feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Duxford, England ; : Woodhead Publishing,
    UID:
    almahu_9949244526902882
    Format: 1 online resource (298 pages)
    ISBN: 0-12-823227-7
    Series Statement: Woodhead Publishing series in electronic and optical materials
    Content: "Advanced PEDOT Thermoelectric Materials summarizes current progress and the challenges of PEDOT thermoelectric materials, while clarifying directions for future development. This book provides a comprehensive overview of chemical, physical, and technical information about this organic thermoelectric polymer. The authors also give details about the theoretical basis of PEDOT, including preparation and characterization, and its development as a high-performance thermoelectric material."--
    Note: Front Cover -- ADVANCED PEDOT THERMOELECTRIC MATERIALS -- ADVANCED PEDOT THERMOELECTRIC MATERIALS -- Copyright -- Contents -- Contributors -- Biographies -- Foreword -- Preface -- Acknowledgments -- Abbreviations -- 1 - Short history of thermoelectric conjugated PEDOT development -- 1.1 Introduction -- 1.2 Evolution of thermoelectric conjugated polymers -- 1.3 Typical thermoelectric conjugated polymers -- 1.3.1 Polyacetylene -- 1.3.2 Polythiophenes -- 1.3.3 Polyaniline -- 1.3.4 Polypyrrole -- 1.3.5 Polycarbazole -- 1.4 Advantages of PEDOT -- 1.5 Thermoelectric PEDOT/PEDOT:PSS -- 1.5.1 Discovery at an early stage -- 1.5.2 Growth at an exploratory stage -- 1.5.3 Breakthrough at awaited stage -- 1.6 Concluding remarks -- References -- 2 - PEDOT preparation, morphology, and electronic structure -- 2.1 Introduction -- 2.2 Precursor synthesis -- 2.2.1 HMEDOT -- 2.2.1.1 Alkoxysulfonate -- 2.2.1.2 Alkylcarboxylic -- 2.3 Polymerization methods -- 2.3.1 Oxidation polymerization in solution -- 2.3.2 Electrodeposition -- 2.3.3 Vapor phase polymerization -- 2.4 Fabrication techniques for nano-/micro-PEDOT-based thin-film materials -- 2.4.1 Coating -- 2.4.2 Printing -- 2.4.3 Filtration -- 2.4.4 Gel -- 2.4.4.1 In situ polymerization -- 2.4.4.2 Supramolecular self-assembly -- 2.5 Morphology structure -- 2.5.1 SEM -- 2.5.2 TEM -- 2.5.3 AFM -- 2.6 Electronic states -- 2.6.1 X-ray photoelectron spectroscopy (XPS) -- 2.6.2 UV-Vis-NIR absorbance spectroscopy -- 2.6.3 Raman spectroscopy -- 2.6.4 GIWAXS -- 2.7 Concluding remarks -- References -- 3 - Thermoelectric properties of PEDOTs -- 3.1 Introduction -- 3.2 From insulator to semimetal -- 3.3 Thermoelectric power factor -- 3.3.1 Electrical conductivity of PEDOTs -- 3.3.1.1 Origin of (σ) -- 3.3.1.2 Influencing factors on (σ) -- 3.3.1.3 Methods for improving (σ). , 3.3.1.4 Mechanism and characterizations for enhancing (σ) -- 3.3.2 Thermopower -- 3.3.3 Power factor -- 3.4 Thermal conductivity -- 3.4.1 Electronic thermal conductivity -- 3.4.2 Lattice thermal conductivity -- 3.4.3 In-plane and out-of-plane thermal conductivity -- 3.5 Thermoelectric figure of merit -- 3.6 Concluding remarks -- References -- 4 - Thermoelectric transport and PEDOT dependence -- 4.1 Introduction -- 4.2 Thermoelectric transport theory -- 4.2.1 Stable geometric structure -- 4.2.2 Electronic structure -- 4.2.3 Transport property -- 4.2.4 Model setup -- 4.3 Band structure -- 4.4 Density of states -- 4.5 Thermoelectric performance dependence -- 4.5.1 Electrical conductivity and thermopower -- 4.5.2 Electrical conductivity and thermal conductivity -- 4.5.3 Thermal conductivity and semicrystalline -- 4.5.4 Temperature -- 4.5.5 Carrier concentration and mobility -- 4.5.6 Order and disorder -- 4.6 Concluding remarks -- References -- 5 - Optimizing the thermoelectric performance of PEDOTs -- 5.1 Introduction -- 5.2 Doping and dedoping -- 5.2.1 Chemical doping and dedoping -- 5.2.2 Electrochemical doping and dedoping -- 5.3 Low dimensionality -- 5.4 Crystal structure -- 5.5 Phonon scattering -- 5.6 Molecular conformation -- 5.7 Posttreatment -- 5.7.1 Polar organic solvents -- 5.7.2 Acids or alkalis -- 5.7.3 Humidity conditions -- 5.7.4 Mixture treatments -- 5.7.5 Multistep processing -- 5.7.6 Environment-friendly posttreatment -- 5.8 Concluding remarks -- References -- 6 - Thermoelectric PEDOTs: Derivatives, analogs, and copolymers -- 6.1 Introduction -- 6.2 Derivatives -- 6.3 Analogs -- 6.4 Copolymers -- 6.5 Concluding remarks -- References -- 7 - PEDOT-based thermoelectric nanocomposites/hybrids -- 7.1 Introduction -- 7.2 Thermoelectric properties of PEDOT/inorganic nanocrystals and composites. , 7.2.1 TE properties of PEDOT/metal nanoparticle composites -- 7.2.2 TE properties of PEDOT/inorganic semiconductor composites -- 7.2.3 TE properties of PEDOT/carbon nanomaterial composites -- 7.2.4 TE properties of PEDOT-based ternary composites -- 7.3 Concluding remarks -- References -- 8 - Thermoelectric PEDOT measurement techniques -- 8.1 Introduction -- 8.2 Electrical conductivity -- 8.3 Seebeck coefficient -- 8.3.1 Static method -- 8.3.2 Quasi-static method -- 8.3.3 Analysis of errors -- 8.4 Thermal conductivity -- 8.5 Carrier density and mobility -- 8.5.1 Field effect transistor method -- 8.5.2 Hall effect method -- 8.6 Concluding remarks -- References -- 9 - Flexible and wearable thermoelectric PEDOT devices -- 9.1 Introduction -- 9.2 Thermoelectric film -- 9.3 Thermoelectric fiber -- 9.4 Thermoelectric module -- 9.4.1 Screen printing -- 9.4.2 Inkjet printing -- 9.4.3 Roll-to-roll -- 9.4.4 Photolithography -- 9.5 Concluding remarks -- References -- 10 - Challenges and perspectives -- References -- Index -- Back Cover.
    Additional Edition: ISBN 0-12-821550-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Duxford, England ; : Woodhead Publishing,
    UID:
    edoccha_9960099784902883
    Format: 1 online resource (298 pages)
    ISBN: 0-12-823227-7
    Series Statement: Woodhead Publishing series in electronic and optical materials
    Note: Front Cover -- ADVANCED PEDOT THERMOELECTRIC MATERIALS -- ADVANCED PEDOT THERMOELECTRIC MATERIALS -- Copyright -- Contents -- Contributors -- Biographies -- Foreword -- Preface -- Acknowledgments -- Abbreviations -- 1 - Short history of thermoelectric conjugated PEDOT development -- 1.1 Introduction -- 1.2 Evolution of thermoelectric conjugated polymers -- 1.3 Typical thermoelectric conjugated polymers -- 1.3.1 Polyacetylene -- 1.3.2 Polythiophenes -- 1.3.3 Polyaniline -- 1.3.4 Polypyrrole -- 1.3.5 Polycarbazole -- 1.4 Advantages of PEDOT -- 1.5 Thermoelectric PEDOT/PEDOT:PSS -- 1.5.1 Discovery at an early stage -- 1.5.2 Growth at an exploratory stage -- 1.5.3 Breakthrough at awaited stage -- 1.6 Concluding remarks -- References -- 2 - PEDOT preparation, morphology, and electronic structure -- 2.1 Introduction -- 2.2 Precursor synthesis -- 2.2.1 HMEDOT -- 2.2.1.1 Alkoxysulfonate -- 2.2.1.2 Alkylcarboxylic -- 2.3 Polymerization methods -- 2.3.1 Oxidation polymerization in solution -- 2.3.2 Electrodeposition -- 2.3.3 Vapor phase polymerization -- 2.4 Fabrication techniques for nano-/micro-PEDOT-based thin-film materials -- 2.4.1 Coating -- 2.4.2 Printing -- 2.4.3 Filtration -- 2.4.4 Gel -- 2.4.4.1 In situ polymerization -- 2.4.4.2 Supramolecular self-assembly -- 2.5 Morphology structure -- 2.5.1 SEM -- 2.5.2 TEM -- 2.5.3 AFM -- 2.6 Electronic states -- 2.6.1 X-ray photoelectron spectroscopy (XPS) -- 2.6.2 UV-Vis-NIR absorbance spectroscopy -- 2.6.3 Raman spectroscopy -- 2.6.4 GIWAXS -- 2.7 Concluding remarks -- References -- 3 - Thermoelectric properties of PEDOTs -- 3.1 Introduction -- 3.2 From insulator to semimetal -- 3.3 Thermoelectric power factor -- 3.3.1 Electrical conductivity of PEDOTs -- 3.3.1.1 Origin of (σ) -- 3.3.1.2 Influencing factors on (σ) -- 3.3.1.3 Methods for improving (σ). , 3.3.1.4 Mechanism and characterizations for enhancing (σ) -- 3.3.2 Thermopower -- 3.3.3 Power factor -- 3.4 Thermal conductivity -- 3.4.1 Electronic thermal conductivity -- 3.4.2 Lattice thermal conductivity -- 3.4.3 In-plane and out-of-plane thermal conductivity -- 3.5 Thermoelectric figure of merit -- 3.6 Concluding remarks -- References -- 4 - Thermoelectric transport and PEDOT dependence -- 4.1 Introduction -- 4.2 Thermoelectric transport theory -- 4.2.1 Stable geometric structure -- 4.2.2 Electronic structure -- 4.2.3 Transport property -- 4.2.4 Model setup -- 4.3 Band structure -- 4.4 Density of states -- 4.5 Thermoelectric performance dependence -- 4.5.1 Electrical conductivity and thermopower -- 4.5.2 Electrical conductivity and thermal conductivity -- 4.5.3 Thermal conductivity and semicrystalline -- 4.5.4 Temperature -- 4.5.5 Carrier concentration and mobility -- 4.5.6 Order and disorder -- 4.6 Concluding remarks -- References -- 5 - Optimizing the thermoelectric performance of PEDOTs -- 5.1 Introduction -- 5.2 Doping and dedoping -- 5.2.1 Chemical doping and dedoping -- 5.2.2 Electrochemical doping and dedoping -- 5.3 Low dimensionality -- 5.4 Crystal structure -- 5.5 Phonon scattering -- 5.6 Molecular conformation -- 5.7 Posttreatment -- 5.7.1 Polar organic solvents -- 5.7.2 Acids or alkalis -- 5.7.3 Humidity conditions -- 5.7.4 Mixture treatments -- 5.7.5 Multistep processing -- 5.7.6 Environment-friendly posttreatment -- 5.8 Concluding remarks -- References -- 6 - Thermoelectric PEDOTs: Derivatives, analogs, and copolymers -- 6.1 Introduction -- 6.2 Derivatives -- 6.3 Analogs -- 6.4 Copolymers -- 6.5 Concluding remarks -- References -- 7 - PEDOT-based thermoelectric nanocomposites/hybrids -- 7.1 Introduction -- 7.2 Thermoelectric properties of PEDOT/inorganic nanocrystals and composites. , 7.2.1 TE properties of PEDOT/metal nanoparticle composites -- 7.2.2 TE properties of PEDOT/inorganic semiconductor composites -- 7.2.3 TE properties of PEDOT/carbon nanomaterial composites -- 7.2.4 TE properties of PEDOT-based ternary composites -- 7.3 Concluding remarks -- References -- 8 - Thermoelectric PEDOT measurement techniques -- 8.1 Introduction -- 8.2 Electrical conductivity -- 8.3 Seebeck coefficient -- 8.3.1 Static method -- 8.3.2 Quasi-static method -- 8.3.3 Analysis of errors -- 8.4 Thermal conductivity -- 8.5 Carrier density and mobility -- 8.5.1 Field effect transistor method -- 8.5.2 Hall effect method -- 8.6 Concluding remarks -- References -- 9 - Flexible and wearable thermoelectric PEDOT devices -- 9.1 Introduction -- 9.2 Thermoelectric film -- 9.3 Thermoelectric fiber -- 9.4 Thermoelectric module -- 9.4.1 Screen printing -- 9.4.2 Inkjet printing -- 9.4.3 Roll-to-roll -- 9.4.4 Photolithography -- 9.5 Concluding remarks -- References -- 10 - Challenges and perspectives -- References -- Index -- Back Cover.
    Additional Edition: ISBN 0-12-821550-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Duxford, England ; : Woodhead Publishing,
    UID:
    edocfu_9960099784902883
    Format: 1 online resource (298 pages)
    ISBN: 0-12-823227-7
    Series Statement: Woodhead Publishing series in electronic and optical materials
    Note: Front Cover -- ADVANCED PEDOT THERMOELECTRIC MATERIALS -- ADVANCED PEDOT THERMOELECTRIC MATERIALS -- Copyright -- Contents -- Contributors -- Biographies -- Foreword -- Preface -- Acknowledgments -- Abbreviations -- 1 - Short history of thermoelectric conjugated PEDOT development -- 1.1 Introduction -- 1.2 Evolution of thermoelectric conjugated polymers -- 1.3 Typical thermoelectric conjugated polymers -- 1.3.1 Polyacetylene -- 1.3.2 Polythiophenes -- 1.3.3 Polyaniline -- 1.3.4 Polypyrrole -- 1.3.5 Polycarbazole -- 1.4 Advantages of PEDOT -- 1.5 Thermoelectric PEDOT/PEDOT:PSS -- 1.5.1 Discovery at an early stage -- 1.5.2 Growth at an exploratory stage -- 1.5.3 Breakthrough at awaited stage -- 1.6 Concluding remarks -- References -- 2 - PEDOT preparation, morphology, and electronic structure -- 2.1 Introduction -- 2.2 Precursor synthesis -- 2.2.1 HMEDOT -- 2.2.1.1 Alkoxysulfonate -- 2.2.1.2 Alkylcarboxylic -- 2.3 Polymerization methods -- 2.3.1 Oxidation polymerization in solution -- 2.3.2 Electrodeposition -- 2.3.3 Vapor phase polymerization -- 2.4 Fabrication techniques for nano-/micro-PEDOT-based thin-film materials -- 2.4.1 Coating -- 2.4.2 Printing -- 2.4.3 Filtration -- 2.4.4 Gel -- 2.4.4.1 In situ polymerization -- 2.4.4.2 Supramolecular self-assembly -- 2.5 Morphology structure -- 2.5.1 SEM -- 2.5.2 TEM -- 2.5.3 AFM -- 2.6 Electronic states -- 2.6.1 X-ray photoelectron spectroscopy (XPS) -- 2.6.2 UV-Vis-NIR absorbance spectroscopy -- 2.6.3 Raman spectroscopy -- 2.6.4 GIWAXS -- 2.7 Concluding remarks -- References -- 3 - Thermoelectric properties of PEDOTs -- 3.1 Introduction -- 3.2 From insulator to semimetal -- 3.3 Thermoelectric power factor -- 3.3.1 Electrical conductivity of PEDOTs -- 3.3.1.1 Origin of (σ) -- 3.3.1.2 Influencing factors on (σ) -- 3.3.1.3 Methods for improving (σ). , 3.3.1.4 Mechanism and characterizations for enhancing (σ) -- 3.3.2 Thermopower -- 3.3.3 Power factor -- 3.4 Thermal conductivity -- 3.4.1 Electronic thermal conductivity -- 3.4.2 Lattice thermal conductivity -- 3.4.3 In-plane and out-of-plane thermal conductivity -- 3.5 Thermoelectric figure of merit -- 3.6 Concluding remarks -- References -- 4 - Thermoelectric transport and PEDOT dependence -- 4.1 Introduction -- 4.2 Thermoelectric transport theory -- 4.2.1 Stable geometric structure -- 4.2.2 Electronic structure -- 4.2.3 Transport property -- 4.2.4 Model setup -- 4.3 Band structure -- 4.4 Density of states -- 4.5 Thermoelectric performance dependence -- 4.5.1 Electrical conductivity and thermopower -- 4.5.2 Electrical conductivity and thermal conductivity -- 4.5.3 Thermal conductivity and semicrystalline -- 4.5.4 Temperature -- 4.5.5 Carrier concentration and mobility -- 4.5.6 Order and disorder -- 4.6 Concluding remarks -- References -- 5 - Optimizing the thermoelectric performance of PEDOTs -- 5.1 Introduction -- 5.2 Doping and dedoping -- 5.2.1 Chemical doping and dedoping -- 5.2.2 Electrochemical doping and dedoping -- 5.3 Low dimensionality -- 5.4 Crystal structure -- 5.5 Phonon scattering -- 5.6 Molecular conformation -- 5.7 Posttreatment -- 5.7.1 Polar organic solvents -- 5.7.2 Acids or alkalis -- 5.7.3 Humidity conditions -- 5.7.4 Mixture treatments -- 5.7.5 Multistep processing -- 5.7.6 Environment-friendly posttreatment -- 5.8 Concluding remarks -- References -- 6 - Thermoelectric PEDOTs: Derivatives, analogs, and copolymers -- 6.1 Introduction -- 6.2 Derivatives -- 6.3 Analogs -- 6.4 Copolymers -- 6.5 Concluding remarks -- References -- 7 - PEDOT-based thermoelectric nanocomposites/hybrids -- 7.1 Introduction -- 7.2 Thermoelectric properties of PEDOT/inorganic nanocrystals and composites. , 7.2.1 TE properties of PEDOT/metal nanoparticle composites -- 7.2.2 TE properties of PEDOT/inorganic semiconductor composites -- 7.2.3 TE properties of PEDOT/carbon nanomaterial composites -- 7.2.4 TE properties of PEDOT-based ternary composites -- 7.3 Concluding remarks -- References -- 8 - Thermoelectric PEDOT measurement techniques -- 8.1 Introduction -- 8.2 Electrical conductivity -- 8.3 Seebeck coefficient -- 8.3.1 Static method -- 8.3.2 Quasi-static method -- 8.3.3 Analysis of errors -- 8.4 Thermal conductivity -- 8.5 Carrier density and mobility -- 8.5.1 Field effect transistor method -- 8.5.2 Hall effect method -- 8.6 Concluding remarks -- References -- 9 - Flexible and wearable thermoelectric PEDOT devices -- 9.1 Introduction -- 9.2 Thermoelectric film -- 9.3 Thermoelectric fiber -- 9.4 Thermoelectric module -- 9.4.1 Screen printing -- 9.4.2 Inkjet printing -- 9.4.3 Roll-to-roll -- 9.4.4 Photolithography -- 9.5 Concluding remarks -- References -- 10 - Challenges and perspectives -- References -- Index -- Back Cover.
    Additional Edition: ISBN 0-12-821550-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages