feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Elsevier,
    UID:
    almahu_9948025650102882
    Format: 1 online resource (431 pages) : , illustrations (some color), photographs.
    Series Statement: Woodhead Publishing Series in Electronic and Optical Materials ; Number 90
    Note: Front Cover -- Optical Interconnects for Data Centers -- Copyright Page -- Contents -- List of contributors -- Biography -- Preface -- Woodhead publishing series in electronic and optical materials -- I. Introduction -- 1 Data center architectures -- 1.1 Introduction -- 1.2 Data center environment considerations -- 1.3 Data center classifications -- 1.4 Application architectures -- 1.5 Cloud data center architectures -- 1.6 Physical architecture -- 1.6.1 Layer 2 and Layer 3 network architectures -- 1.7 Data center design considerations -- 1.7.1 Agility and elasticity -- 1.7.2 Flattened, converged networks -- 1.7.3 Virtualization and latency -- 1.7.4 Scalability -- 1.7.5 Network subscription level -- 1.7.6 Availability and reliability -- 1.7.7 Network security -- 1.8 Next generation data center architectures -- 1.9 Optical interconnects for data centers -- References -- 2 Optical interconnects: fundamentals -- 2.1 Optical interconnects: the driver behind future data centers -- 2.2 Classes of optical interconnects in data centers -- 2.2.1 On-board interconnects -- 2.2.2 Board-to-board interconnects -- 2.2.3 Rack-to-rack interconnects and AOCs -- 2.3 Current status and future trends of optical interconnects systems -- 2.3.1 Active optical cables -- 2.3.2 Mid-board optical engines -- 2.3.3 Techno-economic requirements of future optical interconnects -- 2.3.3.1 Energy efficiency -- 2.3.3.2 Cost reduction -- 2.3.3.3 Longer reach -- 2.4 Overview of photonic key enabling technologies -- 2.4.1 Photonic integrated circuit technologies -- 2.4.2 III-V on SOI active devices -- 2.4.3 Modulators -- 2.4.4 Photo-detectors -- 2.4.5 Optochips and 3D integration -- 2.4.6 Optical PCBs -- 2.4.7 Optical memory elements -- 2.5 Summary and practical conclusions -- References -- 3 Key requirements for optical interconnects within data centers -- 3.1 An explosion of data. , 3.1.1 The data deluge: the data explosion fueled by Internet of Things -- 3.1.2 IoT and cyber physical systems: the new challenges for data centers -- 3.2 What are data centers? -- 3.2.1 A brief taxonomy of data centers -- 3.2.2 Energy is a key challenge for data centers -- 3.2.3 From data centers to racks to blades to chips: various architectures -- 3.3 Data communication requirements -- 3.4 Optical interconnect: a solution to energy and bandwidth requirements? -- 3.4.1 Optical interconnect between data centers -- 3.4.2 Optical interconnect between racks -- 3.4.3 Optical interconnect between blades and boards -- 3.4.4 Optical interconnect between chips and dies -- 3.5 Conclusion -- References -- II. Materials and Components -- 4 Indium phosphide (InP) for optical interconnects -- 4.1 Introduction -- 4.2 InP photonic integration platforms -- 4.3 State-of-the-art in InP photonic integrated circuits (PICs) for data centers -- 4.3.1 Transceiver InP PICs by vertical integration -- 4.3.1.1 Transmitter PICs -- 4.3.1.2 Receiver PICs -- 4.3.2 Transceivers: other integration approaches -- 4.3.3 InP PICs for optical switching -- 4.3.4 Comparison of InP and Si photonics -- 4.4 Future trends -- 4.4.1 Optoelectronic integrated circuits (OEICs) -- 4.4.2 Heterogeneous integration -- 4.4.3 Inexpensive and innovative integrated photonics -- References -- 5 Photonic crystal cavities for optical interconnects -- 5.1 Photonic crystal background -- 5.1.1 Theory -- 5.1.2 Photonic crystal cavities: the ultimate confinement of light -- 5.1.3 Fabrication -- 5.2 Mass production -- 5.3 Light emission -- 5.3.1 Photoluminescence -- 5.3.2 Electroluminescence -- 5.4 The fiber coupling problem and its solution -- 5.5 Optical modulation -- 5.5.1 High speed (GHz) electro-optic modulation -- 5.6 Photo-detection -- 5.7 Outlook -- References. , 6 Types and performance of high performing multi-mode polymer waveguides for optical interconnects -- 6.1 Introduction -- 6.2 Polynorbornene -- 6.2.1 Polynorbornene waveguide fabrication -- 6.2.2 Polynorbornene waveguide performance -- 6.3 Silicones -- 6.4 Connectors and coupling -- 6.4.1 In-plane coupling -- 6.4.2 Out-of-plane coupling -- 6.5 Conclusions -- References -- 7 Design and fabrication of multimode polymer waveguides for optical interconnects -- 7.1 Introduction -- 7.2 Structure of multimode polymer optical waveguide -- 7.2.1 Step-index core -- 7.2.2 Graded-index core -- 7.3 Fabrication method -- 7.3.1 Softlithography method [18] -- 7.3.2 Photo-addressing method -- 7.3.3 The Mosquito method -- 7.4 Characterization -- 7.4.1 Waveguide structure and refractive index profile -- 7.4.2 Propagation loss -- 7.4.3 Connection loss with MMF -- 7.4.4 Inter-channel crosstalk -- 7.4.5 Multichannel operation -- 7.5 Polymer optical waveguide circuit for optical PCB -- 7.6 Summary -- References -- 8 Silicon photonics for multi-mode transmission -- 8.1 Expectations for optical interconnection -- 8.1.1 Wide bandwidth over long distances -- 8.1.2 High density -- 8.1.3 EMI immunity -- 8.1.4 Reduced size and weight of cabling -- 8.2 Multi-mode wiring for silicon photonics technology -- 8.2.1 Basic concept -- 8.2.2 Multi-mode optical transmission line with a wavelength of 1.3μm -- 8.3 Chip-scale silicon photonics transceiver "optical I/O core" -- 8.3.1 Design concept -- 8.3.2 Optical I/O core and its constituent elements -- 8.3.3 Fundamental photonics devices -- 8.3.4 CMOS ICs -- 8.3.5 Optical coupling structure -- 8.3.5.1 Packaging -- 8.4 Evaluation -- 8.4.1 Optical coupling (encircled flux) -- 8.4.2 Transmission characteristics -- 8.5 Application -- 8.5.1 Transceivers -- 8.5.2 System LSI with optical I/Os -- References. , 9 Scalable three-dimensional optical interconnects for data centers -- 9.1 Introduction -- 9.2 Photonic and three-dimensional interconnects -- 9.3 Optical architecture: three-dimensional-NoC -- 9.3.1 Proposed implementation -- 9.3.2 Quantitative comparison: corona, firefly and three-dimensional-NoC -- 9.3.3 Optical communication: intra and inter-group -- 9.3.4 Router microarchitecture -- 9.4 Reconfiguration -- 9.4.1 Bandwidth reallocation -- 9.4.2 Dynamic reconfiguration technique -- 9.4.3 Power reduction technique -- 9.5 Performance evaluation -- 9.5.1 Simulation set up -- 9.5.1.1 Splash-2: 64 cores -- 9.5.1.2 PARSEC and SPEC CPU2006: 64 cores -- 9.5.1.3 Synthetic traffic: 256 cores -- 9.5.2 Energy comparison -- 9.5.2.1 Optical energy and loss model -- 9.5.2.2 Optical power reduction -- 9.6 Conclusions and future directions -- References -- 10 Electronic drivers/TIAs for optical interconnects -- Editors -- Rationale -- 10.1 Co-design and co-simulation of electronics and photonics -- 10.2 Electronic drivers -- 10.2.1 VCSEL drivers -- 10.3 Transimpedance amplifiers -- References -- III. Circuit Boards -- 11 Electrical and photonic off-chip interconnection and system integration -- 11.1 Introduction -- 11.1.1 Moore's law and off-chip I/O trends -- 11.1.2 Packaging in retrospect: current challenges and needs -- 11.2 Emerging electrical and photonic interconnects -- 11.2.1 Silicon interposer technology: "the good and the bad" -- 11.2.2 Silicon photonics and optical coupling -- 11.3 Large-scale interconnected system using a "silicon bridging" concept -- 11.3.1 System overview -- 11.3.2 Self-alignment devices and performance -- 11.3.3 Electrical flexible interconnect integration with photonic interconnects -- 11.3.4 3D stacked logic, photonics, and thermal challenges -- 11.4 Conclusion -- References. , 12 Electro-optical circuit boards with single- or multi-mode optical interconnects -- 12.1 Motivation and classification of optical interconnects at the board level -- 12.2 Manufacturing of integrated planar polymer waveguides -- 12.2.1 Basic concept of EOCBs -- 12.2.2 Manufacturing of an electro-optical PCB -- 12.2.3 Manufacturing of planar polymer waveguides -- 12.2.4 Integration of planar polymer waveguides -- 12.2.5 Technology demonstrator: on-board optical communication -- 12.2.6 Polymer waveguides on flexible substrates -- 12.3 Integrated glass waveguide based EOCBs -- 12.3.1 Basic concept -- 12.3.2 Glass waveguide panel fabrication -- 12.3.3 Integration of glass waveguide panels in PCB stack-ups -- 12.3.4 Fiber-to-board and chip-to-board coupling interface -- 12.3.5 Optical backplane demonstration -- 12.4 Mass production and reliability -- References -- 13 International and industrial standardization of optical circuit board technologies -- 13.1 Introduction -- 13.1.1 Diversity in OPCB Types -- 13.1.1.1 Fiber optic circuit laminates -- 13.1.1.2 Polymer waveguides -- 13.1.1.3 Planar glass waveguides -- 13.1.1.4 Free space optics -- 13.1.1.5 Target applications -- 13.2 Industrial manufacturing processes for OPCBs -- 13.2.1 Fiber optic circuit laminates -- 13.2.1.1 Introduction -- 13.2.1.2 Fiber laying technology -- 13.2.1.3 Fiber optic circuit laminates manufacturing process -- Product requirements -- 13.2.1.4 Fiber coating -- Coating process -- Coating material -- 13.2.1.5 Future outlook for fiber optic flexplane technologies -- 13.2.2 Polymeric planar embedded optical waveguides -- 13.2.3 Glass waveguide OPCBs -- 13.3 International standardization of OPCBs -- 13.3.1 International Electrotechnical Commission (IEC) -- 13.3.2 Polymer MT connector standard -- 13.4 OPCB measurement -- 13.4.1 Measurement definition system for OPCBs. , 13.4.1.1 Measurement definition system requirements.
    Additional Edition: ISBN 0-08-100512-1
    Additional Edition: ISBN 0-08-100513-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    UID:
    b3kat_BV024512579
    Format: 1 Online-Ressource
    Note: Berlin, Techn. Univ., Diss., 2004
    Language: English
    Keywords: Hochschulschrift
    Author information: Tekin, Tolga 1968-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    b3kat_BV024512443
    Format: IX, 145 S. , Ill., graph. Darst.
    Note: Berlin, Techn. Univ., Diss., 2004
    Language: English
    Keywords: Hochschulschrift
    Author information: Tekin, Tolga 1968-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Elsevier,
    UID:
    edoccha_9960074144802883
    Format: 1 online resource (431 pages) : , illustrations (some color), photographs.
    Series Statement: Woodhead Publishing Series in Electronic and Optical Materials ; Number 90
    Note: Front Cover -- Optical Interconnects for Data Centers -- Copyright Page -- Contents -- List of contributors -- Biography -- Preface -- Woodhead publishing series in electronic and optical materials -- I. Introduction -- 1 Data center architectures -- 1.1 Introduction -- 1.2 Data center environment considerations -- 1.3 Data center classifications -- 1.4 Application architectures -- 1.5 Cloud data center architectures -- 1.6 Physical architecture -- 1.6.1 Layer 2 and Layer 3 network architectures -- 1.7 Data center design considerations -- 1.7.1 Agility and elasticity -- 1.7.2 Flattened, converged networks -- 1.7.3 Virtualization and latency -- 1.7.4 Scalability -- 1.7.5 Network subscription level -- 1.7.6 Availability and reliability -- 1.7.7 Network security -- 1.8 Next generation data center architectures -- 1.9 Optical interconnects for data centers -- References -- 2 Optical interconnects: fundamentals -- 2.1 Optical interconnects: the driver behind future data centers -- 2.2 Classes of optical interconnects in data centers -- 2.2.1 On-board interconnects -- 2.2.2 Board-to-board interconnects -- 2.2.3 Rack-to-rack interconnects and AOCs -- 2.3 Current status and future trends of optical interconnects systems -- 2.3.1 Active optical cables -- 2.3.2 Mid-board optical engines -- 2.3.3 Techno-economic requirements of future optical interconnects -- 2.3.3.1 Energy efficiency -- 2.3.3.2 Cost reduction -- 2.3.3.3 Longer reach -- 2.4 Overview of photonic key enabling technologies -- 2.4.1 Photonic integrated circuit technologies -- 2.4.2 III-V on SOI active devices -- 2.4.3 Modulators -- 2.4.4 Photo-detectors -- 2.4.5 Optochips and 3D integration -- 2.4.6 Optical PCBs -- 2.4.7 Optical memory elements -- 2.5 Summary and practical conclusions -- References -- 3 Key requirements for optical interconnects within data centers -- 3.1 An explosion of data. , 3.1.1 The data deluge: the data explosion fueled by Internet of Things -- 3.1.2 IoT and cyber physical systems: the new challenges for data centers -- 3.2 What are data centers? -- 3.2.1 A brief taxonomy of data centers -- 3.2.2 Energy is a key challenge for data centers -- 3.2.3 From data centers to racks to blades to chips: various architectures -- 3.3 Data communication requirements -- 3.4 Optical interconnect: a solution to energy and bandwidth requirements? -- 3.4.1 Optical interconnect between data centers -- 3.4.2 Optical interconnect between racks -- 3.4.3 Optical interconnect between blades and boards -- 3.4.4 Optical interconnect between chips and dies -- 3.5 Conclusion -- References -- II. Materials and Components -- 4 Indium phosphide (InP) for optical interconnects -- 4.1 Introduction -- 4.2 InP photonic integration platforms -- 4.3 State-of-the-art in InP photonic integrated circuits (PICs) for data centers -- 4.3.1 Transceiver InP PICs by vertical integration -- 4.3.1.1 Transmitter PICs -- 4.3.1.2 Receiver PICs -- 4.3.2 Transceivers: other integration approaches -- 4.3.3 InP PICs for optical switching -- 4.3.4 Comparison of InP and Si photonics -- 4.4 Future trends -- 4.4.1 Optoelectronic integrated circuits (OEICs) -- 4.4.2 Heterogeneous integration -- 4.4.3 Inexpensive and innovative integrated photonics -- References -- 5 Photonic crystal cavities for optical interconnects -- 5.1 Photonic crystal background -- 5.1.1 Theory -- 5.1.2 Photonic crystal cavities: the ultimate confinement of light -- 5.1.3 Fabrication -- 5.2 Mass production -- 5.3 Light emission -- 5.3.1 Photoluminescence -- 5.3.2 Electroluminescence -- 5.4 The fiber coupling problem and its solution -- 5.5 Optical modulation -- 5.5.1 High speed (GHz) electro-optic modulation -- 5.6 Photo-detection -- 5.7 Outlook -- References. , 6 Types and performance of high performing multi-mode polymer waveguides for optical interconnects -- 6.1 Introduction -- 6.2 Polynorbornene -- 6.2.1 Polynorbornene waveguide fabrication -- 6.2.2 Polynorbornene waveguide performance -- 6.3 Silicones -- 6.4 Connectors and coupling -- 6.4.1 In-plane coupling -- 6.4.2 Out-of-plane coupling -- 6.5 Conclusions -- References -- 7 Design and fabrication of multimode polymer waveguides for optical interconnects -- 7.1 Introduction -- 7.2 Structure of multimode polymer optical waveguide -- 7.2.1 Step-index core -- 7.2.2 Graded-index core -- 7.3 Fabrication method -- 7.3.1 Softlithography method [18] -- 7.3.2 Photo-addressing method -- 7.3.3 The Mosquito method -- 7.4 Characterization -- 7.4.1 Waveguide structure and refractive index profile -- 7.4.2 Propagation loss -- 7.4.3 Connection loss with MMF -- 7.4.4 Inter-channel crosstalk -- 7.4.5 Multichannel operation -- 7.5 Polymer optical waveguide circuit for optical PCB -- 7.6 Summary -- References -- 8 Silicon photonics for multi-mode transmission -- 8.1 Expectations for optical interconnection -- 8.1.1 Wide bandwidth over long distances -- 8.1.2 High density -- 8.1.3 EMI immunity -- 8.1.4 Reduced size and weight of cabling -- 8.2 Multi-mode wiring for silicon photonics technology -- 8.2.1 Basic concept -- 8.2.2 Multi-mode optical transmission line with a wavelength of 1.3μm -- 8.3 Chip-scale silicon photonics transceiver "optical I/O core" -- 8.3.1 Design concept -- 8.3.2 Optical I/O core and its constituent elements -- 8.3.3 Fundamental photonics devices -- 8.3.4 CMOS ICs -- 8.3.5 Optical coupling structure -- 8.3.5.1 Packaging -- 8.4 Evaluation -- 8.4.1 Optical coupling (encircled flux) -- 8.4.2 Transmission characteristics -- 8.5 Application -- 8.5.1 Transceivers -- 8.5.2 System LSI with optical I/Os -- References. , 9 Scalable three-dimensional optical interconnects for data centers -- 9.1 Introduction -- 9.2 Photonic and three-dimensional interconnects -- 9.3 Optical architecture: three-dimensional-NoC -- 9.3.1 Proposed implementation -- 9.3.2 Quantitative comparison: corona, firefly and three-dimensional-NoC -- 9.3.3 Optical communication: intra and inter-group -- 9.3.4 Router microarchitecture -- 9.4 Reconfiguration -- 9.4.1 Bandwidth reallocation -- 9.4.2 Dynamic reconfiguration technique -- 9.4.3 Power reduction technique -- 9.5 Performance evaluation -- 9.5.1 Simulation set up -- 9.5.1.1 Splash-2: 64 cores -- 9.5.1.2 PARSEC and SPEC CPU2006: 64 cores -- 9.5.1.3 Synthetic traffic: 256 cores -- 9.5.2 Energy comparison -- 9.5.2.1 Optical energy and loss model -- 9.5.2.2 Optical power reduction -- 9.6 Conclusions and future directions -- References -- 10 Electronic drivers/TIAs for optical interconnects -- Editors -- Rationale -- 10.1 Co-design and co-simulation of electronics and photonics -- 10.2 Electronic drivers -- 10.2.1 VCSEL drivers -- 10.3 Transimpedance amplifiers -- References -- III. Circuit Boards -- 11 Electrical and photonic off-chip interconnection and system integration -- 11.1 Introduction -- 11.1.1 Moore's law and off-chip I/O trends -- 11.1.2 Packaging in retrospect: current challenges and needs -- 11.2 Emerging electrical and photonic interconnects -- 11.2.1 Silicon interposer technology: "the good and the bad" -- 11.2.2 Silicon photonics and optical coupling -- 11.3 Large-scale interconnected system using a "silicon bridging" concept -- 11.3.1 System overview -- 11.3.2 Self-alignment devices and performance -- 11.3.3 Electrical flexible interconnect integration with photonic interconnects -- 11.3.4 3D stacked logic, photonics, and thermal challenges -- 11.4 Conclusion -- References. , 12 Electro-optical circuit boards with single- or multi-mode optical interconnects -- 12.1 Motivation and classification of optical interconnects at the board level -- 12.2 Manufacturing of integrated planar polymer waveguides -- 12.2.1 Basic concept of EOCBs -- 12.2.2 Manufacturing of an electro-optical PCB -- 12.2.3 Manufacturing of planar polymer waveguides -- 12.2.4 Integration of planar polymer waveguides -- 12.2.5 Technology demonstrator: on-board optical communication -- 12.2.6 Polymer waveguides on flexible substrates -- 12.3 Integrated glass waveguide based EOCBs -- 12.3.1 Basic concept -- 12.3.2 Glass waveguide panel fabrication -- 12.3.3 Integration of glass waveguide panels in PCB stack-ups -- 12.3.4 Fiber-to-board and chip-to-board coupling interface -- 12.3.5 Optical backplane demonstration -- 12.4 Mass production and reliability -- References -- 13 International and industrial standardization of optical circuit board technologies -- 13.1 Introduction -- 13.1.1 Diversity in OPCB Types -- 13.1.1.1 Fiber optic circuit laminates -- 13.1.1.2 Polymer waveguides -- 13.1.1.3 Planar glass waveguides -- 13.1.1.4 Free space optics -- 13.1.1.5 Target applications -- 13.2 Industrial manufacturing processes for OPCBs -- 13.2.1 Fiber optic circuit laminates -- 13.2.1.1 Introduction -- 13.2.1.2 Fiber laying technology -- 13.2.1.3 Fiber optic circuit laminates manufacturing process -- Product requirements -- 13.2.1.4 Fiber coating -- Coating process -- Coating material -- 13.2.1.5 Future outlook for fiber optic flexplane technologies -- 13.2.2 Polymeric planar embedded optical waveguides -- 13.2.3 Glass waveguide OPCBs -- 13.3 International standardization of OPCBs -- 13.3.1 International Electrotechnical Commission (IEC) -- 13.3.2 Polymer MT connector standard -- 13.4 OPCB measurement -- 13.4.1 Measurement definition system for OPCBs. , 13.4.1.1 Measurement definition system requirements.
    Additional Edition: ISBN 0-08-100512-1
    Additional Edition: ISBN 0-08-100513-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Elsevier,
    UID:
    edocfu_9960074144802883
    Format: 1 online resource (431 pages) : , illustrations (some color), photographs.
    Series Statement: Woodhead Publishing Series in Electronic and Optical Materials ; Number 90
    Note: Front Cover -- Optical Interconnects for Data Centers -- Copyright Page -- Contents -- List of contributors -- Biography -- Preface -- Woodhead publishing series in electronic and optical materials -- I. Introduction -- 1 Data center architectures -- 1.1 Introduction -- 1.2 Data center environment considerations -- 1.3 Data center classifications -- 1.4 Application architectures -- 1.5 Cloud data center architectures -- 1.6 Physical architecture -- 1.6.1 Layer 2 and Layer 3 network architectures -- 1.7 Data center design considerations -- 1.7.1 Agility and elasticity -- 1.7.2 Flattened, converged networks -- 1.7.3 Virtualization and latency -- 1.7.4 Scalability -- 1.7.5 Network subscription level -- 1.7.6 Availability and reliability -- 1.7.7 Network security -- 1.8 Next generation data center architectures -- 1.9 Optical interconnects for data centers -- References -- 2 Optical interconnects: fundamentals -- 2.1 Optical interconnects: the driver behind future data centers -- 2.2 Classes of optical interconnects in data centers -- 2.2.1 On-board interconnects -- 2.2.2 Board-to-board interconnects -- 2.2.3 Rack-to-rack interconnects and AOCs -- 2.3 Current status and future trends of optical interconnects systems -- 2.3.1 Active optical cables -- 2.3.2 Mid-board optical engines -- 2.3.3 Techno-economic requirements of future optical interconnects -- 2.3.3.1 Energy efficiency -- 2.3.3.2 Cost reduction -- 2.3.3.3 Longer reach -- 2.4 Overview of photonic key enabling technologies -- 2.4.1 Photonic integrated circuit technologies -- 2.4.2 III-V on SOI active devices -- 2.4.3 Modulators -- 2.4.4 Photo-detectors -- 2.4.5 Optochips and 3D integration -- 2.4.6 Optical PCBs -- 2.4.7 Optical memory elements -- 2.5 Summary and practical conclusions -- References -- 3 Key requirements for optical interconnects within data centers -- 3.1 An explosion of data. , 3.1.1 The data deluge: the data explosion fueled by Internet of Things -- 3.1.2 IoT and cyber physical systems: the new challenges for data centers -- 3.2 What are data centers? -- 3.2.1 A brief taxonomy of data centers -- 3.2.2 Energy is a key challenge for data centers -- 3.2.3 From data centers to racks to blades to chips: various architectures -- 3.3 Data communication requirements -- 3.4 Optical interconnect: a solution to energy and bandwidth requirements? -- 3.4.1 Optical interconnect between data centers -- 3.4.2 Optical interconnect between racks -- 3.4.3 Optical interconnect between blades and boards -- 3.4.4 Optical interconnect between chips and dies -- 3.5 Conclusion -- References -- II. Materials and Components -- 4 Indium phosphide (InP) for optical interconnects -- 4.1 Introduction -- 4.2 InP photonic integration platforms -- 4.3 State-of-the-art in InP photonic integrated circuits (PICs) for data centers -- 4.3.1 Transceiver InP PICs by vertical integration -- 4.3.1.1 Transmitter PICs -- 4.3.1.2 Receiver PICs -- 4.3.2 Transceivers: other integration approaches -- 4.3.3 InP PICs for optical switching -- 4.3.4 Comparison of InP and Si photonics -- 4.4 Future trends -- 4.4.1 Optoelectronic integrated circuits (OEICs) -- 4.4.2 Heterogeneous integration -- 4.4.3 Inexpensive and innovative integrated photonics -- References -- 5 Photonic crystal cavities for optical interconnects -- 5.1 Photonic crystal background -- 5.1.1 Theory -- 5.1.2 Photonic crystal cavities: the ultimate confinement of light -- 5.1.3 Fabrication -- 5.2 Mass production -- 5.3 Light emission -- 5.3.1 Photoluminescence -- 5.3.2 Electroluminescence -- 5.4 The fiber coupling problem and its solution -- 5.5 Optical modulation -- 5.5.1 High speed (GHz) electro-optic modulation -- 5.6 Photo-detection -- 5.7 Outlook -- References. , 6 Types and performance of high performing multi-mode polymer waveguides for optical interconnects -- 6.1 Introduction -- 6.2 Polynorbornene -- 6.2.1 Polynorbornene waveguide fabrication -- 6.2.2 Polynorbornene waveguide performance -- 6.3 Silicones -- 6.4 Connectors and coupling -- 6.4.1 In-plane coupling -- 6.4.2 Out-of-plane coupling -- 6.5 Conclusions -- References -- 7 Design and fabrication of multimode polymer waveguides for optical interconnects -- 7.1 Introduction -- 7.2 Structure of multimode polymer optical waveguide -- 7.2.1 Step-index core -- 7.2.2 Graded-index core -- 7.3 Fabrication method -- 7.3.1 Softlithography method [18] -- 7.3.2 Photo-addressing method -- 7.3.3 The Mosquito method -- 7.4 Characterization -- 7.4.1 Waveguide structure and refractive index profile -- 7.4.2 Propagation loss -- 7.4.3 Connection loss with MMF -- 7.4.4 Inter-channel crosstalk -- 7.4.5 Multichannel operation -- 7.5 Polymer optical waveguide circuit for optical PCB -- 7.6 Summary -- References -- 8 Silicon photonics for multi-mode transmission -- 8.1 Expectations for optical interconnection -- 8.1.1 Wide bandwidth over long distances -- 8.1.2 High density -- 8.1.3 EMI immunity -- 8.1.4 Reduced size and weight of cabling -- 8.2 Multi-mode wiring for silicon photonics technology -- 8.2.1 Basic concept -- 8.2.2 Multi-mode optical transmission line with a wavelength of 1.3μm -- 8.3 Chip-scale silicon photonics transceiver "optical I/O core" -- 8.3.1 Design concept -- 8.3.2 Optical I/O core and its constituent elements -- 8.3.3 Fundamental photonics devices -- 8.3.4 CMOS ICs -- 8.3.5 Optical coupling structure -- 8.3.5.1 Packaging -- 8.4 Evaluation -- 8.4.1 Optical coupling (encircled flux) -- 8.4.2 Transmission characteristics -- 8.5 Application -- 8.5.1 Transceivers -- 8.5.2 System LSI with optical I/Os -- References. , 9 Scalable three-dimensional optical interconnects for data centers -- 9.1 Introduction -- 9.2 Photonic and three-dimensional interconnects -- 9.3 Optical architecture: three-dimensional-NoC -- 9.3.1 Proposed implementation -- 9.3.2 Quantitative comparison: corona, firefly and three-dimensional-NoC -- 9.3.3 Optical communication: intra and inter-group -- 9.3.4 Router microarchitecture -- 9.4 Reconfiguration -- 9.4.1 Bandwidth reallocation -- 9.4.2 Dynamic reconfiguration technique -- 9.4.3 Power reduction technique -- 9.5 Performance evaluation -- 9.5.1 Simulation set up -- 9.5.1.1 Splash-2: 64 cores -- 9.5.1.2 PARSEC and SPEC CPU2006: 64 cores -- 9.5.1.3 Synthetic traffic: 256 cores -- 9.5.2 Energy comparison -- 9.5.2.1 Optical energy and loss model -- 9.5.2.2 Optical power reduction -- 9.6 Conclusions and future directions -- References -- 10 Electronic drivers/TIAs for optical interconnects -- Editors -- Rationale -- 10.1 Co-design and co-simulation of electronics and photonics -- 10.2 Electronic drivers -- 10.2.1 VCSEL drivers -- 10.3 Transimpedance amplifiers -- References -- III. Circuit Boards -- 11 Electrical and photonic off-chip interconnection and system integration -- 11.1 Introduction -- 11.1.1 Moore's law and off-chip I/O trends -- 11.1.2 Packaging in retrospect: current challenges and needs -- 11.2 Emerging electrical and photonic interconnects -- 11.2.1 Silicon interposer technology: "the good and the bad" -- 11.2.2 Silicon photonics and optical coupling -- 11.3 Large-scale interconnected system using a "silicon bridging" concept -- 11.3.1 System overview -- 11.3.2 Self-alignment devices and performance -- 11.3.3 Electrical flexible interconnect integration with photonic interconnects -- 11.3.4 3D stacked logic, photonics, and thermal challenges -- 11.4 Conclusion -- References. , 12 Electro-optical circuit boards with single- or multi-mode optical interconnects -- 12.1 Motivation and classification of optical interconnects at the board level -- 12.2 Manufacturing of integrated planar polymer waveguides -- 12.2.1 Basic concept of EOCBs -- 12.2.2 Manufacturing of an electro-optical PCB -- 12.2.3 Manufacturing of planar polymer waveguides -- 12.2.4 Integration of planar polymer waveguides -- 12.2.5 Technology demonstrator: on-board optical communication -- 12.2.6 Polymer waveguides on flexible substrates -- 12.3 Integrated glass waveguide based EOCBs -- 12.3.1 Basic concept -- 12.3.2 Glass waveguide panel fabrication -- 12.3.3 Integration of glass waveguide panels in PCB stack-ups -- 12.3.4 Fiber-to-board and chip-to-board coupling interface -- 12.3.5 Optical backplane demonstration -- 12.4 Mass production and reliability -- References -- 13 International and industrial standardization of optical circuit board technologies -- 13.1 Introduction -- 13.1.1 Diversity in OPCB Types -- 13.1.1.1 Fiber optic circuit laminates -- 13.1.1.2 Polymer waveguides -- 13.1.1.3 Planar glass waveguides -- 13.1.1.4 Free space optics -- 13.1.1.5 Target applications -- 13.2 Industrial manufacturing processes for OPCBs -- 13.2.1 Fiber optic circuit laminates -- 13.2.1.1 Introduction -- 13.2.1.2 Fiber laying technology -- 13.2.1.3 Fiber optic circuit laminates manufacturing process -- Product requirements -- 13.2.1.4 Fiber coating -- Coating process -- Coating material -- 13.2.1.5 Future outlook for fiber optic flexplane technologies -- 13.2.2 Polymeric planar embedded optical waveguides -- 13.2.3 Glass waveguide OPCBs -- 13.3 International standardization of OPCBs -- 13.3.1 International Electrotechnical Commission (IEC) -- 13.3.2 Polymer MT connector standard -- 13.4 OPCB measurement -- 13.4.1 Measurement definition system for OPCBs. , 13.4.1.1 Measurement definition system requirements.
    Additional Edition: ISBN 0-08-100512-1
    Additional Edition: ISBN 0-08-100513-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages