feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
Person/Organisation
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Woodhead Publishing,
    UID:
    almahu_9949697866202882
    Format: 1 online resource (264 pages) : , illustrations, tables.
    ISBN: 0-08-100570-9 , 0-08-100578-4
    Series Statement: Woodhead Publishing Series in Textiles
    Note: Front Cover -- Performance Testing of Textiles: Methods, Technology and Applications -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Textiles -- Section A: Performance testing techniques, technologies and standards -- 1: Design and analysis in textile research -- 1.1 Introduction -- 1.2 Ethical issues -- 1.2.1 General -- 1.2.2 Ethical practices in research involving humans -- 1.2.3 Cultural issues -- 1.2.4 Intellectual property -- 1.3 Design and analysis: General considerations -- 1.3.1 Design -- 1.3.2 Analysis and significance -- 1.4 Approaches to research and their application -- 1.4.1 The experiment -- 1.4.1.1 Example-The factorial experiment -- 1.4.2 The survey -- 1.4.2.1 Examples-The survey -- 1.4.3 The case study -- 1.4.3.1 Example-The case study -- 1.4.4 The investigation of historical evidence -- 1.4.4.1 Example-Historical evidence -- 1.4.5 Modeling -- 1.4.5.1 Example-Modeling -- 1.5 Conclusions and future trends -- 1.6 Sources of further information and advice -- 1.6.1 Book chapters -- 1.6.2 Test methods and websites -- Acknowledgments -- References -- Section B: Performance testing for specific applications -- 2: Comfort testing and fit analysis of military textiles -- 2.1 Introduction -- 2.2 Comfort testing of military clothing -- 2.2.1 Thermophysiological properties -- 2.2.1.1 Skin Model (sweating guarded hot plate) versus cup test -- 2.2.2 Thermal insulation -- 2.2.3 Skin sensorial comfort -- 2.2.3.1 Stiffness -- 2.2.3.2 Sorption index -- 2.2.3.3 Surface index -- 2.2.3.4 Number of contact points -- 2.2.3.5 Wet cling index -- 2.2.4 Evaporative cooling power of garments -- 2.3 Comfort testing of other textile products -- 2.3.1 Extreme cold protective clothing -- 2.3.2 Duvets and sleeping bags -- 2.3.3 Immersion suits -- 2.3.4 Military vehicle seats -- 2.3.5 Combat boots and gloves. , 2.4 Fit of military clothing -- 2.4.1 Fit and head protection -- 2.5 Conclusion -- Reference -- 3: Testing and evaluating the thermal comfort of clothing ensembles -- 3.1 Introduction -- 3.2 Factors affecting thermal comfort performance of clothing -- 3.2.1 Effect of fiber properties -- 3.2.2 Effect of yarn properties -- 3.2.3 Effect of fabric properties -- 3.2.4 Effect of garment properties -- 3.3 Measurement of thermal comfort performance of clothing -- 3.3.1 Sweating guarded hot plate tests -- 3.3.2 Sweating thermal manikin tests -- 3.3.3 Human trials -- 3.4 Critical assessment of thermal comfort performance of clothing -- 3.5 Key issues related to thermal comfort of clothing -- 3.5.1 Development of state-of-the-art testing methods -- 3.5.2 Development of new fabrics -- References -- 4: Testing and evaluation of wearable electronic textiles and assessment thereof -- 4.1 Introduction -- 4.2 e-Textiles manufacturing methodologies and characterization -- 4.2.1 Conductive fibers -- 4.2.2 Conductive fabrics -- 4.2.3 Conductive inks -- 4.2.4 Planar fabric circuit board -- 4.2.5 Textile sensors -- 4.2.5.1 Pressure sensors -- 4.2.5.2 Strain sensors -- 4.2.5.3 Chemical and gas sensors -- 4.2.6 Textile energy harvesting systems -- 4.2.7 Wearable antennas -- 4.3 Conclusions -- References -- 5: Acoustic testing and evaluation of textiles for buildings and office environments -- 5.1 Acoustic properties of textiles -- 5.1.1 Flow resistivity -- 5.1.2 Propagation -- 5.1.3 Absorption -- 5.1.4 Scattering -- 5.2 Flow resistance measurement -- 5.2.1 The direct airflow method -- 5.2.2 The alternating airflow method -- 5.2.3 Acoustic measurement methods -- 5.3 Transmission loss measurement -- 5.3.1 The reverberant room method -- 5.3.2 The transfer matrix method -- 5.4 Absorption coefficient measurement -- 5.4.1 The impedance tube method. , 5.4.2 The reverberation room method -- 5.5 Scattering property measurement -- 5.5.1 Measurement of the random incidence scattering coefficient in a reverberation room -- 5.5.2 Measurement of the directional diffusion coefficient in a free field -- 5.6 Summary -- References -- 6: Medical textiles testing and quality assurance -- 6.1 Introduction -- 6.2 Types of medical textiles -- 6.2.1 Nonimplantable materials -- 6.2.2 Healthcare/hygiene products -- 6.2.3 Extracorporeal devices -- 6.3 Medical textile performance testing -- 6.4 Methods, standards and validation -- 6.4.1 Medical textiles performance testing (EN 13795) -- 6.4.2 Resistance to microbial penetration in dry (ISO 22612) or wet conditions (ISO 22610) -- 6.4.3 Test method for evaluation of cleanliness-microbial contamination (EN 1174, replaced by EN ISO 11737) -- 6.4.4 Test method for evaluation of cleanliness-particulate matter (ISO 9073-10) -- 6.4.5 Test method for assessment of resistance to liquid penetration (EN 20811) -- 6.4.6 Test method for measuring the linting of textile materials in the dry state (ISO 9073-10) -- 6.4.7 Dry and wet burst strength (EN 13938-1) -- 6.4.8 Tensile strength of medical textiles in dry and wet condition (EN 29073-3:1992) -- 6.4.9 The requirement and importance of medical textiles performance testing for the healthcare staff and the medical ... -- 6.4.10 Tests for surgical masks -- 6.4.10.1 Bacterial filtration efficiency -- 6.4.10.2 Splash resistance (synthetic blood) -- Water penetration resistance (ISO 811) -- Thermal manikin (EN ISO 15831-ASTM F2370) -- Cytotoxicity and nontoxicity performance testing (ISO 10993) -- Human skin irritation test -- 6.5 Care and quality assurances -- 6.6 Medical textiles and its future trends -- 6.7 Conclusion -- 6.8 Sources of further information and advice -- Acknowledgments -- References. , 7: Multiscale characterization and testing of function-integrative fiber-reinforced composites -- 7.1 Introduction -- 7.2 Common techniques for the characterization of smart fiber-reinforced composites -- 7.2.1 Qualitative methods -- 7.2.1.1 X-ray computed tomography -- 7.2.1.2 Micrograph analysis -- 7.2.1.3 Ultrasonic testing -- 7.2.2 Quantitative characterization -- 7.2.2.1 Electric impedance -- 7.2.2.2 Experimental modal analysis -- 7.2.2.3 Cyclic three-point-bending -- 7.2.2.4 Optical methods -- 7.2.2.5 Alternative methods for the characterization of smart fiber-reinforced composites -- 7.3 Case studies -- 7.3.1 Cyclic three-point-bending of long fiber-reinforced polyurethane composite structures with novel integrated sen ... -- 7.3.1.1 Materials and manufacturing -- 7.3.1.2 Experimental -- 7.3.1.3 Results -- 7.3.2 Textile-reinforced thermoplastic structure with material homogeneous embedded piezoceramic modules -- 7.3.2.1 Materials, Components and manufacturing -- 7.3.2.2 Test setup -- 7.3.2.3 Experimental and quality analysis -- 7.3.2.4 Results -- 7.3.3 Disc-shaped rotor with integrated active damping system -- 7.3.3.1 Experimental setup -- 7.3.3.2 Results -- 7.4 Summary/conclusions -- Acknowledgment -- References -- 8: Environmental textiles: Testing and certification -- 8.1 Introduction -- 8.2 Historical background -- 8.3 German ban on azo dyes -- 8.4 Ecofriendly textile manufacturing and processing -- 8.4.1 OEKOTEX Standard 100 -- 8.4.2 Sustainable textile production -- 8.4.3 Process based ecolabeling -- 8.4.3.1 Hazardous chemicals -- 8.4.3.2 Heavy metals -- 8.5 Restricted substance list -- 8.6 REACH -- 8.7 Organic textile standards -- 8.8 Concluding remarks -- References -- 9: Design, evaluation, and applications of electronic textiles * -- 9.1 Fundamental design issues for incorporating electronics into fabric environments. , 9.1.1 Advantages, disadvantages, and limitations of E-Textiles -- 9.1.2 Installing sensors, batteries, wiring, and other hardware challenges -- 9.1.3 Bio-physical monitoring: Connecting to the cloud -- 9.1.4 Addressing recycling and disposal issues for E-Textile components -- 9.2 Safety requirements & -- evaluation criteria for E-Textiles -- 9.2.1 Categories, comparisons, and general types of E-Textiles -- 9.2.1.1 Body heat, flexible PV, motion power generation methods -- 9.2.2 MSDS (material safety data sheet) for embedded components -- 9.3 Summary of present applications -- 9.3.1 Health monitoring and athletic training -- 9.3.2 Military applications -- 9.3.3 Entertainment and fashion -- 9.4 Research paths leading to the future of E-Textiles -- 10: Thermal analysis for fiber identification and characterization -- 10.1 Introduction -- 10.2 Formation and modification of fibers -- 10.3 Identification and characterization -- 10.3.1 Thermal processes in fibers -- 10.3.2 Influence of experimental parameters in fiber analysis -- 10.3.2.1 Experimental aspects of DSC -- 10.3.2.2 Experimental aspects of TGA -- 10.3.2.3 Experimental aspects of TMA and DMA -- 10.3.3 Examples of thermal behavior of fibers -- 10.4 Evolution of novel fiber materials -- 10.5 Conclusion -- References -- Index -- Back Cover.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    Cambridge :Cambridge University Press,
    UID:
    almahu_BV049064072
    Format: xiii, 244 Seiten : , Illustrationen, Diagramme, Karten (teilweise farbig).
    ISBN: 978-1-009-20141-4 , 978-1-009-20140-7
    Note: "An accessible text that provides students and instructors with the data science foundations to address earth science questions using real-world case studies. Focusing on intuitive reasoning, students are encouraged to develop their understanding through exercises utilizing Python notebooks and real datasets"--
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-1-009-20139-1
    Language: English
    Subjects: Earth Sciences , Geography , General works
    RVK:
    RVK:
    RVK:
    RVK:
    Keywords: Geostatistik ; Geowissenschaften ; Datenverarbeitung ; Data Science ; Maschinelles Lernen
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cambridge, United Kingdom ; : Cambridge University Press,
    UID:
    almafu_9961294066302883
    Format: 1 online resource (xiii, 244 pages) : , digital, PDF file(s).
    ISBN: 1-009-20142-5 , 1-009-20139-5 , 1-009-20138-7
    Content: Data Science for the Geosciences provides students and instructors with the statistical and machine learning foundations to address Earth science questions using real-world case studies in natural hazards, climate change, environmental contamination and Earth resources. It focuses on techniques that address common characteristics of geoscientific data, including extremes, multivariate, compositional, geospatial and space-time methods. Step-by-step instructions are provided, enabling readers to easily follow the protocols for each method, solve their geoscientific problems and make interpretations. With an emphasis on intuitive reasoning throughout, students are encouraged to develop their understanding without the need for complex mathematics, making this the perfect text for those with limited mathematical or coding experience. Students can test their skills with homework exercises that focus on data scientific analysis, modeling, and prediction problems, and through the use of supplemental Python notebooks that can be applied to real datasets worldwide.
    Note: Title from publisher's bibliographic system (viewed on 25 Aug 2023).
    Additional Edition: ISBN 9781009201414
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Woodhead Publishing,
    UID:
    edocfu_9960074157002883
    Format: 1 online resource (264 pages) : , illustrations, tables.
    ISBN: 0-08-100570-9 , 0-08-100578-4
    Series Statement: Woodhead Publishing Series in Textiles
    Note: Front Cover -- Performance Testing of Textiles: Methods, Technology and Applications -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Textiles -- Section A: Performance testing techniques, technologies and standards -- 1: Design and analysis in textile research -- 1.1 Introduction -- 1.2 Ethical issues -- 1.2.1 General -- 1.2.2 Ethical practices in research involving humans -- 1.2.3 Cultural issues -- 1.2.4 Intellectual property -- 1.3 Design and analysis: General considerations -- 1.3.1 Design -- 1.3.2 Analysis and significance -- 1.4 Approaches to research and their application -- 1.4.1 The experiment -- 1.4.1.1 Example-The factorial experiment -- 1.4.2 The survey -- 1.4.2.1 Examples-The survey -- 1.4.3 The case study -- 1.4.3.1 Example-The case study -- 1.4.4 The investigation of historical evidence -- 1.4.4.1 Example-Historical evidence -- 1.4.5 Modeling -- 1.4.5.1 Example-Modeling -- 1.5 Conclusions and future trends -- 1.6 Sources of further information and advice -- 1.6.1 Book chapters -- 1.6.2 Test methods and websites -- Acknowledgments -- References -- Section B: Performance testing for specific applications -- 2: Comfort testing and fit analysis of military textiles -- 2.1 Introduction -- 2.2 Comfort testing of military clothing -- 2.2.1 Thermophysiological properties -- 2.2.1.1 Skin Model (sweating guarded hot plate) versus cup test -- 2.2.2 Thermal insulation -- 2.2.3 Skin sensorial comfort -- 2.2.3.1 Stiffness -- 2.2.3.2 Sorption index -- 2.2.3.3 Surface index -- 2.2.3.4 Number of contact points -- 2.2.3.5 Wet cling index -- 2.2.4 Evaporative cooling power of garments -- 2.3 Comfort testing of other textile products -- 2.3.1 Extreme cold protective clothing -- 2.3.2 Duvets and sleeping bags -- 2.3.3 Immersion suits -- 2.3.4 Military vehicle seats -- 2.3.5 Combat boots and gloves. , 2.4 Fit of military clothing -- 2.4.1 Fit and head protection -- 2.5 Conclusion -- Reference -- 3: Testing and evaluating the thermal comfort of clothing ensembles -- 3.1 Introduction -- 3.2 Factors affecting thermal comfort performance of clothing -- 3.2.1 Effect of fiber properties -- 3.2.2 Effect of yarn properties -- 3.2.3 Effect of fabric properties -- 3.2.4 Effect of garment properties -- 3.3 Measurement of thermal comfort performance of clothing -- 3.3.1 Sweating guarded hot plate tests -- 3.3.2 Sweating thermal manikin tests -- 3.3.3 Human trials -- 3.4 Critical assessment of thermal comfort performance of clothing -- 3.5 Key issues related to thermal comfort of clothing -- 3.5.1 Development of state-of-the-art testing methods -- 3.5.2 Development of new fabrics -- References -- 4: Testing and evaluation of wearable electronic textiles and assessment thereof -- 4.1 Introduction -- 4.2 e-Textiles manufacturing methodologies and characterization -- 4.2.1 Conductive fibers -- 4.2.2 Conductive fabrics -- 4.2.3 Conductive inks -- 4.2.4 Planar fabric circuit board -- 4.2.5 Textile sensors -- 4.2.5.1 Pressure sensors -- 4.2.5.2 Strain sensors -- 4.2.5.3 Chemical and gas sensors -- 4.2.6 Textile energy harvesting systems -- 4.2.7 Wearable antennas -- 4.3 Conclusions -- References -- 5: Acoustic testing and evaluation of textiles for buildings and office environments -- 5.1 Acoustic properties of textiles -- 5.1.1 Flow resistivity -- 5.1.2 Propagation -- 5.1.3 Absorption -- 5.1.4 Scattering -- 5.2 Flow resistance measurement -- 5.2.1 The direct airflow method -- 5.2.2 The alternating airflow method -- 5.2.3 Acoustic measurement methods -- 5.3 Transmission loss measurement -- 5.3.1 The reverberant room method -- 5.3.2 The transfer matrix method -- 5.4 Absorption coefficient measurement -- 5.4.1 The impedance tube method. , 5.4.2 The reverberation room method -- 5.5 Scattering property measurement -- 5.5.1 Measurement of the random incidence scattering coefficient in a reverberation room -- 5.5.2 Measurement of the directional diffusion coefficient in a free field -- 5.6 Summary -- References -- 6: Medical textiles testing and quality assurance -- 6.1 Introduction -- 6.2 Types of medical textiles -- 6.2.1 Nonimplantable materials -- 6.2.2 Healthcare/hygiene products -- 6.2.3 Extracorporeal devices -- 6.3 Medical textile performance testing -- 6.4 Methods, standards and validation -- 6.4.1 Medical textiles performance testing (EN 13795) -- 6.4.2 Resistance to microbial penetration in dry (ISO 22612) or wet conditions (ISO 22610) -- 6.4.3 Test method for evaluation of cleanliness-microbial contamination (EN 1174, replaced by EN ISO 11737) -- 6.4.4 Test method for evaluation of cleanliness-particulate matter (ISO 9073-10) -- 6.4.5 Test method for assessment of resistance to liquid penetration (EN 20811) -- 6.4.6 Test method for measuring the linting of textile materials in the dry state (ISO 9073-10) -- 6.4.7 Dry and wet burst strength (EN 13938-1) -- 6.4.8 Tensile strength of medical textiles in dry and wet condition (EN 29073-3:1992) -- 6.4.9 The requirement and importance of medical textiles performance testing for the healthcare staff and the medical ... -- 6.4.10 Tests for surgical masks -- 6.4.10.1 Bacterial filtration efficiency -- 6.4.10.2 Splash resistance (synthetic blood) -- Water penetration resistance (ISO 811) -- Thermal manikin (EN ISO 15831-ASTM F2370) -- Cytotoxicity and nontoxicity performance testing (ISO 10993) -- Human skin irritation test -- 6.5 Care and quality assurances -- 6.6 Medical textiles and its future trends -- 6.7 Conclusion -- 6.8 Sources of further information and advice -- Acknowledgments -- References. , 7: Multiscale characterization and testing of function-integrative fiber-reinforced composites -- 7.1 Introduction -- 7.2 Common techniques for the characterization of smart fiber-reinforced composites -- 7.2.1 Qualitative methods -- 7.2.1.1 X-ray computed tomography -- 7.2.1.2 Micrograph analysis -- 7.2.1.3 Ultrasonic testing -- 7.2.2 Quantitative characterization -- 7.2.2.1 Electric impedance -- 7.2.2.2 Experimental modal analysis -- 7.2.2.3 Cyclic three-point-bending -- 7.2.2.4 Optical methods -- 7.2.2.5 Alternative methods for the characterization of smart fiber-reinforced composites -- 7.3 Case studies -- 7.3.1 Cyclic three-point-bending of long fiber-reinforced polyurethane composite structures with novel integrated sen ... -- 7.3.1.1 Materials and manufacturing -- 7.3.1.2 Experimental -- 7.3.1.3 Results -- 7.3.2 Textile-reinforced thermoplastic structure with material homogeneous embedded piezoceramic modules -- 7.3.2.1 Materials, Components and manufacturing -- 7.3.2.2 Test setup -- 7.3.2.3 Experimental and quality analysis -- 7.3.2.4 Results -- 7.3.3 Disc-shaped rotor with integrated active damping system -- 7.3.3.1 Experimental setup -- 7.3.3.2 Results -- 7.4 Summary/conclusions -- Acknowledgment -- References -- 8: Environmental textiles: Testing and certification -- 8.1 Introduction -- 8.2 Historical background -- 8.3 German ban on azo dyes -- 8.4 Ecofriendly textile manufacturing and processing -- 8.4.1 OEKOTEX Standard 100 -- 8.4.2 Sustainable textile production -- 8.4.3 Process based ecolabeling -- 8.4.3.1 Hazardous chemicals -- 8.4.3.2 Heavy metals -- 8.5 Restricted substance list -- 8.6 REACH -- 8.7 Organic textile standards -- 8.8 Concluding remarks -- References -- 9: Design, evaluation, and applications of electronic textiles * -- 9.1 Fundamental design issues for incorporating electronics into fabric environments. , 9.1.1 Advantages, disadvantages, and limitations of E-Textiles -- 9.1.2 Installing sensors, batteries, wiring, and other hardware challenges -- 9.1.3 Bio-physical monitoring: Connecting to the cloud -- 9.1.4 Addressing recycling and disposal issues for E-Textile components -- 9.2 Safety requirements & -- evaluation criteria for E-Textiles -- 9.2.1 Categories, comparisons, and general types of E-Textiles -- 9.2.1.1 Body heat, flexible PV, motion power generation methods -- 9.2.2 MSDS (material safety data sheet) for embedded components -- 9.3 Summary of present applications -- 9.3.1 Health monitoring and athletic training -- 9.3.2 Military applications -- 9.3.3 Entertainment and fashion -- 9.4 Research paths leading to the future of E-Textiles -- 10: Thermal analysis for fiber identification and characterization -- 10.1 Introduction -- 10.2 Formation and modification of fibers -- 10.3 Identification and characterization -- 10.3.1 Thermal processes in fibers -- 10.3.2 Influence of experimental parameters in fiber analysis -- 10.3.2.1 Experimental aspects of DSC -- 10.3.2.2 Experimental aspects of TGA -- 10.3.2.3 Experimental aspects of TMA and DMA -- 10.3.3 Examples of thermal behavior of fibers -- 10.4 Evolution of novel fiber materials -- 10.5 Conclusion -- References -- Index -- Back Cover.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Woodhead Publishing,
    UID:
    edoccha_9960074157002883
    Format: 1 online resource (264 pages) : , illustrations, tables.
    ISBN: 0-08-100570-9 , 0-08-100578-4
    Series Statement: Woodhead Publishing Series in Textiles
    Note: Front Cover -- Performance Testing of Textiles: Methods, Technology and Applications -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Textiles -- Section A: Performance testing techniques, technologies and standards -- 1: Design and analysis in textile research -- 1.1 Introduction -- 1.2 Ethical issues -- 1.2.1 General -- 1.2.2 Ethical practices in research involving humans -- 1.2.3 Cultural issues -- 1.2.4 Intellectual property -- 1.3 Design and analysis: General considerations -- 1.3.1 Design -- 1.3.2 Analysis and significance -- 1.4 Approaches to research and their application -- 1.4.1 The experiment -- 1.4.1.1 Example-The factorial experiment -- 1.4.2 The survey -- 1.4.2.1 Examples-The survey -- 1.4.3 The case study -- 1.4.3.1 Example-The case study -- 1.4.4 The investigation of historical evidence -- 1.4.4.1 Example-Historical evidence -- 1.4.5 Modeling -- 1.4.5.1 Example-Modeling -- 1.5 Conclusions and future trends -- 1.6 Sources of further information and advice -- 1.6.1 Book chapters -- 1.6.2 Test methods and websites -- Acknowledgments -- References -- Section B: Performance testing for specific applications -- 2: Comfort testing and fit analysis of military textiles -- 2.1 Introduction -- 2.2 Comfort testing of military clothing -- 2.2.1 Thermophysiological properties -- 2.2.1.1 Skin Model (sweating guarded hot plate) versus cup test -- 2.2.2 Thermal insulation -- 2.2.3 Skin sensorial comfort -- 2.2.3.1 Stiffness -- 2.2.3.2 Sorption index -- 2.2.3.3 Surface index -- 2.2.3.4 Number of contact points -- 2.2.3.5 Wet cling index -- 2.2.4 Evaporative cooling power of garments -- 2.3 Comfort testing of other textile products -- 2.3.1 Extreme cold protective clothing -- 2.3.2 Duvets and sleeping bags -- 2.3.3 Immersion suits -- 2.3.4 Military vehicle seats -- 2.3.5 Combat boots and gloves. , 2.4 Fit of military clothing -- 2.4.1 Fit and head protection -- 2.5 Conclusion -- Reference -- 3: Testing and evaluating the thermal comfort of clothing ensembles -- 3.1 Introduction -- 3.2 Factors affecting thermal comfort performance of clothing -- 3.2.1 Effect of fiber properties -- 3.2.2 Effect of yarn properties -- 3.2.3 Effect of fabric properties -- 3.2.4 Effect of garment properties -- 3.3 Measurement of thermal comfort performance of clothing -- 3.3.1 Sweating guarded hot plate tests -- 3.3.2 Sweating thermal manikin tests -- 3.3.3 Human trials -- 3.4 Critical assessment of thermal comfort performance of clothing -- 3.5 Key issues related to thermal comfort of clothing -- 3.5.1 Development of state-of-the-art testing methods -- 3.5.2 Development of new fabrics -- References -- 4: Testing and evaluation of wearable electronic textiles and assessment thereof -- 4.1 Introduction -- 4.2 e-Textiles manufacturing methodologies and characterization -- 4.2.1 Conductive fibers -- 4.2.2 Conductive fabrics -- 4.2.3 Conductive inks -- 4.2.4 Planar fabric circuit board -- 4.2.5 Textile sensors -- 4.2.5.1 Pressure sensors -- 4.2.5.2 Strain sensors -- 4.2.5.3 Chemical and gas sensors -- 4.2.6 Textile energy harvesting systems -- 4.2.7 Wearable antennas -- 4.3 Conclusions -- References -- 5: Acoustic testing and evaluation of textiles for buildings and office environments -- 5.1 Acoustic properties of textiles -- 5.1.1 Flow resistivity -- 5.1.2 Propagation -- 5.1.3 Absorption -- 5.1.4 Scattering -- 5.2 Flow resistance measurement -- 5.2.1 The direct airflow method -- 5.2.2 The alternating airflow method -- 5.2.3 Acoustic measurement methods -- 5.3 Transmission loss measurement -- 5.3.1 The reverberant room method -- 5.3.2 The transfer matrix method -- 5.4 Absorption coefficient measurement -- 5.4.1 The impedance tube method. , 5.4.2 The reverberation room method -- 5.5 Scattering property measurement -- 5.5.1 Measurement of the random incidence scattering coefficient in a reverberation room -- 5.5.2 Measurement of the directional diffusion coefficient in a free field -- 5.6 Summary -- References -- 6: Medical textiles testing and quality assurance -- 6.1 Introduction -- 6.2 Types of medical textiles -- 6.2.1 Nonimplantable materials -- 6.2.2 Healthcare/hygiene products -- 6.2.3 Extracorporeal devices -- 6.3 Medical textile performance testing -- 6.4 Methods, standards and validation -- 6.4.1 Medical textiles performance testing (EN 13795) -- 6.4.2 Resistance to microbial penetration in dry (ISO 22612) or wet conditions (ISO 22610) -- 6.4.3 Test method for evaluation of cleanliness-microbial contamination (EN 1174, replaced by EN ISO 11737) -- 6.4.4 Test method for evaluation of cleanliness-particulate matter (ISO 9073-10) -- 6.4.5 Test method for assessment of resistance to liquid penetration (EN 20811) -- 6.4.6 Test method for measuring the linting of textile materials in the dry state (ISO 9073-10) -- 6.4.7 Dry and wet burst strength (EN 13938-1) -- 6.4.8 Tensile strength of medical textiles in dry and wet condition (EN 29073-3:1992) -- 6.4.9 The requirement and importance of medical textiles performance testing for the healthcare staff and the medical ... -- 6.4.10 Tests for surgical masks -- 6.4.10.1 Bacterial filtration efficiency -- 6.4.10.2 Splash resistance (synthetic blood) -- Water penetration resistance (ISO 811) -- Thermal manikin (EN ISO 15831-ASTM F2370) -- Cytotoxicity and nontoxicity performance testing (ISO 10993) -- Human skin irritation test -- 6.5 Care and quality assurances -- 6.6 Medical textiles and its future trends -- 6.7 Conclusion -- 6.8 Sources of further information and advice -- Acknowledgments -- References. , 7: Multiscale characterization and testing of function-integrative fiber-reinforced composites -- 7.1 Introduction -- 7.2 Common techniques for the characterization of smart fiber-reinforced composites -- 7.2.1 Qualitative methods -- 7.2.1.1 X-ray computed tomography -- 7.2.1.2 Micrograph analysis -- 7.2.1.3 Ultrasonic testing -- 7.2.2 Quantitative characterization -- 7.2.2.1 Electric impedance -- 7.2.2.2 Experimental modal analysis -- 7.2.2.3 Cyclic three-point-bending -- 7.2.2.4 Optical methods -- 7.2.2.5 Alternative methods for the characterization of smart fiber-reinforced composites -- 7.3 Case studies -- 7.3.1 Cyclic three-point-bending of long fiber-reinforced polyurethane composite structures with novel integrated sen ... -- 7.3.1.1 Materials and manufacturing -- 7.3.1.2 Experimental -- 7.3.1.3 Results -- 7.3.2 Textile-reinforced thermoplastic structure with material homogeneous embedded piezoceramic modules -- 7.3.2.1 Materials, Components and manufacturing -- 7.3.2.2 Test setup -- 7.3.2.3 Experimental and quality analysis -- 7.3.2.4 Results -- 7.3.3 Disc-shaped rotor with integrated active damping system -- 7.3.3.1 Experimental setup -- 7.3.3.2 Results -- 7.4 Summary/conclusions -- Acknowledgment -- References -- 8: Environmental textiles: Testing and certification -- 8.1 Introduction -- 8.2 Historical background -- 8.3 German ban on azo dyes -- 8.4 Ecofriendly textile manufacturing and processing -- 8.4.1 OEKOTEX Standard 100 -- 8.4.2 Sustainable textile production -- 8.4.3 Process based ecolabeling -- 8.4.3.1 Hazardous chemicals -- 8.4.3.2 Heavy metals -- 8.5 Restricted substance list -- 8.6 REACH -- 8.7 Organic textile standards -- 8.8 Concluding remarks -- References -- 9: Design, evaluation, and applications of electronic textiles * -- 9.1 Fundamental design issues for incorporating electronics into fabric environments. , 9.1.1 Advantages, disadvantages, and limitations of E-Textiles -- 9.1.2 Installing sensors, batteries, wiring, and other hardware challenges -- 9.1.3 Bio-physical monitoring: Connecting to the cloud -- 9.1.4 Addressing recycling and disposal issues for E-Textile components -- 9.2 Safety requirements & -- evaluation criteria for E-Textiles -- 9.2.1 Categories, comparisons, and general types of E-Textiles -- 9.2.1.1 Body heat, flexible PV, motion power generation methods -- 9.2.2 MSDS (material safety data sheet) for embedded components -- 9.3 Summary of present applications -- 9.3.1 Health monitoring and athletic training -- 9.3.2 Military applications -- 9.3.3 Entertainment and fashion -- 9.4 Research paths leading to the future of E-Textiles -- 10: Thermal analysis for fiber identification and characterization -- 10.1 Introduction -- 10.2 Formation and modification of fibers -- 10.3 Identification and characterization -- 10.3.1 Thermal processes in fibers -- 10.3.2 Influence of experimental parameters in fiber analysis -- 10.3.2.1 Experimental aspects of DSC -- 10.3.2.2 Experimental aspects of TGA -- 10.3.2.3 Experimental aspects of TMA and DMA -- 10.3.3 Examples of thermal behavior of fibers -- 10.4 Evolution of novel fiber materials -- 10.5 Conclusion -- References -- Index -- Back Cover.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages