lu, 2020 -- Huang et al., 2021 -- Zhang et al., 2020 -- ... -- 3.12 Conclusion and future perspective -- References -- Chapter 4 Electrochemical nano-biosensors: Environmental biomonitoring -- 4.1 Introduction -- 4.2 Electrochemical biosensors -- 4.2.1 Electrochemical affinity biosensors -- 4.3 Nanomaterial engineering for the advancement of electrochemical sensors -- 4.4 Biomonitoring. , 4.5 Chemical contaminants in water -- 4.5.1 Heavy metals -- 4.5.2 Lead (Pb 2   +) -- 4.5.3 Mercury (Hg 2   +) -- 4.5.4 Arsenic (As 3   +, As 5   +) -- 4.6 Phenolic compounds -- 4.7 Cyanotoxins -- 4.8 Pathogens -- 4.8.1 Lab-on-chip (LoC) -- 4.8.2 Lab-in-briefcase (LiB) -- 4.8.3 Microfluidics -- 4.8.4 Electrochemical μ PCR -- 4.8.5 Bacteriophage -- 4.8.6 Bacteria -- 4.9 Pesticides -- 4.9.1 Organophosporous pesticides -- 4.9.2 Fungicide -- 4.10 Soil microbes and pathogens -- 4.11 Nanotechnology for detection and remediation of environmental pollutants -- 4.12 Nanotechnology for water and soil remediation -- 4.13 Nanoscale products for remediation -- 4.13.1 Nano-fertilizer -- 4.13.2 Nano-pesticide -- 4.14 Risk assessment and management of nanomaterials -- 4.15 Conclusions and future perspectives -- References -- Chapter 5 Electrochemical biosensors: Biomonitoring of food adulterants, allergens, and pathogens -- 5.1 Introduction -- 5.1.1 Biosensors -- 5.1.2 Electrochemical biosensors -- 5.1.3 Nanomaterial aided advancement in electrochemical biosensors -- 5.2 Biomonitoring of food adulterants -- 5.2.1 Glutamate -- 5.2.2 Genetically modified organisms (GMO) -- 5.3 Biomonitoring of food allergens -- 5.3.1 Microfluidics in food technology -- 5.3.2 Microfluidics for the biomonitoring of food allergens -- 5.4 Biomonitoring of food-borne pathogens -- 5.4.1 Salmonella spp. -- 5.4.2 Antimicrobial peptides (AMP) as biorecognition elements for the detection of bacteria -- 5.4.3 Molecularly imprinted polymers (MIP) for biomonitoring of food-borne bacteria -- 5.4.4 Bacteriophage -- 5.5 Biomonitoring of food-toxins -- 5.5.1 Microbial fuel cells for food safety and security -- 5.6 Quality control in the food and beverage industry -- 5.6.1 Food-fingerprinting (foodomics) -- 5.6.2 Dairy products -- 5.6.3 Sweeteners -- 5.6.4 Beverages: Coffee and tea -- 5.6.5 Fruit juices. , 5.6.6 Soft drinks.
    Additional Edition: Print version: Singh, Pranveer Electrochemical Biosensors San Diego : Elsevier Science & Technology,c2021 ISBN 9780323906326
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    New York :Novinka,
    UID:
    almafu_9959242323202883
    Format: 1 online resource (124 p.)
    ISBN: 1-63321-866-X
    Series Statement: Nanotechnology Science and Technology
    Content: SPR is real-time, label-free measurements of binding kinetics and affinity. This has distinct advantage over radioactive or fluorescent labeling methods, in terms of 1) ligand-analyte binding kinetics, that can be probed without the costly and time-consuming labeling process that may interfere with molecular binding interactions; 2) binding rates and affinity can be measured directly and 3) low affinity interactions in high protein concentrations for can be characterized with less reagent consumption than other equilibrium measurement techniques; 4) Label-free detection of molecular interactio
    Note: Description based upon print version of record. , ""SURFACE PLASMON RESONANCE""; ""SURFACE PLASMON RESONANCE""; ""Library of Congress Cataloging-in-Publication Data""; ""CONTENTS""; ""PREFACE""; ""Chapter 1: INTRODUCTION""; ""OVERVIEW OF SURFACE PLASMON RESONANCE (SPR)""; ""1.1. PHYSICAL BASIS OF SURFACE PLASMON RESONANCE""; ""1.2. STEP BY STEP WORKING OF SPR""; ""Chapter 2: PRINCIPLES AND MECHANISM BEHIND SPR""; ""2.1. PHYSICAL BASIS OF SPR""; ""2.2. LOCALIZED SURFACE PLASMON RESONANCE (LSPR)""; ""2.3. SPR EMISSION""; ""Chapter 3: INSTRUMENTS BASED ON SPR PHENOMENA""; ""3.1. HISTORICAL OVERVIEW"" , ""3.2. PRINCIPLES AND MECHANISM BEHIND WORKING OF SPR BASED INSTRUMENTS""""Chapter 4: APPLICATIONS""; ""4.1. OPTICAL SENSOR BASED ON SPR OPERATING IN THE MID-INFRARED RANGE""; ""4.2. ADVANTAGES OF SPR""; ""4.3. BINDING KINETICS OF A MODEL ANTIBODY-ANTIGENSYSTEM, HSA BINDING TO ANTI-HSA IGG.ANTI-HSA IS BIOTINYLATED WITH APPROXIMATELY6 BIOTIN GROUPS AND CAPTURED ONA PLANAR NEUTR-AVIDIN SENSOR SLIDE""; ""4.4. SPR BINDING EXPERIMENT BETWEEN CAII ANDAN INHIBITOR, 4-CRBOXYBENZENESULFONAMIDE(4-CBS); A SMALL MOLECULE WITH A MOLECULARWEIGHT OF 201 DA"" , ""4.5. THERMODYNAMIC INVESTIGATION OFAN ENZYME-INHIBITOR PAIR""""4.6. SMALL VOLUME INJECTIONS WITH SR7500SYRINGE PUMP""; ""4.7. USING COMBINED ELECTROCHEMISTRY AND SPR TOMONITOR THE ELECTRO-POLYMERIZATION OF ANILINE""; ""4.8. ANISOTROPIC SURFACE PLASMON RESONANCEIMAGING BIOSENSOR""; ""4.9. ELECTROSTATIC / ELECTROCHEMICAL SPR""; ""4.10. SPR FOR DETECTING SINGLE NUCLEOTIDEPOLYMORPHISM (SNP)""; ""4.11. LOCALISED SURFACE PLASMONRESONANCE (LSPR)""; ""4.12. MAGNETIC PLASMON RESONANCE""; ""4.13. EQUILIBRIUM MEASUREMENTS(AFFINITY AND ENTHALPY)""; ""4.14. KINETIC MEASUREMENTS"" , ""4.15. ANALYSIS OF MUTANT PROTEINS""""4.16. LIMITATIONS OF SPR""; ""Chapter 5: DATA INTERPRETATION""; ""5.1. FRESNEL FORMULA""; ""5.2. BINDING CONSTANT DETERMINATION""; ""Chapter 6: GENERAL PRINCIPLES OF SPR EXPERIMENTS""; ""6.1. A TYPICAL EXPERIMENT""; ""6.2. PREPARATION OF MATERIALS AND BUFFERS""; ""6.3. MONITORING THE DIPS""; ""Chapter 7: LIGAND""; ""7.1. DIRECT VERSUS INDIRECT IMMOBILIZATION""; ""7.2. COVALENT IMMOBILISATION""; ""7.3. NON-COVALENT IMMOBILISATION (LIGAND CAPTURE)""; ""7.4. USING AN EXISTING STRATEGY""; ""7.5. DEVELOPING A NEW STRATEGY"" , ""7.6. ACTIVITY OF IMMOBILISED LIGAND""""7.7. CONTROL SURFACES""; ""7.8. RE-USING SENSOR CHIPS""; ""Chapter 8: ANALYTE""; ""8.1. PURITY, ACTIVITY AND CONCENTRATION""; ""8.2. VALENCY""; ""8.3. REFRACTIVE INDEX EFFECT AND CONTROL ANALYTES""; ""8.4. LOW MOLECULAR WEIGHT ANALYTES""; ""Chapter 9: QUALITITATIVE ANALYSIS; DO THEY INTERACT?""; ""9.1. POSITIVE AND NEGATIVE CONTROLS""; ""9.2. QUALITATIVE COMPARISONS USING A MULTIVALENT ANALYTE""; ""9.3. QUANTITATIVE MEASUREMENTS""; ""Chapter 10: AFFINITY""; ""10.1. CONCEPTS""; ""10.2. EXPERIMENTAL DESIGN""; ""10.3. PRELIMINARY STEPS"" , ""10.4. THE EXPERIMENT"" , English
    Additional Edition: ISBN 1-63321-835-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    New York, New York :Nova Science Publishers, Inc.,
    UID:
    edocfu_9959345658902883
    Format: 1 online resource (205 p.)
    ISBN: 1-63463-521-3
    Series Statement: Animal Science, Issues and Research
    Content: The evolution to multicellular organisms determined the appearance of more sophisticated and specialized systems for the different physiologies like integumentary, respiration, digestion, excretion, circulatory, reproduction, skeletal and the nervous system. In the line of chordate evolution, advent of tetrapods have triggered the events leading to only partial dependence on water for physiological activities. The inconstant environment in which animals lives largely determine and guides the way animal physiology evolves. This directs the anatomical and morphological changes in the organism th
    Note: Description based upon print version of record. , ""CHORDATES: COMPARATIVE ACCOUNT OF PHYSIOLOGY""; ""CHORDATES: COMPARATIVE ACCOUNT OF PHYSIOLOGY""; ""Library of Congress Cataloging-in-Publication Data""; ""Contents""; ""Preface""; ""Chapter 1: Integumentary System""; ""Abstract""; ""1.1. Integument and Its Function""; ""1.2. Structure of Skin""; ""Protochordate Skin""; ""Skin of Cyclostomata""; ""Fish Skin""; ""1.3. Fish Scales""; ""Evolutionary Modifications in Scales of Fishes""; ""1.4. Amphibian Skin""; ""1.5. Reptilian Skin""; ""1.6. Bird Skin""; ""Development of Feather""; ""1.7. Mammalian Skin""; ""Development of Hair"" , ""Development of Mammary Glands""""Horns in Mammals""; ""Other Modifications of Mammalian Skin [1, 3]""; ""References""; ""Chapter 2: Locomotion: Locomotory Organs and Mechanism""; ""Abstract""; ""2.1. Locomotory Organs of Fish � Fins""; ""Types of Caudal Fins""; ""Heterocercal""; ""Protocercal""; ""Homocercal""; ""Isocercal""; ""Diphycercal""; ""Hypocercal""; ""2.2. Types of Paired Fins""; ""Biserial Fins""; ""Finfold Fins""; ""Ray Fins""; ""Lobe Fins""; ""2.3. Swimming""; ""A. Mechanism""; ""B. Body/Caudal Fin Propulsion""; ""C. Anguilliform Locomotion"" , ""D. Sub-Carangiform Locomotion""""E. Carangiform Locomotion""; ""F. Thunniform Locomotion""; ""G. Ostraciiform Locomotion""; ""H. Median/Paired Fin Propulsion""; ""2.4. Dynamic Lift""; ""2.5. Hydrodynamic Principles""; ""A. Median-Paired Fin""; ""a. Undulatory""; ""b. Oscillatory""; ""B. Body-Caudal Fin""; ""a. Undulatory""; ""b. Oscillatory""; ""2.6. Adaptation""; ""2.7. Flying""; ""2.8. Tradeoffs""; ""2.9. Biplane Body Plan""; ""2.10. Monoplane Body Plan""; ""2.11. Walking""; ""Burrowing""; ""2.12. Tetrapod Limbs and their Adaptations""; ""2.13. A Typical Tetrapod Limb"" , ""2.14. Modifications in Tetrapod Limb""""A. Arboreal Adaptation""; ""B. Scansorial Adaptation""; ""C. Cursorial Adaptation""; ""D. Volant Adaptation""; ""E. Aquatic Adaptation""; ""F. Fossorial Adaptation""; ""G. Saltatorial Adaptation""; ""H. Graviportal Adaptation""; ""2.15. The Appendicular Skeleton and Locomotion [21]""; ""References""; ""Chapter 3: Respiratory System""; ""Abstract""; ""3.1. Respiration""; ""3.2. Adaptations for External respiration""; ""3.3. Respiratory Organs""; ""A. Cutaneous Respiration""; ""B. Gills""; ""3.4. Swim Bladder and Origin of Lungs""; ""3.5. Larynx"" , ""3.6. Trachea and Syrinx""""3.7. Lungs""; ""3.8. Gills in Protochordates""; ""3.9. Respiratory Organs of Cyclostomes""; ""3.10. Respiratory Organs in Elasmobranchs""; ""3.11. Gills of Bony Fishes""; ""3.12. External Gills""; ""3.13. Evolution of Pharyngeal gill slits""; ""3.14. Pharyngeal Arches in Vertebrates""; ""3.15. Air Bladder""; ""3.16. Accessary Respiratory Organs in Fishes""; ""A. Dendritic Organs""; ""B. Labyrinthine Organs""; ""C. Pneumatic Sac""; ""D. Air Chamber""; ""E. Buccopharyngeal Epithelium""; ""F. Integument""; ""G. Gut Epithelium""; ""H. Lungs""; ""3.17. Amphibia"" , ""3.18. Reptiles"" , English
    Additional Edition: ISBN 1-63463-457-8
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    New York, New York :Nova Science Publishers, Inc.,
    UID:
    edoccha_9959345658902883
    Format: 1 online resource (205 p.)
    ISBN: 1-63463-521-3
    Series Statement: Animal Science, Issues and Research
    Content: The evolution to multicellular organisms determined the appearance of more sophisticated and specialized systems for the different physiologies like integumentary, respiration, digestion, excretion, circulatory, reproduction, skeletal and the nervous system. In the line of chordate evolution, advent of tetrapods have triggered the events leading to only partial dependence on water for physiological activities. The inconstant environment in which animals lives largely determine and guides the way animal physiology evolves. This directs the anatomical and morphological changes in the organism th
    Note: Description based upon print version of record. , ""CHORDATES: COMPARATIVE ACCOUNT OF PHYSIOLOGY""; ""CHORDATES: COMPARATIVE ACCOUNT OF PHYSIOLOGY""; ""Library of Congress Cataloging-in-Publication Data""; ""Contents""; ""Preface""; ""Chapter 1: Integumentary System""; ""Abstract""; ""1.1. Integument and Its Function""; ""1.2. Structure of Skin""; ""Protochordate Skin""; ""Skin of Cyclostomata""; ""Fish Skin""; ""1.3. Fish Scales""; ""Evolutionary Modifications in Scales of Fishes""; ""1.4. Amphibian Skin""; ""1.5. Reptilian Skin""; ""1.6. Bird Skin""; ""Development of Feather""; ""1.7. Mammalian Skin""; ""Development of Hair"" , ""Development of Mammary Glands""""Horns in Mammals""; ""Other Modifications of Mammalian Skin [1, 3]""; ""References""; ""Chapter 2: Locomotion: Locomotory Organs and Mechanism""; ""Abstract""; ""2.1. Locomotory Organs of Fish � Fins""; ""Types of Caudal Fins""; ""Heterocercal""; ""Protocercal""; ""Homocercal""; ""Isocercal""; ""Diphycercal""; ""Hypocercal""; ""2.2. Types of Paired Fins""; ""Biserial Fins""; ""Finfold Fins""; ""Ray Fins""; ""Lobe Fins""; ""2.3. Swimming""; ""A. Mechanism""; ""B. Body/Caudal Fin Propulsion""; ""C. Anguilliform Locomotion"" , ""D. Sub-Carangiform Locomotion""""E. Carangiform Locomotion""; ""F. Thunniform Locomotion""; ""G. Ostraciiform Locomotion""; ""H. Median/Paired Fin Propulsion""; ""2.4. Dynamic Lift""; ""2.5. Hydrodynamic Principles""; ""A. Median-Paired Fin""; ""a. Undulatory""; ""b. Oscillatory""; ""B. Body-Caudal Fin""; ""a. Undulatory""; ""b. Oscillatory""; ""2.6. Adaptation""; ""2.7. Flying""; ""2.8. Tradeoffs""; ""2.9. Biplane Body Plan""; ""2.10. Monoplane Body Plan""; ""2.11. Walking""; ""Burrowing""; ""2.12. Tetrapod Limbs and their Adaptations""; ""2.13. A Typical Tetrapod Limb"" , ""2.14. Modifications in Tetrapod Limb""""A. Arboreal Adaptation""; ""B. Scansorial Adaptation""; ""C. Cursorial Adaptation""; ""D. Volant Adaptation""; ""E. Aquatic Adaptation""; ""F. Fossorial Adaptation""; ""G. Saltatorial Adaptation""; ""H. Graviportal Adaptation""; ""2.15. The Appendicular Skeleton and Locomotion [21]""; ""References""; ""Chapter 3: Respiratory System""; ""Abstract""; ""3.1. Respiration""; ""3.2. Adaptations for External respiration""; ""3.3. Respiratory Organs""; ""A. Cutaneous Respiration""; ""B. Gills""; ""3.4. Swim Bladder and Origin of Lungs""; ""3.5. Larynx"" , ""3.6. Trachea and Syrinx""""3.7. Lungs""; ""3.8. Gills in Protochordates""; ""3.9. Respiratory Organs of Cyclostomes""; ""3.10. Respiratory Organs in Elasmobranchs""; ""3.11. Gills of Bony Fishes""; ""3.12. External Gills""; ""3.13. Evolution of Pharyngeal gill slits""; ""3.14. Pharyngeal Arches in Vertebrates""; ""3.15. Air Bladder""; ""3.16. Accessary Respiratory Organs in Fishes""; ""A. Dendritic Organs""; ""B. Labyrinthine Organs""; ""C. Pneumatic Sac""; ""D. Air Chamber""; ""E. Buccopharyngeal Epithelium""; ""F. Integument""; ""G. Gut Epithelium""; ""H. Lungs""; ""3.17. Amphibia"" , ""3.18. Reptiles"" , English
    Additional Edition: ISBN 1-63463-457-8
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    edoccha_9960074537402883
    Format: 1 online resource (247 pages)
    ISBN: 0-323-91050-5
    Note: Intro -- Electrochemical Biosensors: Applications in Diagnostics, Therapeutics, Environment and Food Management -- Copyright -- Contents -- Preface -- Chapter 1 Electrochemical biosensing: Progress and perspectives -- 1.1 Introduction -- 1.2 Biosensors -- 1.3 Optical biosensors -- 1.4 Mechanical biosensors -- 1.5 Electrochemical sensors -- 1.5.1 Components of electrochemical sensors: Electrodes, transducers, or detector device -- 1.5.2 Electrical interface -- 1.5.3 Recognition receptors -- 1.5.4 Antibodies -- 1.5.5 Aptamers -- 1.5.6 DNA, enzymes, and artificial receptors -- 1.6 Development and evolution of electrochemical sensors -- 1.6.1 Screen-printed electrodes (SPE) -- 1.6.2 Synthetic receptors -- 1.7 Portability and miniaturization: Microfluidics in electrochemical biosensors -- 1.7.1 Lab-on-chip (LoC) devices -- 1.7.2 Lab-in-briefcase (LiB) -- 1.7.3 Advantage of microfluidics integrated with electrochemical biosensor -- 1.8 Types of electrochemical biosensors based on electric signals -- 1.8.1 Amperometric sensors -- 1.8.2 Amperometric immunosensors -- 1.8.3 Potentiometric sensors -- 1.8.4 Potentiometric immunosensors -- 1.8.5 Impedance sensor -- 1.8.6 Impedance immunosensors -- 1.8.7 Conductometric sensors -- 1.8.8 Capacitive sensors -- 1.8.9 Gravimetric sensors -- 1.9 Nanomaterials for electrochemical sensor applications -- 1.9.1 Nanohybrids -- 1.9.2 Nanoparticles (NPs) -- 1.9.3 Carbon-based nanomaterials -- 1.9.4 Apoferritin nano-vehicles and metal phosphate labels -- 1.10 Electrochemical immunoassays -- 1.10.1 Nanomaterials in electrochemical immunosensors -- 1.11 Conclusions and future perspectives -- References -- Chapter 2 Nanomaterial based electrochemical biosensing: Progress and perspectives -- 2.1 Introduction -- 2.1.1 Electrochemical immunosensors -- 2.1.2 Type of electrochemical immunosensors based on signal. , 2.1.3 Electrochemical immunoassays -- 2.1.4 Nanomaterial based electrochemical biosensors -- 2.2 Types of nanomaterials -- 2.3 Nanoparticles (NPs) -- 2.3.1 SPR assays based on nanoparticles (NPs) -- 2.3.2 Nanoparticle-enhanced SPR-phase imaging (SPR-PI) -- 2.3.3 Magnetic nanoparticles (MNPs) based SPR assays -- 2.3.4 Advantages of metal nanoparticles in SPR assays -- 2.3.5 Surface plasmon-enhanced fluorescence spectroscopy (SPFS) based detection of agricultural toxins -- 2.3.6 Biofunctionalized metal nanoparticles (NPs) -- 2.3.7 AuNPs/GO and AuNPs/GCE hybrid based electrochemical immunosensors -- 2.3.8 AuNPs based sensors for the detection of clinical biomarkers -- 2.3.9 Colloidal gold-/silver-based electrochemical immunoassay -- 2.3.10 AuNP based quartz crystal microbalance (QCM) immunosensing -- 2.3.11 PANIAuNPs based Impedimetric sensor -- 2.3.12 Multiplexed magneto-immunosensor -- 2.3.13 Mesoporous metallic structures as labels for electrochemical immunoassays -- 2.3.14 Metal phosphate NP labels -- 2.4 Nanomaterials -- 2.4.1 Au and Ag nanomaterials -- 2.4.2 Au and ag-based electrochemical immunosensor -- 2.4.3 Nanomaterial-based enzyme electrodes for the estimation of polyphenols -- 2.4.4 CID-LSPR using gold nanorods (AuNR) for bio-detection -- 2.4.5 Other metal nanomaterials (Cu, Pd, Pt) -- 2.4.6 Carbon-based nanomaterials -- 2.4.7 Carbon nanotubes (CNTs) -- 2.4.7.1 CNTs: Clinical biomarker detection -- 2.4.7.2 CNTs: Detection of polyphenol -- 2.5 Graphene-based nanomaterials -- 2.5.1 Graphene oxide (rGO) -- 2.5.2 Ultrathin graphitic carbon nitride (g-C3N4) nanosheets -- 2.5.3 2D-graphitic carbon nitride nanosheets (CNNSs) -- 2.5.4 2D-nanomaterials and 2D-based nanohybrids -- 2.5.5 Graphene (G)-based composite materials -- 2.5.6 Graphene-based chronoamperometric genosensor for bio-detection. , 2.5.7 Gold-graphene nano-labels for the detection of cancer biomarkers -- 2.5.8 Graphene-based electrochemical CEA immunosensor -- 2.5.9 Magnetic graphene-based electrochemical CEA immunosensor -- 2.5.10 Graphene-based Sandwich immunoassay for the detection of cancer biomarker -- 2.6 C 60 fullerenes and carbon dots -- 2.7 Carbon black -- 2.8 Carbon bucky-paper -- 2.9 Other carbon materials -- 2.10 Apoferritin nano-vehicles -- 2.11 Liposome -- 2.12 Semiconductor nanomaterials -- 2.12.1 SiO 2 nanomaterials -- 2.12.2 Silica nanoparticles -- 2.12.3 Quantum dots -- 2.13 Other nanomaterials -- 2.14 Other labels -- 2.15 Upconverting nanoparticles (UCNPs) -- 2.16 Magnetic beads (MBs) -- 2.17 Conclusion and future outlook -- References -- Further reading -- Chapter 3 Electrochemical biosensors: Biomonitoring of clinically significant biomarkers -- 3.1 Introduction -- 3.2 Electrochemical immunosensing for the assessment of circulating biomarkers -- 3.2.1 Clinical biomarkers -- 3.2.2 Multiplexed electrochemical immunosensors for the detection of cancer biomarkers -- 3.2.3 Mesoporous metallic structures -- 3.2.4 Redox mediators as career tags for the detection of cancer biomarkers -- 3.2.5 Alternative nanomaterial-based strategies for the detection of cancer biomarkers -- 3.2.6 Microfluidic device assisted cancer biomarker detection -- 3.2.7 Nucleic acid-based electrochemical genosensing of circulating biomarkers -- 3.3 Electrochemical sensing of breast cancer biomarkers -- 3.3.1 Electrochemical biosensing of gene-specific mutations and miRNAs associated with breast cancer in biofluids -- 3.3.2 Electrochemical Aptasensors for breast cancer protein circulating biomarkers -- 3.3.3 Electrochemical peptide-biosensor for the detection of circulating breast cancer protein biomarkers. , 3.3.4 Electrochemical biosensing for multiple determination of circulating breast cancer biomarkers -- 3.4 Electrochemical biosensor for the detection of prostate cancer biomarkers -- 3.5 Biomarkers for cardiovascular disease -- 3.5.1 Electrochemical immunosensing of cardiovascular disease biomarkers -- 3.6 Electrochemical biosensing of other disease biomarkers -- 3.6.1 Diabetes -- 3.6.2 Genetic disorder -- 3.7 Electrochemical genosensors for the neurodegenerative disease biomarkers -- 3.8 Electrochemical sensors for the detection and biomonitoring of viral and bacterial pathogenic biomarkers -- 3.8.1 Viral disease biomarkers -- 3.8.2 Electrochemical genosensing of biomarkers for viral infections -- 3.8.3 Minimally invasive electrochemical immunosensing of human immunodeficiency virus (HIV) -- 3.8.4 Pseudorabies virus (PRV) -- 3.8.5 Influenza (flu) virus -- 3.8.6 Dengue virus -- 3.8.7 Human enterovirus 71 (EV71) -- 3.8.8 Human papillomavirus (hrHPV) -- 3.8.9 Human norovirus -- 3.9 Bacterial biomarkers -- 3.9.1 Electrochemical genosensors for bacterial infection biomarkers -- 3.9.2 Electrochemical genosensors (sandwich format) for the detection of bacterial pathogens in liquid biopsies -- 3.9.3 Electrochemical immunosensing of bacterial pathogens in liquid biopsies -- 3.9.4 Electrochemical immunosensing of invertebrate pathogens in liquid biopsies -- 3.10 Lab-on-chip and telemedicine -- 3.11 Optimal electrochemical biosensor characteristics ( Gao and Lu, 2020 -- Huang et al., 2021 -- Zhang et al., 2020 -- ... -- 3.12 Conclusion and future perspective -- References -- Chapter 4 Electrochemical nano-biosensors: Environmental biomonitoring -- 4.1 Introduction -- 4.2 Electrochemical biosensors -- 4.2.1 Electrochemical affinity biosensors -- 4.3 Nanomaterial engineering for the advancement of electrochemical sensors -- 4.4 Biomonitoring. , 4.5 Chemical contaminants in water -- 4.5.1 Heavy metals -- 4.5.2 Lead (Pb 2   +) -- 4.5.3 Mercury (Hg 2   +) -- 4.5.4 Arsenic (As 3   +, As 5   +) -- 4.6 Phenolic compounds -- 4.7 Cyanotoxins -- 4.8 Pathogens -- 4.8.1 Lab-on-chip (LoC) -- 4.8.2 Lab-in-briefcase (LiB) -- 4.8.3 Microfluidics -- 4.8.4 Electrochemical μ PCR -- 4.8.5 Bacteriophage -- 4.8.6 Bacteria -- 4.9 Pesticides -- 4.9.1 Organophosporous pesticides -- 4.9.2 Fungicide -- 4.10 Soil microbes and pathogens -- 4.11 Nanotechnology for detection and remediation of environmental pollutants -- 4.12 Nanotechnology for water and soil remediation -- 4.13 Nanoscale products for remediation -- 4.13.1 Nano-fertilizer -- 4.13.2 Nano-pesticide -- 4.14 Risk assessment and management of nanomaterials -- 4.15 Conclusions and future perspectives -- References -- Chapter 5 Electrochemical biosensors: Biomonitoring of food adulterants, allergens, and pathogens -- 5.1 Introduction -- 5.1.1 Biosensors -- 5.1.2 Electrochemical biosensors -- 5.1.3 Nanomaterial aided advancement in electrochemical biosensors -- 5.2 Biomonitoring of food adulterants -- 5.2.1 Glutamate -- 5.2.2 Genetically modified organisms (GMO) -- 5.3 Biomonitoring of food allergens -- 5.3.1 Microfluidics in food technology -- 5.3.2 Microfluidics for the biomonitoring of food allergens -- 5.4 Biomonitoring of food-borne pathogens -- 5.4.1 Salmonella spp. -- 5.4.2 Antimicrobial peptides (AMP) as biorecognition elements for the detection of bacteria -- 5.4.3 Molecularly imprinted polymers (MIP) for biomonitoring of food-borne bacteria -- 5.4.4 Bacteriophage -- 5.5 Biomonitoring of food-toxins -- 5.5.1 Microbial fuel cells for food safety and security -- 5.6 Quality control in the food and beverage industry -- 5.6.1 Food-fingerprinting (foodomics) -- 5.6.2 Dairy products -- 5.6.3 Sweeteners -- 5.6.4 Beverages: Coffee and tea -- 5.6.5 Fruit juices. , 5.6.6 Soft drinks.
    Additional Edition: Print version: Singh, Pranveer Electrochemical Biosensors San Diego : Elsevier Science & Technology,c2021 ISBN 9780323906326
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edocfu_9960074537402883
    Format: 1 online resource (247 pages)
    ISBN: 0-323-91050-5
    Note: Intro -- Electrochemical Biosensors: Applications in Diagnostics, Therapeutics, Environment and Food Management -- Copyright -- Contents -- Preface -- Chapter 1 Electrochemical biosensing: Progress and perspectives -- 1.1 Introduction -- 1.2 Biosensors -- 1.3 Optical biosensors -- 1.4 Mechanical biosensors -- 1.5 Electrochemical sensors -- 1.5.1 Components of electrochemical sensors: Electrodes, transducers, or detector device -- 1.5.2 Electrical interface -- 1.5.3 Recognition receptors -- 1.5.4 Antibodies -- 1.5.5 Aptamers -- 1.5.6 DNA, enzymes, and artificial receptors -- 1.6 Development and evolution of electrochemical sensors -- 1.6.1 Screen-printed electrodes (SPE) -- 1.6.2 Synthetic receptors -- 1.7 Portability and miniaturization: Microfluidics in electrochemical biosensors -- 1.7.1 Lab-on-chip (LoC) devices -- 1.7.2 Lab-in-briefcase (LiB) -- 1.7.3 Advantage of microfluidics integrated with electrochemical biosensor -- 1.8 Types of electrochemical biosensors based on electric signals -- 1.8.1 Amperometric sensors -- 1.8.2 Amperometric immunosensors -- 1.8.3 Potentiometric sensors -- 1.8.4 Potentiometric immunosensors -- 1.8.5 Impedance sensor -- 1.8.6 Impedance immunosensors -- 1.8.7 Conductometric sensors -- 1.8.8 Capacitive sensors -- 1.8.9 Gravimetric sensors -- 1.9 Nanomaterials for electrochemical sensor applications -- 1.9.1 Nanohybrids -- 1.9.2 Nanoparticles (NPs) -- 1.9.3 Carbon-based nanomaterials -- 1.9.4 Apoferritin nano-vehicles and metal phosphate labels -- 1.10 Electrochemical immunoassays -- 1.10.1 Nanomaterials in electrochemical immunosensors -- 1.11 Conclusions and future perspectives -- References -- Chapter 2 Nanomaterial based electrochemical biosensing: Progress and perspectives -- 2.1 Introduction -- 2.1.1 Electrochemical immunosensors -- 2.1.2 Type of electrochemical immunosensors based on signal. , 2.1.3 Electrochemical immunoassays -- 2.1.4 Nanomaterial based electrochemical biosensors -- 2.2 Types of nanomaterials -- 2.3 Nanoparticles (NPs) -- 2.3.1 SPR assays based on nanoparticles (NPs) -- 2.3.2 Nanoparticle-enhanced SPR-phase imaging (SPR-PI) -- 2.3.3 Magnetic nanoparticles (MNPs) based SPR assays -- 2.3.4 Advantages of metal nanoparticles in SPR assays -- 2.3.5 Surface plasmon-enhanced fluorescence spectroscopy (SPFS) based detection of agricultural toxins -- 2.3.6 Biofunctionalized metal nanoparticles (NPs) -- 2.3.7 AuNPs/GO and AuNPs/GCE hybrid based electrochemical immunosensors -- 2.3.8 AuNPs based sensors for the detection of clinical biomarkers -- 2.3.9 Colloidal gold-/silver-based electrochemical immunoassay -- 2.3.10 AuNP based quartz crystal microbalance (QCM) immunosensing -- 2.3.11 PANIAuNPs based Impedimetric sensor -- 2.3.12 Multiplexed magneto-immunosensor -- 2.3.13 Mesoporous metallic structures as labels for electrochemical immunoassays -- 2.3.14 Metal phosphate NP labels -- 2.4 Nanomaterials -- 2.4.1 Au and Ag nanomaterials -- 2.4.2 Au and ag-based electrochemical immunosensor -- 2.4.3 Nanomaterial-based enzyme electrodes for the estimation of polyphenols -- 2.4.4 CID-LSPR using gold nanorods (AuNR) for bio-detection -- 2.4.5 Other metal nanomaterials (Cu, Pd, Pt) -- 2.4.6 Carbon-based nanomaterials -- 2.4.7 Carbon nanotubes (CNTs) -- 2.4.7.1 CNTs: Clinical biomarker detection -- 2.4.7.2 CNTs: Detection of polyphenol -- 2.5 Graphene-based nanomaterials -- 2.5.1 Graphene oxide (rGO) -- 2.5.2 Ultrathin graphitic carbon nitride (g-C3N4) nanosheets -- 2.5.3 2D-graphitic carbon nitride nanosheets (CNNSs) -- 2.5.4 2D-nanomaterials and 2D-based nanohybrids -- 2.5.5 Graphene (G)-based composite materials -- 2.5.6 Graphene-based chronoamperometric genosensor for bio-detection. , 2.5.7 Gold-graphene nano-labels for the detection of cancer biomarkers -- 2.5.8 Graphene-based electrochemical CEA immunosensor -- 2.5.9 Magnetic graphene-based electrochemical CEA immunosensor -- 2.5.10 Graphene-based Sandwich immunoassay for the detection of cancer biomarker -- 2.6 C 60 fullerenes and carbon dots -- 2.7 Carbon black -- 2.8 Carbon bucky-paper -- 2.9 Other carbon materials -- 2.10 Apoferritin nano-vehicles -- 2.11 Liposome -- 2.12 Semiconductor nanomaterials -- 2.12.1 SiO 2 nanomaterials -- 2.12.2 Silica nanoparticles -- 2.12.3 Quantum dots -- 2.13 Other nanomaterials -- 2.14 Other labels -- 2.15 Upconverting nanoparticles (UCNPs) -- 2.16 Magnetic beads (MBs) -- 2.17 Conclusion and future outlook -- References -- Further reading -- Chapter 3 Electrochemical biosensors: Biomonitoring of clinically significant biomarkers -- 3.1 Introduction -- 3.2 Electrochemical immunosensing for the assessment of circulating biomarkers -- 3.2.1 Clinical biomarkers -- 3.2.2 Multiplexed electrochemical immunosensors for the detection of cancer biomarkers -- 3.2.3 Mesoporous metallic structures -- 3.2.4 Redox mediators as career tags for the detection of cancer biomarkers -- 3.2.5 Alternative nanomaterial-based strategies for the detection of cancer biomarkers -- 3.2.6 Microfluidic device assisted cancer biomarker detection -- 3.2.7 Nucleic acid-based electrochemical genosensing of circulating biomarkers -- 3.3 Electrochemical sensing of breast cancer biomarkers -- 3.3.1 Electrochemical biosensing of gene-specific mutations and miRNAs associated with breast cancer in biofluids -- 3.3.2 Electrochemical Aptasensors for breast cancer protein circulating biomarkers -- 3.3.3 Electrochemical peptide-biosensor for the detection of circulating breast cancer protein biomarkers. , 3.3.4 Electrochemical biosensing for multiple determination of circulating breast cancer biomarkers -- 3.4 Electrochemical biosensor for the detection of prostate cancer biomarkers -- 3.5 Biomarkers for cardiovascular disease -- 3.5.1 Electrochemical immunosensing of cardiovascular disease biomarkers -- 3.6 Electrochemical biosensing of other disease biomarkers -- 3.6.1 Diabetes -- 3.6.2 Genetic disorder -- 3.7 Electrochemical genosensors for the neurodegenerative disease biomarkers -- 3.8 Electrochemical sensors for the detection and biomonitoring of viral and bacterial pathogenic biomarkers -- 3.8.1 Viral disease biomarkers -- 3.8.2 Electrochemical genosensing of biomarkers for viral infections -- 3.8.3 Minimally invasive electrochemical immunosensing of human immunodeficiency virus (HIV) -- 3.8.4 Pseudorabies virus (PRV) -- 3.8.5 Influenza (flu) virus -- 3.8.6 Dengue virus -- 3.8.7 Human enterovirus 71 (EV71) -- 3.8.8 Human papillomavirus (hrHPV) -- 3.8.9 Human norovirus -- 3.9 Bacterial biomarkers -- 3.9.1 Electrochemical genosensors for bacterial infection biomarkers -- 3.9.2 Electrochemical genosensors (sandwich format) for the detection of bacterial pathogens in liquid biopsies -- 3.9.3 Electrochemical immunosensing of bacterial pathogens in liquid biopsies -- 3.9.4 Electrochemical immunosensing of invertebrate pathogens in liquid biopsies -- 3.10 Lab-on-chip and telemedicine -- 3.11 Optimal electrochemical biosensor characteristics ( Gao and Lu, 2020 -- Huang et al., 2021 -- Zhang et al., 2020 -- ... -- 3.12 Conclusion and future perspective -- References -- Chapter 4 Electrochemical nano-biosensors: Environmental biomonitoring -- 4.1 Introduction -- 4.2 Electrochemical biosensors -- 4.2.1 Electrochemical affinity biosensors -- 4.3 Nanomaterial engineering for the advancement of electrochemical sensors -- 4.4 Biomonitoring. , 4.5 Chemical contaminants in water -- 4.5.1 Heavy metals -- 4.5.2 Lead (Pb 2   +) -- 4.5.3 Mercury (Hg 2   +) -- 4.5.4 Arsenic (As 3   +, As 5   +) -- 4.6 Phenolic compounds -- 4.7 Cyanotoxins -- 4.8 Pathogens -- 4.8.1 Lab-on-chip (LoC) -- 4.8.2 Lab-in-briefcase (LiB) -- 4.8.3 Microfluidics -- 4.8.4 Electrochemical μ PCR -- 4.8.5 Bacteriophage -- 4.8.6 Bacteria -- 4.9 Pesticides -- 4.9.1 Organophosporous pesticides -- 4.9.2 Fungicide -- 4.10 Soil microbes and pathogens -- 4.11 Nanotechnology for detection and remediation of environmental pollutants -- 4.12 Nanotechnology for water and soil remediation -- 4.13 Nanoscale products for remediation -- 4.13.1 Nano-fertilizer -- 4.13.2 Nano-pesticide -- 4.14 Risk assessment and management of nanomaterials -- 4.15 Conclusions and future perspectives -- References -- Chapter 5 Electrochemical biosensors: Biomonitoring of food adulterants, allergens, and pathogens -- 5.1 Introduction -- 5.1.1 Biosensors -- 5.1.2 Electrochemical biosensors -- 5.1.3 Nanomaterial aided advancement in electrochemical biosensors -- 5.2 Biomonitoring of food adulterants -- 5.2.1 Glutamate -- 5.2.2 Genetically modified organisms (GMO) -- 5.3 Biomonitoring of food allergens -- 5.3.1 Microfluidics in food technology -- 5.3.2 Microfluidics for the biomonitoring of food allergens -- 5.4 Biomonitoring of food-borne pathogens -- 5.4.1 Salmonella spp. -- 5.4.2 Antimicrobial peptides (AMP) as biorecognition elements for the detection of bacteria -- 5.4.3 Molecularly imprinted polymers (MIP) for biomonitoring of food-borne bacteria -- 5.4.4 Bacteriophage -- 5.5 Biomonitoring of food-toxins -- 5.5.1 Microbial fuel cells for food safety and security -- 5.6 Quality control in the food and beverage industry -- 5.6.1 Food-fingerprinting (foodomics) -- 5.6.2 Dairy products -- 5.6.3 Sweeteners -- 5.6.4 Beverages: Coffee and tea -- 5.6.5 Fruit juices. , 5.6.6 Soft drinks.
    Additional Edition: Print version: Singh, Pranveer Electrochemical Biosensors San Diego : Elsevier Science & Technology,c2021 ISBN 9780323906326
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    [Place of publication not identified] : Nova Science Publishers Inc
    UID:
    almafu_9960962765002883
    ISBN: 1-63483-453-4
    Series Statement: Science, evolution and creationism Human evolution
    Note: Bibliographic Level Mode of Issuance: Monograph , English
    Additional Edition: ISBN 1-63483-423-2
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    [Place of publication not identified] : Nova Science Publishers Inc
    UID:
    edocfu_9960962765002883
    ISBN: 1-63483-453-4
    Series Statement: Science, evolution and creationism Human evolution
    Note: Bibliographic Level Mode of Issuance: Monograph , English
    Additional Edition: ISBN 1-63483-423-2
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    almahu_BV043479910
    Format: xi, 106 Seiten : , Illustrationen.
    ISBN: 978-81-322-2564-5 , 978-81-322-2565-2
    Language: English
    Subjects: Biology
    RVK:
    Keywords: Drosophila ananassae ; Populationsgenetik ; Polymorphismus ; Inversion ; Chromosomenaberration ; Genfluss
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Newcastle-upon-Tyne, England :Cambridge Scholars Publishing,
    UID:
    almafu_9960177887902883
    Format: 1 online resource (153 pages)
    ISBN: 1-5275-4134-7
    Additional Edition: ISBN 1-5275-3962-8
    Language: English
    Keywords: Libros electrónicos.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages