feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    London u.a. :Chapman & Hall Computing,
    UID:
    almafu_BV009692695
    Format: XIX, 555 S. : Ill., graph. Darst.
    Edition: 1. ed., reprinted
    ISBN: 0-412-45570-6
    Series Statement: Chapman & Hall computing series
    Note: Literaturverz. S. 534 - 542
    Language: English
    Subjects: Psychology
    RVK:
    Keywords: Bildverarbeitung ; Maschinelles Sehen ; Bildverarbeitung ; Mathematische Methode
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    b3kat_BV041838346
    Format: XXXV, 870 S. , Ill., graph. Darst.
    Edition: 4. ed., international edition
    ISBN: 1133593690 , 9781133593690
    Language: English
    Subjects: Computer Science
    RVK:
    Keywords: Bildverarbeitung ; Maschinelles Sehen ; Bildverarbeitung ; Mathematische Methode
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    gbv_393456420
    Format: XII, 438 S. , Ill., graph. Darst. , 235 mm x 155 mm
    ISBN: 3540226753
    Series Statement: Lecture notes in computer science 3117
    Content: This book constitutes the thoroughly refereed joint post proceedings of the international workshop Computer Vision Approaches to Medical Image Analysis, CVAMIA 2004 and Mathematical Methods in Biomedical Image Analysis, MMBIA 2004, both held in Prague, Czech Republic in May 2004 as part of EECV 2004. The 37 revised full papers presented were carefully selected and improved during two rounds of reviewing and recvsion. The papers are organized in topical sections on image acquision techniques, image reconstruction, mathematical methods, medical image segmentation, image registration, and applications
    Additional Edition: Online-Ausg. Sonka, Milan Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis Berlin, Heidelberg : Springer Berlin Heidelberg, 2004 ISBN 9783540226758
    Additional Edition: Erscheint auch als Online-Ausgabe Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis Berlin : Springer, 2004 ISBN 9783540278160
    Language: English
    Subjects: Computer Science
    RVK:
    Keywords: Medizin ; Maschinelles Sehen ; Bildanalyse ; Konferenzschrift ; Kongress ; Konferenzschrift
    URL: Cover
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Book
    Book
    Pacific Grove, Calif. : PWS Publ.
    UID:
    gbv_247831891
    Format: XXIV, 770 S , Ill., graph. Darst
    Edition: 2. ed.
    ISBN: 053495393X
    Note: Previous ed.: 1993 , Includes bibliographical references and index
    Language: English
    Subjects: Computer Science
    RVK:
    Keywords: Bildverarbeitung ; Maschinelles Sehen ; Bildverarbeitung ; Maschinelles Sehen
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    kobvindex_ZIB000011635
    Format: XII, 438 S. : , Ill., graph. Darst.
    ISBN: 3-540-22675-3
    Series Statement: Lecture notes in computer science 3117
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Book
    Book
    Belllingham, Washington :SPIE Press,
    UID:
    kobvindex_ZIB000001752
    Format: 1218 S.
    ISBN: 0-8194-3622-4
    Series Statement: Handbook of medical imaging Vol. 2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    b3kat_BV008358622
    Format: XIX, 555 S. , Ill., zahlr. graph. Darst.
    Edition: 1. ed.
    ISBN: 0412455706
    Series Statement: Chapman & Hall computing series
    Language: English
    Subjects: Psychology
    RVK:
    Keywords: Bildverarbeitung ; Maschinelles Sehen ; Bildverarbeitung ; Mathematische Methode ; Bildverarbeitung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    b3kat_BV023696406
    Edition: 3. ed.
    ISBN: 9780495082521 , 049508252X
    Language: Undetermined
    Subjects: Psychology
    RVK:
    Keywords: Bildverarbeitung ; Mathematische Methode ; Bildverarbeitung ; Maschinelles Sehen
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    gbv_749240717
    Format: Online-Ressource (XII, 438 p. Also available online) , digital
    Edition: Springer eBook Collection. Computer Science
    ISBN: 9783540278160
    Series Statement: Lecture Notes in Computer Science 3117
    Content: This book constitutes the thoroughly refereed joint post proceedings of the international workshop Computer Vision Approaches to Medical Image Analysis, CVAMIA 2004, and Mathematical Methods in Biomedical Image Analysis, MMBIA 2004, both held in Prague, Czech Republic, in May 2004 as part of EECV 2004. The 37 revised full papers presented were carefully selected and improved during two rounds of reviewing and revision. The papers are organized in topical sections on image acquision techniques, image reconstruction, mathematical methods, medical image segmentation, image registration, and applications
    Additional Edition: ISBN 9783540226758
    Additional Edition: Erscheint auch als Druck-Ausgabe Computer vision and mathematical methods in medical and biomedical image analysis Berlin : Springer, 2004 ISBN 3540226753
    Language: English
    Subjects: Computer Science
    RVK:
    Keywords: Medizin ; Maschinelles Sehen ; Bildanalyse ; Konferenzschrift
    URL: Volltext  (lizenzpflichtig)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Kidlington, England :Academic Press,
    UID:
    almahu_9949698026002882
    Format: 1 online resource (700 pages)
    Edition: First edition.
    ISBN: 0-12-813658-8
    Series Statement: The MICCAI Society Book Series
    Note: Front Cover -- Medical Image Analysis -- Copyright -- Section editors -- Contents -- Editors -- Contributors -- Preface -- Nomenclature -- Acknowledgments -- Part I Introductory topics -- 1 Medical imaging modalities -- 1.1 Introduction -- 1.2 Image quality -- 1.2.1 Resolution and noise -- 1.2.2 Comparing image appearance -- 1.2.3 Task-based assessment -- 1.3 Modalities and contrast mechanisms -- 1.3.1 X-ray transmission imaging -- 1.3.2 Molecular imaging -- 1.3.3 Optical imaging -- 1.3.4 Large wavelengths and transversal waves -- 1.3.5 A historical perspective on medical imaging -- 1.3.6 Simulating image formation -- 1.4 Clinical scenarios -- 1.4.1 Stroke -- 1.4.2 Oncology -- 1.4.3 Osteonecrosis -- 1.5 Exercises -- References -- 2 Mathematical preliminaries -- 2.1 Introduction -- 2.2 Imaging: definitions, quality and similarity measures -- 2.3 Vector and matrix theory results -- 2.3.1 General concepts -- 2.3.2 Eigenanalysis -- 2.3.3 Singular value decomposition -- 2.3.4 Matrix exponential -- 2.3.4.1 Generalities -- 2.3.4.2 An example which gives rise to a matrix exponential -- 2.4 Linear processing and transformed domains -- 2.4.1 Linear processing. Convolution -- 2.4.2 Transformed domains -- 2.4.2.1 1D Fourier transform -- 2.4.2.2 2D Fourier transform -- 2.4.2.3 N-dimensional Fourier transform -- 2.5 Calculus -- 2.5.1 Derivatives, gradients, and Laplacians -- 2.5.2 Calculus of variations -- 2.5.3 Some specific cases -- 2.5.3.1 Laplace equation -- 2.5.3.2 Heat (or diffusion) equation -- 2.5.4 Leibniz rule for interchanging integrals and derivatives -- 2.6 Notions on shapes -- 2.6.1 Procrustes matching between two planar shapes -- 2.6.2 Mean shape -- 2.6.3 Procrustes analysis in higher dimensions -- 2.7 Exercises -- References -- 3 Regression and classification -- 3.1 Introduction -- Nomenclature -- 3.1.1 Regression as a minimization problem. , 3.1.2 Regression from the statistical angle -- 3.2 Multidimensional linear regression -- 3.2.1 Direction of prediction -- 3.2.2 Risk minimization -- 3.2.2.1 Gauss-Markov theorem -- 3.2.3 Measures of fitting and prediction quality -- 3.2.4 Out-of-sample performance: cross-validation methods -- 3.2.5 Shrinkage methods -- 3.2.5.1 Dealing with multicollinearity: ridge regression -- 3.2.5.2 Dealing with sparsity: the LASSO -- 3.2.5.3 Other general regularizers -- 3.3 Treating non-linear problems with linear models -- 3.3.1 Generalized linear models: transforming y -- 3.3.1.1 Classification as a regression problem: logistic regression -- 3.3.2 Feature spaces: transforming X -- 3.3.2.1 Categorical variables -- 3.3.2.2 Linearizing non-linear regression: functional bases -- 3.3.3 Going further -- 3.4 Exercises -- References -- 4 Estimation and inference -- 4.1 Introduction: what is estimation? -- 4.2 Sampling distributions -- 4.2.1 Cumulative distribution function -- 4.2.2 The Kolmogorov-Smirnov test -- 4.2.3 Histogram as probability density function estimate -- 4.2.4 The chi-squared test -- 4.3 Estimation. Data-based methods -- 4.3.1 Definition of estimator and criteria for design and performance measurement -- 4.3.2 A benchmark for unbiased estimators: the Cramer-Rao lower bound -- 4.3.3 Maximum likelihood estimator -- 4.3.4 The expectation-maximization method -- 4.4 A working example -- 4.5 Estimation. Bayesian methods -- 4.5.1 Definition of Bayesian estimator and design criteria -- 4.5.2 Design criteria for Bayesian estimators -- 4.5.3 Performance measurement -- 4.5.4 The Gaussian case -- 4.5.5 Conjugate distribution and conjugate priors -- 4.5.6 A working example -- 4.6 Monte Carlo methods -- 4.6.1 A non-stochastic use of Monte Carlo -- 4.7 Exercises -- References -- Part II Image representation and processing. , 5 Image representation and 2D signal processing -- 5.1 Image representation -- 5.2 Images as 2D signals -- 5.2.1 Linear space-invariant systems -- Properties of 2D convolution -- 5.2.2 Linear Circular Invariance systems -- 5.3 Frequency representation of 2D signals -- 5.3.1 Fourier transform of continuous signals -- 5.3.2 Discrete-space Fourier transform -- 5.3.3 2D discrete Fourier transform -- 5.3.4 Discrete cosine transform -- 5.4 Image sampling -- 5.4.1 Introduction -- 5.4.2 Basics on 2D sampling theory -- 5.4.2.1 Inexact reconstruction -- 5.4.3 Nyquist sampling density -- 5.5 Image interpolation -- 5.5.1 Typical interpolator kernels -- 5.5.1.1 Windowed sinc -- 5.5.1.2 Nearest neighbor interpolation -- 5.5.1.3 Linear interpolation -- 5.5.1.4 Cubic interpolation -- 5.6 Image quantization -- 5.7 Further reading -- 5.8 Exercises -- References -- 6 Image filtering: enhancement and restoration -- 6.1 Medical imaging filtering -- 6.2 Point-to-point operations -- 6.2.1 Basic operations -- 6.2.2 Contrast enhancement -- 6.2.3 Histogram processing -- Histogram equalization -- Histogram specification -- 6.3 Spatial operations -- 6.3.1 Linear filtering -- Smoothing filters -- Highlighting borders and small details -- 6.3.2 Non-linear filters -- Median filter -- Pseudomedian filter -- 6.4 Operations in the transform domain -- 6.4.1 Linear filters in the frequency domain -- 6.4.2 Homomorphic processing -- 6.5 Model-based filtering: image restoration -- 6.5.1 Noise models -- 6.5.2 Point spread function -- 6.5.3 Image restoration methods -- 6.6 Further reading -- 6.7 Exercises -- References -- 7 Multiscale and multiresolution analysis -- 7.1 Introduction -- 7.2 The image pyramid -- 7.3 The Gaussian scale-space -- 7.4 Properties of the Gaussian scale-space -- 7.4.1 The frequency perspective -- 7.4.2 The semi-group property -- 7.4.3 The analytical perspective. , 7.4.4 The heat diffusion perspective -- 7.5 Scale selection -- 7.5.1 Blob detection -- 7.5.2 Edge detection -- 7.6 The scale-space histogram -- 7.7 Exercises -- References -- Part III Medical image segmentation -- 8 Statistical shape models -- 8.1 Introduction -- 8.2 Representing structures with points -- 8.3 Comparing shapes -- 8.4 Aligning two shapes -- 8.5 Aligning a set of shapes -- 8.5.1 Algorithm for aligning sets of shapes -- 8.5.2 Example of aligning shapes -- 8.6 Building shape models -- 8.6.1 Choosing the number of modes -- 8.6.2 Examples of shape models -- 8.6.3 Matching a model to known points -- 8.7 Statistical models of texture -- 8.8 Combined models of appearance (shape and texture) -- 8.9 Image search -- 8.10 Exhaustive search -- 8.10.1 Regression voting -- 8.11 Alternating approaches -- 8.11.1 Searching for each point -- 8.11.2 Shape model as regularizer -- 8.12 Constrained local models -- 8.12.1 Iteratively updating parameters -- 8.12.2 Extracting features -- 8.12.3 Updating parameters -- 8.13 3D models -- 8.14 Recapitulation -- 8.15 Exercises -- References -- 9 Segmentation by deformable models -- 9.1 Introduction -- 9.2 Boundary evolution -- 9.2.1 Marker evolution -- 9.2.2 Level set evolution -- 9.3 Forces and speed functions -- 9.3.1 Parametric model forces -- 9.3.2 Geometric model speed functions -- 9.3.3 Non-conservative external forces -- 9.4 Numerical implementation -- 9.4.1 Parametric model implementation -- 9.4.2 Geometric model implementation -- 9.5 Other considerations -- 9.6 Recapitulation -- 9.7 Exercises -- References -- 10 Graph cut-based segmentation -- 10.1 Introduction -- 10.2 Graph theory -- 10.2.1 What is a graph? -- 10.2.2 Flow networks, max flow, and min cut -- 10.3 Modeling image segmentation using Markov random fields -- 10.4 Energy function, image term, and regularization term -- 10.4.1 Image term. , 10.4.2 Regularization term -- 10.5 Graph optimization and necessary conditions -- 10.5.1 Energy minimization and minimum cuts -- 10.5.2 Necessary conditions -- 10.5.3 Minimum cut graph construction -- 10.5.4 Limitations (and solutions) -- 10.6 Interactive segmentation -- 10.6.1 Hard constraints and user interaction -- 10.6.2 Example: coronary arteries in CT angiography -- 10.7 More than two labels -- 10.7.1 Move-making algorithm(s) -- 10.7.2 Ordered labels and convex priors -- 10.7.3 Optimal surfaces -- 10.7.4 Example: airways in CT -- 10.8 Recapitulation -- 10.9 Exercises -- References -- Part IV Medical image registration -- 11 Points and surface registration -- 11.1 Introduction -- 11.2 Points registration -- 11.2.1 Procrustes analysis for aligning corresponding point sets -- 11.2.2 Quaternion algorithm for registering two corresponding point sets -- 11.2.3 Iterative closest point algorithm for general points registration -- 11.2.4 Thin plate spline for non-rigid alignment of two corresponding point sets -- 11.3 Surface registration -- 11.3.1 Surface mesh representation -- 11.3.2 Surface parameterization -- 11.3.2.1 Conformal open surface parameterization -- 11.3.2.2 Area-preserving spherical parameterization -- 11.3.3 Surface registration strategies -- 11.3.3.1 SPHARM surface registration -- 11.3.3.2 Landmark-guided SPHARM surface registration -- 11.3.3.3 Landmark-guided open surface registration -- 11.4 Summary -- 11.5 Exercises -- References -- 12 Graph matching and registration -- 12.1 Introduction -- 12.2 Graph-based image registration -- 12.2.1 Graphical model construction -- 12.2.2 Optimization -- 12.2.3 Application to lung registration -- 12.2.4 Conclusion -- 12.3 Exercises -- References -- 13 Parametric volumetric registration -- 13.1 Introduction to volumetric registration -- 13.1.1 Definition and applications-- 13.1.2 VR as energy minimization.
    Additional Edition: Print version: Frangi, Alejandro Medical Image Analysis San Diego : Elsevier Science & Technology,c2023 ISBN 9780128136577
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages