feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    edoccha_BV047316269
    Format: 1 Online-Ressource (ix, 568 Seiten) : , Illustrationen.
    ISBN: 978-3-030-71206-8
    Series Statement: Soil biology volume 62
    Additional Edition: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-3-030-71205-1
    Additional Edition: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-3-030-71208-2
    Language: English
    Subjects: Geography , Biology
    RVK:
    RVK:
    RVK:
    RVK:
    Keywords: Bodenökologie ; Stickstoffkreislauf
    URL: Volltext  (URL des Erstveröffentlichers)
    Author information: Varma, Ajit 1939-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_BV047316269
    Format: 1 Online-Ressource (ix, 568 Seiten) : , Illustrationen.
    ISBN: 978-3-030-71206-8
    Series Statement: Soil biology volume 62
    Additional Edition: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-3-030-71205-1
    Additional Edition: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-3-030-71208-2
    Language: English
    Subjects: Geography , Biology
    RVK:
    RVK:
    RVK:
    RVK:
    Keywords: Bodenökologie ; Stickstoffkreislauf
    URL: Volltext  (URL des Erstveröffentlichers)
    Author information: Varma, Ajit, 1939-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    edocfu_BV047316269
    Format: 1 Online-Ressource (ix, 568 Seiten) : , Illustrationen.
    ISBN: 978-3-030-71206-8
    Series Statement: Soil biology volume 62
    Additional Edition: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-3-030-71205-1
    Additional Edition: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-3-030-71208-2
    Language: English
    Subjects: Geography , Biology
    RVK:
    RVK:
    RVK:
    RVK:
    Keywords: Bodenökologie ; Stickstoffkreislauf
    URL: Volltext  (URL des Erstveröffentlichers)
    Author information: Varma, Ajit 1939-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    b3kat_BV047316269
    Format: 1 Online-Ressource (ix, 568 Seiten) , Illustrationen
    ISBN: 9783030712068
    Series Statement: Soil biology volume 62
    Additional Edition: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-3-030-71205-1
    Additional Edition: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-3-030-71208-2
    Language: English
    Subjects: Geography , Biology
    RVK:
    RVK:
    RVK:
    RVK:
    Keywords: Bodenökologie ; Stickstoffkreislauf
    URL: Volltext  (URL des Erstveröffentlichers)
    Author information: Varma, Ajit 1939-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almahu_9949860684902882
    Format: 1 online resource (456 pages)
    Edition: First edition.
    ISBN: 9780443188237
    Note: Front Cover -- Microbiome and Nano-Cross-Talk -- Microbiome and Nano-Cross-Talk -- Copyright -- Contents -- Contributors -- Preface -- 1 - Concepts and definitions in microbiology and nanotechnology in plant sciences -- 1. Introduction -- 2. Microbiology in plant sciences -- 3. Nanotechnology in plant sciences -- 4. Conclusion -- References -- Part I NPs and plants -- 2 - Uptake of nanomaterials by plants and translocation within plants -- 1. Nanoparticles effects on the growth and development of plants -- 2. Effects of nanoparticles accumulation on plants -- 3. The toxicity effects of nanoparticles -- 4. Nanoparticles uptake and translocate in plants -- 5. The cell wall as a barrier in plants -- 6. The plasma and organelle membranes membrane as a barrier -- 7. Nanoparticles translocation inside the plant's body -- 8. Absorb and transfer of nanomaterial by leaves -- 9. Parameters involved in nanoparticles absorption by leaves -- 10. Mechanisms of nanoparticles absorption by leaves -- 11. Nanoparticles absorb and translocation by roots -- References -- Further reading -- 3 - Cross-talk of nanoparticles with plant signaling molecules: Morphological, physiological, and genotoxic aspects -- 1. Introduction -- 2. Mechanism of uptake -- 3. Inhibitory and stimulatory properties of different NPs on plants -- 3.1 On morphology (root growth and leaf morphology) -- 4. On physiology (photosynthesis, water uptake, and nutrient uptake) -- 5. Genotoxicity -- 6. Nanotechnological approach for plant stress regulation: Cross-talk between NPs and plant hormones -- 7. Conclusion and future prospects -- References -- Further reading -- 4 - Highlighting the properties of commercially used nanomaterials-based products and their application in agriculture -- 1. Introduction -- 2. Various applications of nanomaterials in agriculture. , 2.1 Enhanced nutrient delivery and uptake -- 2.2 Improved soil fertility and stress management -- 2.3 Enhanced crop protection and pest management -- 2.3.1 Nanopesticides: Protection against pests, pathogens, and weeds -- 2.3.2 Nanoencapsulation of biocontrol agents -- 2.4 Nanosensors for early detection of diseases and pests -- 3. Commercial nanoparticle and their uses -- 4. Regulatory framework and safety assessment -- 5. Conclusion and future prospects -- References -- Further reading -- Part II Microbes and plants -- 5 - Implication of nanomaterials on belowground associations of plants -- 1. Introduction -- 2. Plant-soil system -- 3. Positive impacts -- 4. Unfriendly impacts -- 5. Toxicity and poisonousness -- 6. Utilization of nanotechnology in agriculture -- 7. Entry sites of nanoparticles into the soil system -- 8. Physical procedures including aggregation, dissolution, and sedimentation -- 9. Chemical procedures including hydrolysis, oxidation, and reduction -- 10. Biological processes such as microbes' biodegradation -- 11. Soil elements such as organic matter and minerals are affected by weathering processes such exposure to sunshine, temperatu ... -- 12. Conclusion -- References -- Further reading -- 6 - Use of metallic nanoparticles in plants: Recent advances and future challenges -- 1. Introduction -- 1.1 Why nanomaterials are important? -- 1.2 Classification of NMs -- 1.3 Synthesis methods of MNPs -- 1.3.1 Physical methods -- 1.3.2 Chemical methods -- 1.3.3 Biological methods -- 1.3.3.1 Microorganism-mediated nanoparticle production -- 1.3.3.2 Plant-mediated nanoparticle production -- 1.4 Characterization of MNPs -- 2. The role of MNPs in plant growth and development -- 2.1 The role of MNPs in seed germination -- 2.2 The role of MNPs in root and shoot growth -- 3. Diagnosis, treatment, and monitoring of herbal diseases via MNPs. , 4. Protective roles of MNPs against stress conditions -- 5. Conclusion, future demands, and challenges -- References -- 7 - Environmental behaviour and fate of nanomaterials in soil-plant interaction -- 1. Introduction -- 2. Nanotechnology -- 2.1 Fabrication of nanoparticles -- 2.1.1 Production of nanoparticles by the top-down method -- 2.1.2 Production of nanoparticles by the bottom-up method -- 2.1.3 Production of nanoparticles by physical methods -- 2.2 Biosynthesis of nanoparticles -- 3. Fertilizers -- 3.1 Inorganic fertilizers -- 3.2 Nanofertilizers -- 3.2.1 Types of nanofertilizers (NFs) -- 3.2.1.1 Macronutrient-based NFs -- 3.2.1.1.1 Nitrogen-based nanofertilizers (N-NFs) -- 3.2.1.1.2 Potassium nanofertilizers (K-NFs) -- 3.2.1.1.3 Calcium nanofertilizers (Ca-NFs) -- 3.2.1.1.4 Magnesium nanofertilizers (Mg-NFs) -- 3.2.1.1.5 Sulfur nanofertilizers (S-NFs) -- 3.2.1.2 Micronutrient-based NFs -- 3.2.1.2.1 Fe nanofertilizers (Fe-NFs) -- 3.2.1.2.2 Zn nanofertilizers (Zn-NFs) -- 3.2.1.2.3 Cu nanofertilizers (Cu-NFs) -- 3.2.1.2.4 Mn nanofertilizers (Mn-NFs) -- 3.2.1.2.5 B nanofertilizers (B-NFs) -- 4. Application of nanofertilizers and their effects on plant growth and nutrition -- 4.1 Silver NPs (AgNPs) as nanofertilizers -- 4.2 Zinc oxide NPs (ZnONPs) as nanofertilizers -- 4.3 Iron NPs (FeNPs) as nanofertilizers -- 4.4 Selenium nanoparticles (SeNPs) as nanofertilizer -- 4.5 Other types of nanoparticles as nanofertilizers -- 5. Effects of nanofertilizers on phytochemicals production -- 6. Effects of nanoparticles on phytoremediation of contaminated soils -- 7. Nanoparticles as pesticides -- 8. Controversies on the fate of nanoparticles in the soil-plant system -- 9. Conclusion -- Acknowledgment -- References -- Further reading -- 8 - Different interactions of plants in the rhizosphere: Mechanisms and their ecological benefits -- 1. Headings. , 2. Introduction -- 3. Beneficial microorganisms commonly seen in the rhizosphere -- 3.1 Symbiotic relationship between plant growth-promoting rhizobacteria and plants -- 3.2 Symbiotic relationship between arbuscular mycorrhizal fungus and plants -- 3.3 Symbiotic relationship between rhizobia and plants -- 4. Conclusion -- References -- 9 - Involvement of microbial species for plant growth promotion and disease suppression -- 1. Introduction -- 1.1 Plant growth-promoting microorganisms -- 1.2 Biofertilizers -- 1.3 Rhizoremediators -- 1.4 Phytostimulators -- 1.5 Stress controllers -- 2. Microbial control of plant diseases -- 3. Conclusion -- References -- Further reading -- 10 - Cross-talk of signaling molecules between microorganisms and plants -- 1. Introduction -- 2. Communication in microbial systems -- 2.1 Mechanism of quorum sensing (QS) -- 2.1.1 Quorum quenching -- 2.1.2 Signaling in fungi -- 3. Bioactive molecules of legumes -- 3.1 Phenolic compounds present within the legumes -- 3.1.1 Phenolic acids -- 3.1.2 Hydroxybenzoic acid -- 3.1.3 Hydroxycinnamic acid -- 3.1.4 Flavonoids -- 3.1.5 Proanthocyanidins and catechins -- 3.1.6 Anthocyanins -- 3.1.7 Flavonols and flavonones -- 3.2 Saponins -- 3.3 Carotenoids and tocopherols -- 3.4 Phytic acid -- 3.5 Legumes as the source of peptides -- 3.6 Applications of bioactive molecules from legumes -- 3.6.1 Antimicrobial properties of legumes -- 3.6.2 Antibiofilm and antiquorum-sensing activity of phytocompounds of leguminous plants -- 3.6.3 Other potent applications of bioactive molecules from legumes -- 4. Conclusion and future prospect -- References -- Further reading -- 11 - Plant growth-promoting microbes (PGPMs): A promising strategy for amelioration of abiotic stress -- 1. Introduction -- 2. Plant growth-promoting microbes and stress tolerance. , 3. PGPMs-mediated stress tolerance mechanisms in plants -- 3.1 Microbial phytohormones in stress tolerance -- 3.2 Production of ACC deaminase -- 3.3 Accumulation of osmolytes -- 3.4 Microbial-mediated antioxidant defense -- 3.5 Enhancement in uptake of mineral nutrients -- 3.6 Microbial exopolysaccharides -- 3.7 Maintenance of ion homeostasis -- 3.8 Microbial volatiles and abiotic stress -- 4. Conclusion -- References -- Part III NPs, microbes, and plants -- 12 - Seed priming with nanomaterials and microbes and related growth mechanisms -- 1. Introduction -- 2. Mechanism of seed germination -- 3. Seed priming mechanisms -- 4. Seed priming using nanomaterials -- 5. Seed biopriming -- References -- Further reading -- 13 - Antimicrobial capacity of different nanoparticles in pursuit of eradicating biotic stress -- 1. Introduction -- 2. Biotic stress-A major crop threat -- 3. Role of nanoparticles in crop improvement and stress management -- 3.1 Zinc nanoparticles -- 3.2 Cerium oxide NPs -- 3.3 Titanium dioxide NPs -- 3.4 Silicon and Silicon dioxide NPs -- 3.5 Manganese NPs -- 3.6 Silver NPs -- 3.7 Copper NPs -- 3.8 Iron oxide NPs -- 3.9 Carbon NPs -- 4. Toxic effects of nanoparticles -- 5. Conclusion -- References -- 14 - Ecotoxicity aspects of microbially synthesized nanomaterials -- 1. Introduction -- 2. Microbial synthesis of nanomaterials -- 2.1 Bacteria-based NPs synthesis -- 2.2 Fungi-based NPs synthesis -- 2.3 Algae-based NPs synthesis -- 2.4 Yeast-based NPs synthesis -- 3. Ecotoxicity assessment of MSNs -- 3.1 Environmental fate and transport -- 3.1.1 Dispersion and aggregation -- 3.1.2 Entry into water bodies, soils, and air -- 3.2 Effects on aquatic ecosystems -- 3.3 Terrestrial ecosystems -- 4. Factors influencing ecotoxicity -- 4.1 Nanoparticle characteristics -- 4.2 Concentration -- 4.3 Exposure duration -- 4.4 Environmental conditions. , 4.4.1 pH and redox potential.
    Additional Edition: Print version: Vishwakarma, Kanchan Microbiome and Nano-Cross-Talk San Diego : Elsevier Science & Technology,c2024 ISBN 9780443188220
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    UID:
    edoccha_9961630836002883
    Format: 1 online resource (456 pages)
    Edition: 1st ed.
    ISBN: 9780443188237
    Note: Front Cover -- Microbiome and Nano-Cross-Talk -- Microbiome and Nano-Cross-Talk -- Copyright -- Contents -- Contributors -- Preface -- 1 - Concepts and definitions in microbiology and nanotechnology in plant sciences -- 1. Introduction -- 2. Microbiology in plant sciences -- 3. Nanotechnology in plant sciences -- 4. Conclusion -- References -- Part I NPs and plants -- 2 - Uptake of nanomaterials by plants and translocation within plants -- 1. Nanoparticles effects on the growth and development of plants -- 2. Effects of nanoparticles accumulation on plants -- 3. The toxicity effects of nanoparticles -- 4. Nanoparticles uptake and translocate in plants -- 5. The cell wall as a barrier in plants -- 6. The plasma and organelle membranes membrane as a barrier -- 7. Nanoparticles translocation inside the plant's body -- 8. Absorb and transfer of nanomaterial by leaves -- 9. Parameters involved in nanoparticles absorption by leaves -- 10. Mechanisms of nanoparticles absorption by leaves -- 11. Nanoparticles absorb and translocation by roots -- References -- Further reading -- 3 - Cross-talk of nanoparticles with plant signaling molecules: Morphological, physiological, and genotoxic aspects -- 1. Introduction -- 2. Mechanism of uptake -- 3. Inhibitory and stimulatory properties of different NPs on plants -- 3.1 On morphology (root growth and leaf morphology) -- 4. On physiology (photosynthesis, water uptake, and nutrient uptake) -- 5. Genotoxicity -- 6. Nanotechnological approach for plant stress regulation: Cross-talk between NPs and plant hormones -- 7. Conclusion and future prospects -- References -- Further reading -- 4 - Highlighting the properties of commercially used nanomaterials-based products and their application in agriculture -- 1. Introduction -- 2. Various applications of nanomaterials in agriculture. , 2.1 Enhanced nutrient delivery and uptake -- 2.2 Improved soil fertility and stress management -- 2.3 Enhanced crop protection and pest management -- 2.3.1 Nanopesticides: Protection against pests, pathogens, and weeds -- 2.3.2 Nanoencapsulation of biocontrol agents -- 2.4 Nanosensors for early detection of diseases and pests -- 3. Commercial nanoparticle and their uses -- 4. Regulatory framework and safety assessment -- 5. Conclusion and future prospects -- References -- Further reading -- Part II Microbes and plants -- 5 - Implication of nanomaterials on belowground associations of plants -- 1. Introduction -- 2. Plant-soil system -- 3. Positive impacts -- 4. Unfriendly impacts -- 5. Toxicity and poisonousness -- 6. Utilization of nanotechnology in agriculture -- 7. Entry sites of nanoparticles into the soil system -- 8. Physical procedures including aggregation, dissolution, and sedimentation -- 9. Chemical procedures including hydrolysis, oxidation, and reduction -- 10. Biological processes such as microbes' biodegradation -- 11. Soil elements such as organic matter and minerals are affected by weathering processes such exposure to sunshine, temperatu ... -- 12. Conclusion -- References -- Further reading -- 6 - Use of metallic nanoparticles in plants: Recent advances and future challenges -- 1. Introduction -- 1.1 Why nanomaterials are important? -- 1.2 Classification of NMs -- 1.3 Synthesis methods of MNPs -- 1.3.1 Physical methods -- 1.3.2 Chemical methods -- 1.3.3 Biological methods -- 1.3.3.1 Microorganism-mediated nanoparticle production -- 1.3.3.2 Plant-mediated nanoparticle production -- 1.4 Characterization of MNPs -- 2. The role of MNPs in plant growth and development -- 2.1 The role of MNPs in seed germination -- 2.2 The role of MNPs in root and shoot growth -- 3. Diagnosis, treatment, and monitoring of herbal diseases via MNPs. , 4. Protective roles of MNPs against stress conditions -- 5. Conclusion, future demands, and challenges -- References -- 7 - Environmental behaviour and fate of nanomaterials in soil-plant interaction -- 1. Introduction -- 2. Nanotechnology -- 2.1 Fabrication of nanoparticles -- 2.1.1 Production of nanoparticles by the top-down method -- 2.1.2 Production of nanoparticles by the bottom-up method -- 2.1.3 Production of nanoparticles by physical methods -- 2.2 Biosynthesis of nanoparticles -- 3. Fertilizers -- 3.1 Inorganic fertilizers -- 3.2 Nanofertilizers -- 3.2.1 Types of nanofertilizers (NFs) -- 3.2.1.1 Macronutrient-based NFs -- 3.2.1.1.1 Nitrogen-based nanofertilizers (N-NFs) -- 3.2.1.1.2 Potassium nanofertilizers (K-NFs) -- 3.2.1.1.3 Calcium nanofertilizers (Ca-NFs) -- 3.2.1.1.4 Magnesium nanofertilizers (Mg-NFs) -- 3.2.1.1.5 Sulfur nanofertilizers (S-NFs) -- 3.2.1.2 Micronutrient-based NFs -- 3.2.1.2.1 Fe nanofertilizers (Fe-NFs) -- 3.2.1.2.2 Zn nanofertilizers (Zn-NFs) -- 3.2.1.2.3 Cu nanofertilizers (Cu-NFs) -- 3.2.1.2.4 Mn nanofertilizers (Mn-NFs) -- 3.2.1.2.5 B nanofertilizers (B-NFs) -- 4. Application of nanofertilizers and their effects on plant growth and nutrition -- 4.1 Silver NPs (AgNPs) as nanofertilizers -- 4.2 Zinc oxide NPs (ZnONPs) as nanofertilizers -- 4.3 Iron NPs (FeNPs) as nanofertilizers -- 4.4 Selenium nanoparticles (SeNPs) as nanofertilizer -- 4.5 Other types of nanoparticles as nanofertilizers -- 5. Effects of nanofertilizers on phytochemicals production -- 6. Effects of nanoparticles on phytoremediation of contaminated soils -- 7. Nanoparticles as pesticides -- 8. Controversies on the fate of nanoparticles in the soil-plant system -- 9. Conclusion -- Acknowledgment -- References -- Further reading -- 8 - Different interactions of plants in the rhizosphere: Mechanisms and their ecological benefits -- 1. Headings. , 2. Introduction -- 3. Beneficial microorganisms commonly seen in the rhizosphere -- 3.1 Symbiotic relationship between plant growth-promoting rhizobacteria and plants -- 3.2 Symbiotic relationship between arbuscular mycorrhizal fungus and plants -- 3.3 Symbiotic relationship between rhizobia and plants -- 4. Conclusion -- References -- 9 - Involvement of microbial species for plant growth promotion and disease suppression -- 1. Introduction -- 1.1 Plant growth-promoting microorganisms -- 1.2 Biofertilizers -- 1.3 Rhizoremediators -- 1.4 Phytostimulators -- 1.5 Stress controllers -- 2. Microbial control of plant diseases -- 3. Conclusion -- References -- Further reading -- 10 - Cross-talk of signaling molecules between microorganisms and plants -- 1. Introduction -- 2. Communication in microbial systems -- 2.1 Mechanism of quorum sensing (QS) -- 2.1.1 Quorum quenching -- 2.1.2 Signaling in fungi -- 3. Bioactive molecules of legumes -- 3.1 Phenolic compounds present within the legumes -- 3.1.1 Phenolic acids -- 3.1.2 Hydroxybenzoic acid -- 3.1.3 Hydroxycinnamic acid -- 3.1.4 Flavonoids -- 3.1.5 Proanthocyanidins and catechins -- 3.1.6 Anthocyanins -- 3.1.7 Flavonols and flavonones -- 3.2 Saponins -- 3.3 Carotenoids and tocopherols -- 3.4 Phytic acid -- 3.5 Legumes as the source of peptides -- 3.6 Applications of bioactive molecules from legumes -- 3.6.1 Antimicrobial properties of legumes -- 3.6.2 Antibiofilm and antiquorum-sensing activity of phytocompounds of leguminous plants -- 3.6.3 Other potent applications of bioactive molecules from legumes -- 4. Conclusion and future prospect -- References -- Further reading -- 11 - Plant growth-promoting microbes (PGPMs): A promising strategy for amelioration of abiotic stress -- 1. Introduction -- 2. Plant growth-promoting microbes and stress tolerance. , 3. PGPMs-mediated stress tolerance mechanisms in plants -- 3.1 Microbial phytohormones in stress tolerance -- 3.2 Production of ACC deaminase -- 3.3 Accumulation of osmolytes -- 3.4 Microbial-mediated antioxidant defense -- 3.5 Enhancement in uptake of mineral nutrients -- 3.6 Microbial exopolysaccharides -- 3.7 Maintenance of ion homeostasis -- 3.8 Microbial volatiles and abiotic stress -- 4. Conclusion -- References -- Part III NPs, microbes, and plants -- 12 - Seed priming with nanomaterials and microbes and related growth mechanisms -- 1. Introduction -- 2. Mechanism of seed germination -- 3. Seed priming mechanisms -- 4. Seed priming using nanomaterials -- 5. Seed biopriming -- References -- Further reading -- 13 - Antimicrobial capacity of different nanoparticles in pursuit of eradicating biotic stress -- 1. Introduction -- 2. Biotic stress-A major crop threat -- 3. Role of nanoparticles in crop improvement and stress management -- 3.1 Zinc nanoparticles -- 3.2 Cerium oxide NPs -- 3.3 Titanium dioxide NPs -- 3.4 Silicon and Silicon dioxide NPs -- 3.5 Manganese NPs -- 3.6 Silver NPs -- 3.7 Copper NPs -- 3.8 Iron oxide NPs -- 3.9 Carbon NPs -- 4. Toxic effects of nanoparticles -- 5. Conclusion -- References -- 14 - Ecotoxicity aspects of microbially synthesized nanomaterials -- 1. Introduction -- 2. Microbial synthesis of nanomaterials -- 2.1 Bacteria-based NPs synthesis -- 2.2 Fungi-based NPs synthesis -- 2.3 Algae-based NPs synthesis -- 2.4 Yeast-based NPs synthesis -- 3. Ecotoxicity assessment of MSNs -- 3.1 Environmental fate and transport -- 3.1.1 Dispersion and aggregation -- 3.1.2 Entry into water bodies, soils, and air -- 3.2 Effects on aquatic ecosystems -- 3.3 Terrestrial ecosystems -- 4. Factors influencing ecotoxicity -- 4.1 Nanoparticle characteristics -- 4.2 Concentration -- 4.3 Exposure duration -- 4.4 Environmental conditions. , 4.4.1 pH and redox potential.
    Additional Edition: Print version: Vishwakarma, Kanchan Microbiome and Nano-Cross-Talk San Diego : Elsevier Science & Technology,c2024 ISBN 9780443188220
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    almafu_BV047316269
    Format: 1 Online-Ressource (ix, 568 Seiten) : , Illustrationen.
    ISBN: 978-3-030-71206-8
    Series Statement: Soil biology volume 62
    Additional Edition: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-3-030-71205-1
    Additional Edition: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-3-030-71208-2
    Language: English
    Subjects: Geography , Biology
    RVK:
    RVK:
    RVK:
    RVK:
    Keywords: Bodenökologie ; Stickstoffkreislauf
    URL: Volltext  (URL des Erstveröffentlichers)
    Author information: Varma, Ajit 1939-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    almahu_BV048809510
    Format: ix, 568 Seiten : , Illustrationen.
    ISBN: 978-3-030-71205-1
    Series Statement: Soil biology Volume 62
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-3-030-71206-8
    Language: English
    Subjects: Geography , Biology
    RVK:
    RVK:
    RVK:
    RVK:
    Keywords: Bodenökologie ; Stickstoffkreislauf
    Author information: Varma, Ajit, 1939-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    UID:
    gbv_1759346667
    Format: 1 Online-Ressource(IX, 568 p. 67 illus., 53 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030712068
    Series Statement: Soil Biology 62
    Content: Part I: Nitrogen physiology and ecology -- Chapter 1: Physiology and distribution of Nitrogen in soils -- Chapter 2: Ecophysiology of nitrogen in symbiotic relationships of plants and microorganisms -- Chapter 3: Ecological perspectives on soil microbial community involved in N-cycling -- Chapter 4: Pedological assessment of soil organic carbon and total nitrogen contents in wetland rice ecosystems of Majuli river island, Assam, India -- Part II: Nitrogen cycle and pathway -- Chapter 5: Functional Nitrogen in Rhizosphere -- Chapter 6: Potential contribution of soil microflora and fauna in Nitrogen cycle: A comprehensive study -- Chapter 7: Unraveling microbial nitrogen pathway in rhizosphere -- Chapter 8: Role of root exudates on different processes of nitrogen cycle in rhizosphere -- Part III: Techniques and applications -- Chapter 9: Techniques for improving nitrogen use efficiency in rice -- Chapter 10: Tools for characterization of nitrogen fixing microbes -- Chapter 11: Biopriming is emerging as a supplemental strategy for improving nitrogen use efficiency of crop species -- Chapter 12: Overview of the role of nitrogen in copper pollution and bioremediation mediated by plant-microbe interactions -- Part IV: Metagenomics -- Chapter 13: Metagenomics for improving soil fertility -- Chapter 14: Soil microbial diversity and metagenomics -- Part V: Bacteria in nitrogen fixation -- Chapter 15: Beneficial effects of Nitrogen fixing bacteria for agriculture of the future -- Chapter 16: Functional Diversity of Nitrogen-Fixing Plant Growth Promoting Rhizobacteria-The Story so Far -- Chapter 17: Bacterial mutants for enhanced nitrogen fixation -- Chapter 18: Perspectives of nitrogen fixing Bacillus spp -- Chapter 19: Quorum Sensing Enhances Nitrogen Uptake In Plants -- Part VI: Fungi in nitrogen fixation -- Chapter 20: Fungi and nitrogen cycle: symbiotic relationship, mechanism and significance -- Chapter 21: Arbuscular Mycorrhizae in Sustainable Plant Nitrogen Nutrition: Mechanisms and Impact -- Chapter 22: Nitrogen fixing fungi for development of biofertilizer and future strategies -- Chapter 23: Iron toxicity and its relation to nitrogen and phosphorus availability in ectomycorrhizal fungi -- Part VII: Algae in nitrogen fixation -- Chapter 24: Role of Algae in soil nitrogen fixation -- Chapter 25: Role of cyanobacteria in rhizospheric nitrogen fixation -- Chapter 26: Molecular aspects and oxygen relations of nitrogen fixation in cyanobacteria.
    Content: This book highlights the latest discoveries about the nitrogen cycle in the soil. It introduces the concept of nitrogen fixation and covers important aspects of nitrogen in soil and ecology such as its distribution and occurrence, soil microflora and fauna and their role in N-fixation. The importance of plant growth-promoting microbes for a sustainable agriculture, e.g. arbuscular mycorrhizae in N-fixation, is discussed as well as perspectives of metagenomics, microbe-plant signal transduction in N-ecology and related aspects. This book enables the reader to bridge the main gaps in knowledge and carefully presents perspectives on the ecology of biotransformations of nitrogen in soil.
    Additional Edition: ISBN 9783030712051
    Additional Edition: ISBN 9783030712075
    Additional Edition: ISBN 9783030712082
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9783030712051
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9783030712075
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9783030712082
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages