feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949706760502882
    Format: 1 online resource (xv, 323 pages).
    Edition: First edition.
    ISBN: 0-12-822513-0 , 9780128225134 , 0128225130
    Series Statement: Micro and nano technologies
    Note: Front Cover -- Nanomaterials-based Electrochemical Sensors: Properties, Applications, and Recent Advances -- Copyright Page -- Contents -- List of contributors -- 1 Introduction: nanomaterials and electrochemical sensors -- 1.1 Introduction -- 1.2 Voltammetric methods -- 1.3 Cyclic voltammetry -- 1.4 Differential pulse voltammetry -- 1.5 Square wave voltammetry -- 1.6 Electrochemical impedance spectroscopy -- 1.7 Electronic tongue: concepts, principles, and applications -- 1.8 Future prospects -- 1.9 Conclusion -- References -- 2 Nanomaterial properties and applications -- 2.1 Nanomaterials -- 2.2 History -- 2.3 Nanomaterial type -- 2.3.1 According to their dimension -- 2.3.2 According to origin -- 2.3.3 According to chemical composition -- 2.3.4 Carbon-based nanomaterials -- 2.4 Metal nanomaterials -- 2.4.1 Bimetallic nanomaterials -- 2.5 Metal oxide nanomaterials -- 2.5.1 Composite nanomaterials -- 2.5.2 Metal-Organic Frameworks -- 2.5.3 Silicates -- 2.6 Properties of nanomaterials -- 2.6.1 Optical properties -- 2.6.2 Electronics properties -- 2.6.3 Mechanical Properties -- 2.6.4 Magnetic properties -- 2.6.5 Thermal properties -- 2.6.6 Physiochemical properties -- 2.7 Application -- 2.7.1 As a chemical catalyst -- 2.7.2 In food and agriculture -- 2.7.3 In energy harvesting -- 2.7.4 In medication and drug -- 2.7.5 Applications in electronics -- 2.7.6 In mechanical industries -- 2.7.7 In the environment -- 2.8 Conclusion -- References -- 3 Analytical techniques for nanomaterials -- 3.1 Introduction -- 3.2 Different analytical techniques for nanomaterials -- 3.2.1 Electron Microscopy -- 3.2.1.1 Transmission electron microscope -- 3.2.1.2 Scanning electron microscope -- 3.2.2 Dynamic light scattering -- 3.2.2.1 Correlation function -- 3.2.3 Atomic force microscope -- 3.2.4 X-ray diffraction -- 3.2.5 Zeta potential instrument. , 3.2.6 Emmett, Brunauer, and Teller or surface area -- 3.2.7 Fourier transform infrared spectroscopy -- 3.2.8 Thermogravimetric analysis -- 3.3 Conclusion -- References -- 4 Toxicity of nanomaterials -- 4.1 Introduction -- 4.1.1 Nanomaterials -- 4.1.2 Effect of physicochemical properties of nanomaterials on toxicity -- 4.2 Toxic effects of nanomaterials on humans and animals -- 4.3 Toxic effects of nanomaterials on microorganisms -- 4.4 Toxic effects of nanoparticles on plants -- 4.5 Assessment of toxicity of nanomaterials -- 4.5.1 Cytotoxic assays -- 4.5.1.1 5-Diphenyltetrazolium bromide assay -- 4.5.1.2 Reactive oxygen species/oxidative assays -- 4.5.1.3 Neutral red uptake assay -- 4.5.1.4 Apoptosis assay -- 4.5.2 Genotoxicity/mutagenicity assays -- 4.5.2.1 In vitro mammalian chromosomal aberration test -- 4.5.2.2 In vitro mammalian cell gene mutation tests using the Hprt and xprt Genes -- 4.5.2.3 In vitro mammalian micronucleus test -- 4.5.3 In vivo assessment of nanomaterials -- 4.5.3.1 Mammalian bone marrow chromosome aberration test -- 4.5.3.2 Mammalian erythrocyte micronucleus test (OECD 474-TG) -- 4.5.4 In silico models -- 4.6 Conclusion and future prospects -- Acknowledgements -- References -- 5 Electrochemical sensors and their types -- 5.1 Introduction -- 5.1.1 Electroanalytical chemistry -- 5.1.1.1 Electroanalytical techniques -- 5.1.1.2 Recent developments in detection techniques -- 5.1.1.3 Advantages -- 5.1.1.4 Improvements needed -- 5.1.2 Sensors -- 5.1.2.1 Ideal sensor -- 5.1.2.2 Chemical sensors -- 5.1.2.3 Types of chemical sensors -- 5.1.3 Electrochemical sensors -- 5.1.3.1 Construction of electrochemical sensors -- 5.1.3.2 Advantages of electrochemical sensors -- 5.1.3.3 Types of electrochemical sensors -- 5.1.4 Cyclic voltammetry -- 5.1.4.1 Basic principle of cyclic voltammetry -- 5.1.5 Applications of electrochemical sensors. , 5.1.6 Electrochemical sensing of heavy metal ions -- 5.1.6.1 General experimental setup -- 5.1.7 Carbon-based electrode materials -- 5.1.7.1 Glassy carbon electrodes -- 5.1.7.2 Chemically modified electrodes -- 5.1.7.3 Material used for chemical modification of a glassy carbon electrode -- 5.2 Conclusion -- References -- 6 Electrochemical sensors and nanotechnology -- Objectives -- 6.1 Introduction -- 6.2 Nanotechnology -- 6.2.1 Drug delivery -- 6.2.2 Nanofilms -- 6.2.3 Water filtration -- 6.2.4 Nanotubes -- 6.2.5 Nanoscale transistors -- 6.2.6 Nanorobots -- 6.2.7 Nanotechnology and space -- 6.2.8 Nanotechnology in electronics: nanoelectronics -- 6.2.9 Nanotechnology in medicine -- 6.3 Electrochemical sensors -- 6.3.1 Carbonaceous materials-based electrochemical sensors -- 6.3.2 Metal-derived materials-based electrochemical sensors -- 6.3.3 Nanomaterials-based electrochemical sensors -- 6.4 Nanosensing technology -- 6.5 Challenges -- 6.6 Future perspective -- 6.7 Conclusion -- References -- 7 Sensing methodology -- 7.1 Introduction -- 7.1.1 Advancements in nanotechnology -- 7.1.2 Development of nanomaterials -- 7.1.3 2-Dimensional nanomaterials -- 7.2 Sensing methodology -- 7.2.1 Electrochemical biosensors -- 7.2.2 Electrochemical sensors -- 7.3 Nanomaterial-based electrochemical biosensors for biomedical applications -- 7.3.1 Types of nanotechnologies used in the medical field -- 7.3.1.1 Carbon nanotubes -- 7.3.1.2 Metal nanoparticles -- 7.3.1.3 Nanotubes -- 7.4 Nanomaterials-based electrochemical biosensors for tumor cell diagnosis -- 7.4.1 Nanoshells and quantum dots -- 7.4.2 Electrochemical biosensor in cancer cell detection -- 7.4.3 Electrochemical immunosensors in cancer cell detection -- 7.4.4 Electrochemical nucleic acid biosensors in cancer cell detection -- 7.5 Nanomaterial-based electrochemical sensors for environmental applications. , 7.5.1 Sensor applications for pollution detection and environmental contaminants -- 7.5.1.1 Emerging contaminants and toxic gases -- 7.5.1.2 Screen-printed electrodes -- 7.5.1.3 Nanowires -- 7.5.2 Electrochemical sensors for toxic gas detection -- 7.5.2.1 Components and working of electrochemical sensors -- 7.5.2.2 Configurations of electrochemical sensors -- 7.6 Conclusions -- Acknowledgements -- References -- 8 Fabrication of biosensors -- 8.1 Introduction to biosensors -- 8.2 Components of biosensors -- 8.3 Biosensor transducers -- 8.3.1 Optical biosensors -- 8.3.2 Piezoelectric biosensors -- 8.3.3 Calorimetric biosensors -- 8.4 Electrochemical biosensor -- 8.4.1 Potentiometric biosensors -- 8.4.2 Amperometric biosensors -- 8.5 Electrode fabrication technologies -- 8.5.1 Fabrication of nanomaterial-based biosensors -- 8.5.1.1 Coating-based methods -- 8.5.1.2 Deposition-based methods of biosensor fabrication -- 8.5.1.3 Printing-based methods -- 8.6 Direct growth -- 8.7 Self-powered implantable biosensor -- 8.7.1 Glucose detection -- 8.8 Conclusion and outlook -- References -- 9 Metal oxide and their sensing applications -- 9.1 Introduction -- 9.1.1 Metal-oxides-based chemical sensors -- 9.1.2 Metal oxides-based biosensors -- 9.2 Overview of metal oxides for different applications -- 9.2.1 ZnO-based sensors -- 9.2.2 Indium oxide-based sensors -- 9.2.3 Nickel oxide-based sensors -- 9.2.4 Titanium oxide-based sensors -- 9.2.5 Copper oxides-based sensors -- 9.2.6 Tin oxide-based sensors -- 9.2.7 Cerium oxide-based sensors -- 9.2.8 Iron oxide-based sensors -- 9.3 Different sensing techniques for sensing applications -- 9.3.1 Electrochemical sensing technique -- 9.3.1.1 Cyclic voltammetry -- 9.3.1.2 Linear sweep voltammetry -- 9.3.1.3 Amperometry -- 9.3.1.4 Electrochemical impedance spectroscopy -- 9.3.2 Colorimetric technique. , 9.3.3 Fluorescence technique -- 9.3.4 Quartz crystal microbalance technique -- 9.3.5 Surface-enhanced Raman scattering technique -- 9.3.5.1 Electromagnetic process -- 9.3.5.2 Chemical process -- 9.4 Electrochemical sensing based on metal oxides -- 9.5 Colorimetric and fluorometric sensing based on metal oxides -- 9.6 Fluorescent and chemiluminescent sensing based on metal oxides -- 9.7 Issues and drawbacks -- 9.8 Conclusion and Future prospective -- References -- 10 RFID sensors based on nanomaterials -- 10.1 Introduction -- 10.2 Nanomaterials for RFID sensors -- 10.3 Inkjet printing of nanomaterial-based RFID sensors -- 10.4 Applications of RFID nanosensors -- 10.4.1 Energy -- 10.4.2 Food industry -- 10.4.3 Biomedical applications -- 10.4.4 Structural health -- 10.5 Conclusion -- Acknowledgment -- References -- 11 Biological and biomedical applications of electrochemical sensors -- 11.1 Introduction -- 11.2 Components of electrochemical sensors -- 11.2.1 Hydrophobic membrane -- 11.2.2 Electrodes -- 11.2.3 Electrolyte -- 11.2.4 Filters -- 11.3 Working principle of electrochemical sensors -- 11.4 Fabrication of nanomaterial-based electrochemical sensor -- 11.4.1 Magnetic nanomaterials -- 11.4.2 Polymer -- 11.4.3 Metal oxide -- 11.4.4 Noble metals -- 11.4.4.1 Gold nanoparticles -- 11.4.4.2 Silver nanoparticles -- 11.4.5 Carbon nanotubes -- 11.4.5.1 Graphene -- 11.5 Biological and biomedical applications of electrochemical sensors -- 11.5.1 In Metabolite -- 11.5.1.1 Glucose -- 11.5.2 Body fluid ketones -- 11.5.3 Recognition of H2O2 from breast cancer cells -- 11.5.4 Quantitation of neurochemicals -- 11.5.5 Electrochemical detection of antibiotics in biological samples -- 11.5.6 Measurement of biomolecules -- 11.5.7 Electrochemical detection of nitrogen oxide in human beings -- 11.5.8 Electrochemical detection of nitrogen oxide in plants. , 11.5.9 Electrochemical sensors for detecting pathogens.
    Additional Edition: Print version: Nanomaterials-based electrochemical sensors. Amsterdam : Elsevier, 2023 ISBN 9780128225127
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_BV047093214
    Format: xiii, 485 Seiten : , Illustrationen, Diagramme (teilweise farbig) ; , 229 mm.
    ISBN: 978-0-12-822099-3
    Note: 1. Metal-organic frameworks and their composites 2. Metal-organic framework for Batteries and supercapacitors 3. Titanium-based metal-organic frameworks for photocatalytic applications 4. Electrochemical aspects of metal-organic frameworks 5. Permeable metal-organic frameworks for fuel storage 6. Excessively paramagnetic metal organic frameworks nanocomposite 7. The Expanding Energy Prospects of Metal Organic Frameworks 8. Metal-Organic-Framework-Based Materials and Renewable Energy 9. Applications of Metal-Organic Frameworks in Analytical Chemistry 10. Modified metal-natural frameworks as photocatalysts 11. Shape designing of metal-organic frameworks 12. Thermo-mechanical and anti-corrosion characteristics of metal-organic frameworks (MOFs) 13. Metal-Organic Frameworks: Preparation and Application in Electrocatalytic CO2 Reduction Reaction 14. Metal-organic frameworks as diverse chemical applications 15. Metal-organic frameworks as chemical reactions flasks 16. Unique attributes of Metal Organic Frameworks in Drug Delivery 17. Metal-organic frameworks and permeable natural polymers for reasonable carbon dioxide fixation 18. Nanomaterials Derived from Metal-Organic Frameworks (MOFs) for Energy Storage Supercapacitor Application
    Language: English
    Subjects: Chemistry/Pharmacy
    RVK:
    Keywords: Aufsatzsammlung
    Author information: Khan, Anish.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    edoccha_9961120500002883
    Format: 1 online resource (xv, 342 pages).
    ISBN: 0-12-824524-7
    Series Statement: Micro and Nano Technologies
    Content: Nanomaterial-Based Metal Organic Frameworks for Single Atom Catalysis covers nanoparticles and their properties, including tunable pore size, efficient reacting capability, large surface area, and morphology, which make them effective catalytic agents. In addition, the book covers catalytic systems, in which nanomaterial-based metal organic frameworks can be applied efficiently as single atom catalysis to enable enhanced functionalities and activities of the reactions in various applications. This book is an important reference source that will be of use to materials scientists, engineers, chemists and chemical engineers who want to learn more about nanomaterials are being used for catalytic applications.Metal organic frameworks (MOFs) are hybrid organic-inorganic, porous, crystalline nanomaterials, and have aroused great attention in the field of catalysis because of their crystalized nano- (lt;2 nm) or meso- (2-50 nm) porous structure, extremely high surface area, and significant chemical diversity. This nanomaterial-based metal organic framework, as a single atom catalysis, enhances the catalytic ability of dispersed single atoms.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    edocfu_9961120500002883
    Format: 1 online resource (xv, 342 pages).
    ISBN: 0-12-824524-7
    Series Statement: Micro and Nano Technologies
    Content: Nanomaterial-Based Metal Organic Frameworks for Single Atom Catalysis covers nanoparticles and their properties, including tunable pore size, efficient reacting capability, large surface area, and morphology, which make them effective catalytic agents. In addition, the book covers catalytic systems, in which nanomaterial-based metal organic frameworks can be applied efficiently as single atom catalysis to enable enhanced functionalities and activities of the reactions in various applications. This book is an important reference source that will be of use to materials scientists, engineers, chemists and chemical engineers who want to learn more about nanomaterials are being used for catalytic applications.Metal organic frameworks (MOFs) are hybrid organic-inorganic, porous, crystalline nanomaterials, and have aroused great attention in the field of catalysis because of their crystalized nano- (lt;2 nm) or meso- (2-50 nm) porous structure, extremely high surface area, and significant chemical diversity. This nanomaterial-based metal organic framework, as a single atom catalysis, enhances the catalytic ability of dispersed single atoms.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    edocfu_9960074264502883
    Format: 1 online resource (408 pages)
    ISBN: 0-12-820942-9 , 0-12-820773-6
    Series Statement: Micro and Nano Technologies Series
    Note: Intro -- Nanomedicine Manufacturing and Applications -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- 1 Introduction to nanomedicine an overview -- 1 Introduction -- 1.1 Nanoparticles -- 2 Three pillars of nanomedicine -- 3 Synthesis of nanomaterial for applications of nanomedicine -- 3.1 Gold nanoparticles -- 3.2 Magnetic nanoparticles -- 4 Nanomedicine in healthcare -- 4.1 Cancer -- 5 Mechanisms including nanomedicine-based tumor targeting -- 6 Limitations and public awareness in nanomedicine -- 7 Pharmacology and safety challenges -- 8 Conclusion -- References -- 2 Nanoparticles and medicine -- 1 Introduction -- 2 Nanoparticles -- 3 Nanoparticles from a nanomedicine perspective -- 4 Deployment of nanoparticles in medicine -- 4.1 Nanoparticles for central nervous system -- 4.2 Carbohydrate-nanoparticles for cell detection and other potential benefits -- 4.3 Fish medicine from a nanotechnology perspective -- 4.4 Clay nanoparticle-based regenerative medicine -- 5 Conclusion -- References -- 3 Recent advancements, developments, and regulatory issues in nanomedicine -- 1 Introduction -- 2 Applications of nanomaterials in medicine -- 2.1 Nanobio interaction -- 3 Clinically approved nanomedicine -- 4 Challenges in the optimization of nanomedicine -- 4.1 Physicochemical characteristics of nanoparticles -- 4.2 Safety and health problems -- 4.3 Problems relating to regulation -- 4.4 Problems related to manufacturing -- 5 Conclusion -- References -- 4 Nanobiology in medicine -- 1 Background -- 2 Structure -- 3 Methods to evaluate nanoparticle characterization -- 4 Internalization of nanoparticles -- 5 Factors determining nanoparticle uptake -- 6 Bioavailability of a nanoparticle -- 7 Therapeutic applications -- 8 Conclusions -- References -- 5 Nanomaterial synthesis protocols. , 1 Introduction -- 2 Nanoparticles -- 2.1 Classification and types of nanomaterials -- 2.1.1 Carbon-based nanomaterials -- 2.1.2 Inorganic-based nanomaterials -- 2.1.3 Organic-based nanomaterials -- 2.1.4 Composite-based nanomaterials -- 2.2 Synthesis of nanoparticles -- 2.2.1 Chemical method -- Chemical reduction -- Solvothermal technique -- Sol-gel process -- Coprecipitation method -- Microemulsion method -- 2.3 Physical method -- 2.3.1 Chemical vapor deposition -- 2.3.2 Melt mixing method -- 2.3.3 High-energy ball milling -- 2.4 Biological method -- 3 Nanocomposites -- 3.1 Classification of nanocomposites -- 3.1.1 Metal-oxide based nanocomposites -- 3.1.2 Polymer-based nanocomposites -- 3.1.3 Carbon nanotube-based nanocomposites -- 3.1.4 Noble metal-based nanocomposites -- 4 Characterization techniques -- 4.1 Ultraviolet/visible spectrophotometer -- 4.2 Fourier transform infrared spectroscopy -- 4.3 Field-emission scanning electron microscopy -- 4.4 Energy dispersive X-ray spectroscopy -- 4.5 X-ray diffraction -- 5 Conclusion -- References -- 6 Recent advancement and developments in biomaterial-based nanomedicines, imaging, and cures -- 1 Introduction to nanomedicine -- 1.1 Recognition of nanocarriers by receptors on the cell surface -- 1.2 Protein-repellent properties of nanocarriers -- 1.3 Glycoproteins, a unique combination with diverse properties -- 1.4 Functionalization of mono/oligosaccharide nanocarriers -- 2 Nanoparticles used in drug delivery: Biopolymeric nanoparticles -- 2.1 Alginate -- 2.2 Rhamnose -- 2.3 Starch -- 2.4 Cellulose -- 2.5 Chitosan -- 2.6 Xanthan gum -- 2.7 Liposomes -- 2.8 Polymeric micelles -- 3 Biopolymer-based nanoparticles-Theranostics -- 3.1 Nanomedicine targeting colon cancer: Photodiagnosis and cure -- 3.2 The fluorescent diagnosis of metastasis. , 3.3 Photodynamic therapy -- References -- 7 Nanomedicine: Promises and challenges -- 1 Introduction -- 2 Properties -- 2.1 Challenging aspects -- 3 Nanotechnology and computation -- 4 Limitations of nanomedicine -- 4.1 Disciplines -- 5 Implementation of nanomedicine -- 6 Clinical aspects -- 7 Stimuli-responsive nanomedicines -- 8 Approved nanomedicines and clinical trials -- 9 Clinical translation and its challenges -- 10 Pathophysiological challenges -- 11 Conclusion -- References -- 8 Nanotoxicity of nanoparticles -- 1 Introduction -- 2 Nanotoxicity of nanoparticles -- 2.1 In vitro toxicity of nanoparticles -- 2.2 In vivo toxicity of nanoparticles -- 3 Nanotoxicity assessments -- 3.1 In vitro toxicity assessment -- 3.2 In vivo toxicity assessment -- 4 Nanotoxicity mechanisms of action -- 5 Conclusion and future prospects -- Acknowledgment -- References -- 9 Role of XRD for nanomaterial analysis -- 1 Introduction -- 2 X-ray diffraction through crystalline materials -- 2.1 Energy-dispersive X-ray diffraction -- 2.2 Small-angle scattering -- 2.3 In situ X-ray diffraction -- 2.4 X-ray source -- 2.5 Goniometer -- 2.5.1 Primary optics -- 2.5.2 Secondary optics -- 3 Applications -- 3.1 Qualitative and quantitative analysis -- 4 Conclusions and further trends -- References -- 10 Advantages and disadvantages of nanodevices -- 1 Introduction -- 2 Nanoelectromechanical systems (NEMS)/microelectromechanical systems (MEMS) -- 2.1 Advantages of NEMS/MEMS nanodevices -- 2.2 Disadvantages of NEMS/MEMS nanodevices -- 3 Respirocytes -- 3.1 Advantages of respirocytes as nanodevices -- 3.2 Disadvantages of respirocytes as Nanodevices -- 4 Microarrays -- 4.1 Advantages of microarrays as nanodevices -- 4.2 Disadvantages of microarrays as nanodevices -- 5 Conclusion -- References. , 11 Recent advancement and development in nanoneurology -- 1 Introduction -- 2 Blood-brain barrier -- 2.1 Structure and function -- 2.2 Drug administration across the BBB -- 3 Treatment of neurological disorders via blood-brain barrier using nanocarriers -- 3.1 Alzheimer's disease -- 3.2 Parkinson's disease -- 3.3 Epilepsy -- 3.4 Glioblastoma -- 4 Conclusion -- References -- 12 A critical approach to nanocardiology -- 1 Introduction -- 2 Characteristic structural aspects of nanomaterials -- 3 Nanotechnology for the treatment and diagnosis of cardiovascular diseases -- 3.1 Molecular imaging -- 3.2 Biosensors -- 3.3 Tissue engineering -- 3.4 Therapeutics -- 4 Challenges in the medical administration of NPs -- 5 Conclusion -- References -- 13 Nanocarrier drugs for eye treatment -- 1 Concept of nanocarrier drugs -- 2 Introduction for nanocarrier drugs -- 2.1 Drug delivery to the anterior portion by using nanoparticles -- 2.2 Nanoparticles made of polysaccharides -- 2.3 Chitosan nanoparticles -- 2.4 Chitosan-based hybrid nanoparticles -- 2.5 Other polysaccharides used to prepare nanoparticles -- 2.6 Nanoparticles made from polyester -- 3 Conclusions -- References -- 14 Nanomedicine and drug delivery -- 1 Introduction -- 1.1 Applications -- 2 Recent developments -- 2.1 Tissue engineering -- 2.2 Cancer therapy -- 2.3 Multicolor optical coding for biological assays [28] -- 2.4 Manipulation of cells and biomolecules [29] -- 2.5 Protein detection [30] -- 2.6 Commercial exploration -- 2.7 Nanotechnology in health and medicine -- 2.8 Nanotechnology, energy and environment -- 2.9 Medical use of nanomaterials -- 3 Drug delivery -- 3.1 The applications of nanoparticles in drug delivery -- 3.2 Proteins and peptide delivery -- 4 Applications -- 4.1 Cancer -- 4.1.1 Carbon nanotubes -- 4.1.2 Dendrimers. , 4.1.3 Nanocrystals -- 4.1.4 Nanoparticles -- 4.1.5 Nanoshells -- 4.1.6 Nanowires -- 4.1.7 Quantum dots -- 4.2 Nanotechnology in the treatment of neurodegenerative disorders -- 4.3 Parkinson's disease -- 4.4 Alzheimer's disease -- 4.5 Tuberculosis treatment -- 4.6 The clinical application of nanotechnology in operative dentistry -- 4.7 Applications in ophthalmology -- 4.8 Surgery -- 4.9 Visualization -- 4.10 Tissue engineering -- 4.11 Antibiotic resistance -- 4.12 Immune response -- 4.13 Nanopharmaceuticals -- 5 Conclusion -- References -- 15 Nanomedicine and gene delivery -- 1 Introduction -- 2 Gene delivery -- 3 Nanomaterials as nonviral delivery vectors -- 3.1 Inorganic-type nanomaterials as nonviral delivery vectors -- 3.1.1 Magnetic nanoparticles -- 3.1.2 Metal nanoparticles (gold nanoparticles) -- 3.1.3 Quantum dots -- 3.1.4 Carbon nanotubes for gene delivery -- 3.2 Nanomaterial based on proteins and peptides for gene delivery -- 3.2.1 Gelatin -- 3.2.2 Albumin -- 3.2.3 Silk -- 3.2.4 Zein -- 3.3 Lipid-based nanomaterials for gene delivery -- 4 Conclusion and future prospects -- References -- 16 Nanomedicine and tissue engineering -- 1 Introduction -- 2 Importance of tissue engineering -- 3 Characteristics of scaffolds for tissue engineering -- 4 Tissue engineering and nanomedicine correlation -- 5 Application of nanomedicine in bone tissue engineering -- 6 Application of nanomedicine in cardiac tissue engineering -- 7 Application of nanodrugs in skin tissue engineering -- 8 Application of nanomedicine in brain tissue engineering -- 9 Application of nanomedicine for other tissue engineering -- 10 Nondrug delivery system systems -- 10.1 Nanotheranostics -- 10.2 Nano regeneration medicine -- 10.3 Nanodrug delivery -- 10.3.1 Dendrimers -- 10.3.2 Liposomes -- 10.3.3 Carbon nanotubes. , 10.3.4 Nanocomposite hydrogel.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    edoccha_9960074264502883
    Format: 1 online resource (408 pages)
    ISBN: 0-12-820942-9 , 0-12-820773-6
    Series Statement: Micro and Nano Technologies Series
    Note: Intro -- Nanomedicine Manufacturing and Applications -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- 1 Introduction to nanomedicine an overview -- 1 Introduction -- 1.1 Nanoparticles -- 2 Three pillars of nanomedicine -- 3 Synthesis of nanomaterial for applications of nanomedicine -- 3.1 Gold nanoparticles -- 3.2 Magnetic nanoparticles -- 4 Nanomedicine in healthcare -- 4.1 Cancer -- 5 Mechanisms including nanomedicine-based tumor targeting -- 6 Limitations and public awareness in nanomedicine -- 7 Pharmacology and safety challenges -- 8 Conclusion -- References -- 2 Nanoparticles and medicine -- 1 Introduction -- 2 Nanoparticles -- 3 Nanoparticles from a nanomedicine perspective -- 4 Deployment of nanoparticles in medicine -- 4.1 Nanoparticles for central nervous system -- 4.2 Carbohydrate-nanoparticles for cell detection and other potential benefits -- 4.3 Fish medicine from a nanotechnology perspective -- 4.4 Clay nanoparticle-based regenerative medicine -- 5 Conclusion -- References -- 3 Recent advancements, developments, and regulatory issues in nanomedicine -- 1 Introduction -- 2 Applications of nanomaterials in medicine -- 2.1 Nanobio interaction -- 3 Clinically approved nanomedicine -- 4 Challenges in the optimization of nanomedicine -- 4.1 Physicochemical characteristics of nanoparticles -- 4.2 Safety and health problems -- 4.3 Problems relating to regulation -- 4.4 Problems related to manufacturing -- 5 Conclusion -- References -- 4 Nanobiology in medicine -- 1 Background -- 2 Structure -- 3 Methods to evaluate nanoparticle characterization -- 4 Internalization of nanoparticles -- 5 Factors determining nanoparticle uptake -- 6 Bioavailability of a nanoparticle -- 7 Therapeutic applications -- 8 Conclusions -- References -- 5 Nanomaterial synthesis protocols. , 1 Introduction -- 2 Nanoparticles -- 2.1 Classification and types of nanomaterials -- 2.1.1 Carbon-based nanomaterials -- 2.1.2 Inorganic-based nanomaterials -- 2.1.3 Organic-based nanomaterials -- 2.1.4 Composite-based nanomaterials -- 2.2 Synthesis of nanoparticles -- 2.2.1 Chemical method -- Chemical reduction -- Solvothermal technique -- Sol-gel process -- Coprecipitation method -- Microemulsion method -- 2.3 Physical method -- 2.3.1 Chemical vapor deposition -- 2.3.2 Melt mixing method -- 2.3.3 High-energy ball milling -- 2.4 Biological method -- 3 Nanocomposites -- 3.1 Classification of nanocomposites -- 3.1.1 Metal-oxide based nanocomposites -- 3.1.2 Polymer-based nanocomposites -- 3.1.3 Carbon nanotube-based nanocomposites -- 3.1.4 Noble metal-based nanocomposites -- 4 Characterization techniques -- 4.1 Ultraviolet/visible spectrophotometer -- 4.2 Fourier transform infrared spectroscopy -- 4.3 Field-emission scanning electron microscopy -- 4.4 Energy dispersive X-ray spectroscopy -- 4.5 X-ray diffraction -- 5 Conclusion -- References -- 6 Recent advancement and developments in biomaterial-based nanomedicines, imaging, and cures -- 1 Introduction to nanomedicine -- 1.1 Recognition of nanocarriers by receptors on the cell surface -- 1.2 Protein-repellent properties of nanocarriers -- 1.3 Glycoproteins, a unique combination with diverse properties -- 1.4 Functionalization of mono/oligosaccharide nanocarriers -- 2 Nanoparticles used in drug delivery: Biopolymeric nanoparticles -- 2.1 Alginate -- 2.2 Rhamnose -- 2.3 Starch -- 2.4 Cellulose -- 2.5 Chitosan -- 2.6 Xanthan gum -- 2.7 Liposomes -- 2.8 Polymeric micelles -- 3 Biopolymer-based nanoparticles-Theranostics -- 3.1 Nanomedicine targeting colon cancer: Photodiagnosis and cure -- 3.2 The fluorescent diagnosis of metastasis. , 3.3 Photodynamic therapy -- References -- 7 Nanomedicine: Promises and challenges -- 1 Introduction -- 2 Properties -- 2.1 Challenging aspects -- 3 Nanotechnology and computation -- 4 Limitations of nanomedicine -- 4.1 Disciplines -- 5 Implementation of nanomedicine -- 6 Clinical aspects -- 7 Stimuli-responsive nanomedicines -- 8 Approved nanomedicines and clinical trials -- 9 Clinical translation and its challenges -- 10 Pathophysiological challenges -- 11 Conclusion -- References -- 8 Nanotoxicity of nanoparticles -- 1 Introduction -- 2 Nanotoxicity of nanoparticles -- 2.1 In vitro toxicity of nanoparticles -- 2.2 In vivo toxicity of nanoparticles -- 3 Nanotoxicity assessments -- 3.1 In vitro toxicity assessment -- 3.2 In vivo toxicity assessment -- 4 Nanotoxicity mechanisms of action -- 5 Conclusion and future prospects -- Acknowledgment -- References -- 9 Role of XRD for nanomaterial analysis -- 1 Introduction -- 2 X-ray diffraction through crystalline materials -- 2.1 Energy-dispersive X-ray diffraction -- 2.2 Small-angle scattering -- 2.3 In situ X-ray diffraction -- 2.4 X-ray source -- 2.5 Goniometer -- 2.5.1 Primary optics -- 2.5.2 Secondary optics -- 3 Applications -- 3.1 Qualitative and quantitative analysis -- 4 Conclusions and further trends -- References -- 10 Advantages and disadvantages of nanodevices -- 1 Introduction -- 2 Nanoelectromechanical systems (NEMS)/microelectromechanical systems (MEMS) -- 2.1 Advantages of NEMS/MEMS nanodevices -- 2.2 Disadvantages of NEMS/MEMS nanodevices -- 3 Respirocytes -- 3.1 Advantages of respirocytes as nanodevices -- 3.2 Disadvantages of respirocytes as Nanodevices -- 4 Microarrays -- 4.1 Advantages of microarrays as nanodevices -- 4.2 Disadvantages of microarrays as nanodevices -- 5 Conclusion -- References. , 11 Recent advancement and development in nanoneurology -- 1 Introduction -- 2 Blood-brain barrier -- 2.1 Structure and function -- 2.2 Drug administration across the BBB -- 3 Treatment of neurological disorders via blood-brain barrier using nanocarriers -- 3.1 Alzheimer's disease -- 3.2 Parkinson's disease -- 3.3 Epilepsy -- 3.4 Glioblastoma -- 4 Conclusion -- References -- 12 A critical approach to nanocardiology -- 1 Introduction -- 2 Characteristic structural aspects of nanomaterials -- 3 Nanotechnology for the treatment and diagnosis of cardiovascular diseases -- 3.1 Molecular imaging -- 3.2 Biosensors -- 3.3 Tissue engineering -- 3.4 Therapeutics -- 4 Challenges in the medical administration of NPs -- 5 Conclusion -- References -- 13 Nanocarrier drugs for eye treatment -- 1 Concept of nanocarrier drugs -- 2 Introduction for nanocarrier drugs -- 2.1 Drug delivery to the anterior portion by using nanoparticles -- 2.2 Nanoparticles made of polysaccharides -- 2.3 Chitosan nanoparticles -- 2.4 Chitosan-based hybrid nanoparticles -- 2.5 Other polysaccharides used to prepare nanoparticles -- 2.6 Nanoparticles made from polyester -- 3 Conclusions -- References -- 14 Nanomedicine and drug delivery -- 1 Introduction -- 1.1 Applications -- 2 Recent developments -- 2.1 Tissue engineering -- 2.2 Cancer therapy -- 2.3 Multicolor optical coding for biological assays [28] -- 2.4 Manipulation of cells and biomolecules [29] -- 2.5 Protein detection [30] -- 2.6 Commercial exploration -- 2.7 Nanotechnology in health and medicine -- 2.8 Nanotechnology, energy and environment -- 2.9 Medical use of nanomaterials -- 3 Drug delivery -- 3.1 The applications of nanoparticles in drug delivery -- 3.2 Proteins and peptide delivery -- 4 Applications -- 4.1 Cancer -- 4.1.1 Carbon nanotubes -- 4.1.2 Dendrimers. , 4.1.3 Nanocrystals -- 4.1.4 Nanoparticles -- 4.1.5 Nanoshells -- 4.1.6 Nanowires -- 4.1.7 Quantum dots -- 4.2 Nanotechnology in the treatment of neurodegenerative disorders -- 4.3 Parkinson's disease -- 4.4 Alzheimer's disease -- 4.5 Tuberculosis treatment -- 4.6 The clinical application of nanotechnology in operative dentistry -- 4.7 Applications in ophthalmology -- 4.8 Surgery -- 4.9 Visualization -- 4.10 Tissue engineering -- 4.11 Antibiotic resistance -- 4.12 Immune response -- 4.13 Nanopharmaceuticals -- 5 Conclusion -- References -- 15 Nanomedicine and gene delivery -- 1 Introduction -- 2 Gene delivery -- 3 Nanomaterials as nonviral delivery vectors -- 3.1 Inorganic-type nanomaterials as nonviral delivery vectors -- 3.1.1 Magnetic nanoparticles -- 3.1.2 Metal nanoparticles (gold nanoparticles) -- 3.1.3 Quantum dots -- 3.1.4 Carbon nanotubes for gene delivery -- 3.2 Nanomaterial based on proteins and peptides for gene delivery -- 3.2.1 Gelatin -- 3.2.2 Albumin -- 3.2.3 Silk -- 3.2.4 Zein -- 3.3 Lipid-based nanomaterials for gene delivery -- 4 Conclusion and future prospects -- References -- 16 Nanomedicine and tissue engineering -- 1 Introduction -- 2 Importance of tissue engineering -- 3 Characteristics of scaffolds for tissue engineering -- 4 Tissue engineering and nanomedicine correlation -- 5 Application of nanomedicine in bone tissue engineering -- 6 Application of nanomedicine in cardiac tissue engineering -- 7 Application of nanodrugs in skin tissue engineering -- 8 Application of nanomedicine in brain tissue engineering -- 9 Application of nanomedicine for other tissue engineering -- 10 Nondrug delivery system systems -- 10.1 Nanotheranostics -- 10.2 Nano regeneration medicine -- 10.3 Nanodrug delivery -- 10.3.1 Dendrimers -- 10.3.2 Liposomes -- 10.3.3 Carbon nanotubes. , 10.3.4 Nanocomposite hydrogel.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    almahu_9949510856602882
    Format: 1 online resource (xv, 342 pages).
    ISBN: 0-12-824524-7
    Series Statement: Micro and Nano Technologies
    Content: Nanomaterial-Based Metal Organic Frameworks for Single Atom Catalysis covers nanoparticles and their properties, including tunable pore size, efficient reacting capability, large surface area, and morphology, which make them effective catalytic agents. In addition, the book covers catalytic systems, in which nanomaterial-based metal organic frameworks can be applied efficiently as single atom catalysis to enable enhanced functionalities and activities of the reactions in various applications. This book is an important reference source that will be of use to materials scientists, engineers, chemists and chemical engineers who want to learn more about nanomaterials are being used for catalytic applications.Metal organic frameworks (MOFs) are hybrid organic-inorganic, porous, crystalline nanomaterials, and have aroused great attention in the field of catalysis because of their crystalized nano- (lt;2 nm) or meso- (2-50 nm) porous structure, extremely high surface area, and significant chemical diversity. This nanomaterial-based metal organic framework, as a single atom catalysis, enhances the catalytic ability of dispersed single atoms.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_9949225826502882
    Format: 1 online resource (408 pages)
    ISBN: 0-12-820942-9 , 0-12-820773-6
    Series Statement: Micro and Nano Technologies Series
    Note: Intro -- Nanomedicine Manufacturing and Applications -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- 1 Introduction to nanomedicine an overview -- 1 Introduction -- 1.1 Nanoparticles -- 2 Three pillars of nanomedicine -- 3 Synthesis of nanomaterial for applications of nanomedicine -- 3.1 Gold nanoparticles -- 3.2 Magnetic nanoparticles -- 4 Nanomedicine in healthcare -- 4.1 Cancer -- 5 Mechanisms including nanomedicine-based tumor targeting -- 6 Limitations and public awareness in nanomedicine -- 7 Pharmacology and safety challenges -- 8 Conclusion -- References -- 2 Nanoparticles and medicine -- 1 Introduction -- 2 Nanoparticles -- 3 Nanoparticles from a nanomedicine perspective -- 4 Deployment of nanoparticles in medicine -- 4.1 Nanoparticles for central nervous system -- 4.2 Carbohydrate-nanoparticles for cell detection and other potential benefits -- 4.3 Fish medicine from a nanotechnology perspective -- 4.4 Clay nanoparticle-based regenerative medicine -- 5 Conclusion -- References -- 3 Recent advancements, developments, and regulatory issues in nanomedicine -- 1 Introduction -- 2 Applications of nanomaterials in medicine -- 2.1 Nanobio interaction -- 3 Clinically approved nanomedicine -- 4 Challenges in the optimization of nanomedicine -- 4.1 Physicochemical characteristics of nanoparticles -- 4.2 Safety and health problems -- 4.3 Problems relating to regulation -- 4.4 Problems related to manufacturing -- 5 Conclusion -- References -- 4 Nanobiology in medicine -- 1 Background -- 2 Structure -- 3 Methods to evaluate nanoparticle characterization -- 4 Internalization of nanoparticles -- 5 Factors determining nanoparticle uptake -- 6 Bioavailability of a nanoparticle -- 7 Therapeutic applications -- 8 Conclusions -- References -- 5 Nanomaterial synthesis protocols. , 1 Introduction -- 2 Nanoparticles -- 2.1 Classification and types of nanomaterials -- 2.1.1 Carbon-based nanomaterials -- 2.1.2 Inorganic-based nanomaterials -- 2.1.3 Organic-based nanomaterials -- 2.1.4 Composite-based nanomaterials -- 2.2 Synthesis of nanoparticles -- 2.2.1 Chemical method -- Chemical reduction -- Solvothermal technique -- Sol-gel process -- Coprecipitation method -- Microemulsion method -- 2.3 Physical method -- 2.3.1 Chemical vapor deposition -- 2.3.2 Melt mixing method -- 2.3.3 High-energy ball milling -- 2.4 Biological method -- 3 Nanocomposites -- 3.1 Classification of nanocomposites -- 3.1.1 Metal-oxide based nanocomposites -- 3.1.2 Polymer-based nanocomposites -- 3.1.3 Carbon nanotube-based nanocomposites -- 3.1.4 Noble metal-based nanocomposites -- 4 Characterization techniques -- 4.1 Ultraviolet/visible spectrophotometer -- 4.2 Fourier transform infrared spectroscopy -- 4.3 Field-emission scanning electron microscopy -- 4.4 Energy dispersive X-ray spectroscopy -- 4.5 X-ray diffraction -- 5 Conclusion -- References -- 6 Recent advancement and developments in biomaterial-based nanomedicines, imaging, and cures -- 1 Introduction to nanomedicine -- 1.1 Recognition of nanocarriers by receptors on the cell surface -- 1.2 Protein-repellent properties of nanocarriers -- 1.3 Glycoproteins, a unique combination with diverse properties -- 1.4 Functionalization of mono/oligosaccharide nanocarriers -- 2 Nanoparticles used in drug delivery: Biopolymeric nanoparticles -- 2.1 Alginate -- 2.2 Rhamnose -- 2.3 Starch -- 2.4 Cellulose -- 2.5 Chitosan -- 2.6 Xanthan gum -- 2.7 Liposomes -- 2.8 Polymeric micelles -- 3 Biopolymer-based nanoparticles-Theranostics -- 3.1 Nanomedicine targeting colon cancer: Photodiagnosis and cure -- 3.2 The fluorescent diagnosis of metastasis. , 3.3 Photodynamic therapy -- References -- 7 Nanomedicine: Promises and challenges -- 1 Introduction -- 2 Properties -- 2.1 Challenging aspects -- 3 Nanotechnology and computation -- 4 Limitations of nanomedicine -- 4.1 Disciplines -- 5 Implementation of nanomedicine -- 6 Clinical aspects -- 7 Stimuli-responsive nanomedicines -- 8 Approved nanomedicines and clinical trials -- 9 Clinical translation and its challenges -- 10 Pathophysiological challenges -- 11 Conclusion -- References -- 8 Nanotoxicity of nanoparticles -- 1 Introduction -- 2 Nanotoxicity of nanoparticles -- 2.1 In vitro toxicity of nanoparticles -- 2.2 In vivo toxicity of nanoparticles -- 3 Nanotoxicity assessments -- 3.1 In vitro toxicity assessment -- 3.2 In vivo toxicity assessment -- 4 Nanotoxicity mechanisms of action -- 5 Conclusion and future prospects -- Acknowledgment -- References -- 9 Role of XRD for nanomaterial analysis -- 1 Introduction -- 2 X-ray diffraction through crystalline materials -- 2.1 Energy-dispersive X-ray diffraction -- 2.2 Small-angle scattering -- 2.3 In situ X-ray diffraction -- 2.4 X-ray source -- 2.5 Goniometer -- 2.5.1 Primary optics -- 2.5.2 Secondary optics -- 3 Applications -- 3.1 Qualitative and quantitative analysis -- 4 Conclusions and further trends -- References -- 10 Advantages and disadvantages of nanodevices -- 1 Introduction -- 2 Nanoelectromechanical systems (NEMS)/microelectromechanical systems (MEMS) -- 2.1 Advantages of NEMS/MEMS nanodevices -- 2.2 Disadvantages of NEMS/MEMS nanodevices -- 3 Respirocytes -- 3.1 Advantages of respirocytes as nanodevices -- 3.2 Disadvantages of respirocytes as Nanodevices -- 4 Microarrays -- 4.1 Advantages of microarrays as nanodevices -- 4.2 Disadvantages of microarrays as nanodevices -- 5 Conclusion -- References. , 11 Recent advancement and development in nanoneurology -- 1 Introduction -- 2 Blood-brain barrier -- 2.1 Structure and function -- 2.2 Drug administration across the BBB -- 3 Treatment of neurological disorders via blood-brain barrier using nanocarriers -- 3.1 Alzheimer's disease -- 3.2 Parkinson's disease -- 3.3 Epilepsy -- 3.4 Glioblastoma -- 4 Conclusion -- References -- 12 A critical approach to nanocardiology -- 1 Introduction -- 2 Characteristic structural aspects of nanomaterials -- 3 Nanotechnology for the treatment and diagnosis of cardiovascular diseases -- 3.1 Molecular imaging -- 3.2 Biosensors -- 3.3 Tissue engineering -- 3.4 Therapeutics -- 4 Challenges in the medical administration of NPs -- 5 Conclusion -- References -- 13 Nanocarrier drugs for eye treatment -- 1 Concept of nanocarrier drugs -- 2 Introduction for nanocarrier drugs -- 2.1 Drug delivery to the anterior portion by using nanoparticles -- 2.2 Nanoparticles made of polysaccharides -- 2.3 Chitosan nanoparticles -- 2.4 Chitosan-based hybrid nanoparticles -- 2.5 Other polysaccharides used to prepare nanoparticles -- 2.6 Nanoparticles made from polyester -- 3 Conclusions -- References -- 14 Nanomedicine and drug delivery -- 1 Introduction -- 1.1 Applications -- 2 Recent developments -- 2.1 Tissue engineering -- 2.2 Cancer therapy -- 2.3 Multicolor optical coding for biological assays [28] -- 2.4 Manipulation of cells and biomolecules [29] -- 2.5 Protein detection [30] -- 2.6 Commercial exploration -- 2.7 Nanotechnology in health and medicine -- 2.8 Nanotechnology, energy and environment -- 2.9 Medical use of nanomaterials -- 3 Drug delivery -- 3.1 The applications of nanoparticles in drug delivery -- 3.2 Proteins and peptide delivery -- 4 Applications -- 4.1 Cancer -- 4.1.1 Carbon nanotubes -- 4.1.2 Dendrimers. , 4.1.3 Nanocrystals -- 4.1.4 Nanoparticles -- 4.1.5 Nanoshells -- 4.1.6 Nanowires -- 4.1.7 Quantum dots -- 4.2 Nanotechnology in the treatment of neurodegenerative disorders -- 4.3 Parkinson's disease -- 4.4 Alzheimer's disease -- 4.5 Tuberculosis treatment -- 4.6 The clinical application of nanotechnology in operative dentistry -- 4.7 Applications in ophthalmology -- 4.8 Surgery -- 4.9 Visualization -- 4.10 Tissue engineering -- 4.11 Antibiotic resistance -- 4.12 Immune response -- 4.13 Nanopharmaceuticals -- 5 Conclusion -- References -- 15 Nanomedicine and gene delivery -- 1 Introduction -- 2 Gene delivery -- 3 Nanomaterials as nonviral delivery vectors -- 3.1 Inorganic-type nanomaterials as nonviral delivery vectors -- 3.1.1 Magnetic nanoparticles -- 3.1.2 Metal nanoparticles (gold nanoparticles) -- 3.1.3 Quantum dots -- 3.1.4 Carbon nanotubes for gene delivery -- 3.2 Nanomaterial based on proteins and peptides for gene delivery -- 3.2.1 Gelatin -- 3.2.2 Albumin -- 3.2.3 Silk -- 3.2.4 Zein -- 3.3 Lipid-based nanomaterials for gene delivery -- 4 Conclusion and future prospects -- References -- 16 Nanomedicine and tissue engineering -- 1 Introduction -- 2 Importance of tissue engineering -- 3 Characteristics of scaffolds for tissue engineering -- 4 Tissue engineering and nanomedicine correlation -- 5 Application of nanomedicine in bone tissue engineering -- 6 Application of nanomedicine in cardiac tissue engineering -- 7 Application of nanodrugs in skin tissue engineering -- 8 Application of nanomedicine in brain tissue engineering -- 9 Application of nanomedicine for other tissue engineering -- 10 Nondrug delivery system systems -- 10.1 Nanotheranostics -- 10.2 Nano regeneration medicine -- 10.3 Nanodrug delivery -- 10.3.1 Dendrimers -- 10.3.2 Liposomes -- 10.3.3 Carbon nanotubes. , 10.3.4 Nanocomposite hydrogel.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages